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Filaments are a type of wide-existing astronomical structure. It is a challenge to separate filaments from radio astronomical images,
because their radiation is usually weak. What is more, filaments often mix with bright objects, e.g., stars, which makes it difficult
to separate them. In order to extract filaments, A. Men’shchikov proposed a method “getfilaments” to find filaments automatically.
However, the algorithm removed tiny structures by counting connected pixels number simply. Removing tiny structures based on
local informationmight remove some part of the filaments because filaments in radio astronomical image are usually weak. In order
to solve this problem, we applied morphology components analysis (MCA) to process each singe spatial scale image and proposed a
filaments extraction algorithm based onMCA.MCAuses a dictionary whose elements can be wavelet translation function, curvelet
translation function, or ridgelet translation function to decompose images. Different selection of elements in the dictionary can
get different morphology components of the spatial scale image. By using MCA, we can get line structure, gauss sources, and other
structures in spatial scale images and exclude the components that are not related to filaments. Experimental results showed that
our proposedmethod based onMCA is effective in extracting filaments from real radio astronomical images, and images processed
by our method have higher peak signal-to-noise ratio (PSNR).

1. Introduction

A substantial part of interstellar medium exists in the form
of a fascinating web of omnipresent filamentary structures
[1], called filaments. The astronomical filament is first dis-
covered in the Milky Way. Along with the development of
telescopes, various filaments come into sight. Among them
the filaments in star-forming regions are the most fascinat-
ing, many magnetohydrodynamic (MHD) simulations have
shown that giant molecular clouds (GMCs) primarily evolve
into filaments before they collapse to form stars [2, 3]. Recent
observations also confirm these simulations [4, 5]. Since the
formation of massive stellar objects is still unclear, further
research on filaments is essential. Filaments in Galactic
and cosmological fields are also important. Studies have
argued that low mass galaxies got their gas through “cold
accretion”, which is often directed along filaments [6, 7].

Some researchers paid more attention to the large-scale
filaments of the universe [8], which may give clues to better
understand the slightly nonuniform cosmic microwave back-
ground (CMB) and the birth of the first generation of stars.
In addition, filaments have been observed in other objects,
such as supernova remnants (SNR) [9] and protoplanetary
disk [10].

The fact that many filaments are fuzzy in images causes
difficulty to distinguish them from background and sur-
rounding objects. Schneider et al. [11] investigated spatial and
density structure of the Rosette molecular cloud, by applying
a curvelet analysis, a filament-tracing algorithm (DisPerSE),
and probability density functions (PDFs) on Herschel col-
umn density maps. Hennebelle et al. [12] showed a method
based on adaptive mesh refinement magneto hydrodynamic
simulations, which treat self-consistently cooling and self-
gravity. Tugay [13] proposed a layer smoothing method,
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which described cellular large-scale structure of the universe
(LSS) as a grid of clusters with density larger than a limited
value, to detect extragalactic filaments. Men’shchikov [14]
proposed a multi-scale filaments extraction method named
getfilaments, which decomposed a simulated astronomical
image containing filaments into spatial images at different
scales to prevent interaction influence of different spatial
scale structures. The getfilaments works well in simulated
images and has been used to identify filaments for real
astronomical images, e.g., the far-infrared images of Musca
cloud observed with Herschel [15]. However, getfilaments
might exclude some tiny structure of filaments in astronomy
images, because it removes tiny structures just by counting
connected pixels number, and filaments in astronomy images
are usually weak.

In this paper, we develop an improved method based on
morphology components analysis (MCA) and getfilaments.
MCA is able to decompose the image into morphological
components based on different features from the perspective
of mathematical morphology and is often used in image
restoration, separation, and decomposition [16–19].The basic
idea of MCA decomposition algorithm is to choose two
dictionaries: smooth dictionary and texture dictionary, to
represent morphology components [20]. We can design dif-
ferent dictionaries to represent different sparse components
in the image. Smooth dictionary produces the decomposed
smooth component which carries the geometric and piece-
wise smooth information of the image, and texture dictionary
produces the decomposed texture component which carries
the marginal and edge information.

The paper is structured as follows. The improved method
named filament extraction algorithm based on MCA is
described in Section 2. Section 3 is devoted to discussing
experimental results of our method and comparing our
method with the getfilaments method by employing data
from GALFA-HI of Arecibo.

2. Filament Extraction Algorithm
Based on MCA

2.1. MCA Model. MCA was proposed by Starck et al. [17].
MCA is a kind of decomposition algorithm based on signal
sparsity and morphological diversity. MCA assumes that
signals are linear combinations of several morphological
components, and each morphological component can be
sparsely represented on its own dictionary.

We assume that image x comprises𝑀 different morpho-
logical components: x = x1+x2+⋅ ⋅ ⋅+xM. We design different
dictionaries Di for different morphological components xi
and assume all components mix together linearly. The image
x as an one-dimensional vector of length M can then be
represented as follows:

x = D𝛼, (1)

where the matrix D = [𝐷1, . . . , 𝐷P] ∈ 𝑅M×P(typically,M ≪
P) is a dictionary. 𝛼 ∈ 𝑅P is the vector of sparse coefficients.

The equivalent constrained optimization problem is as fol-
lows:

{𝛼opt1 ,𝛼
opt
2 , . . . ,𝛼
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P }
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{𝛼1 ,...,𝛼P}
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(2)

However, this model does not take into account factors
that may lead to the failure of the image decomposition,
such as noise. When noise exists in the image x, the vector
{𝛼opt1 ,𝛼

opt
2 , . . . ,𝛼

opt
P }might be not sparse since noise cannot be

sparsely represented. For this kind of noise, we put the noise
in the error item to achieve the sparse decomposition of the
image x. The constraint in (2) is modified as follows:
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(3)

where 𝜖 represents the noise level in the image x.

2.2. MCA Decompostion Algorithm. In this paper, we focus
on the image decomposition into two components: cartoon
layer and texture layer. Cartoon layer contains cartoon
and piecewise smooth information, and texture layer may
contain other texture information, marginal information,
and noises [21, 22]. Studies [23, 24] have shown that noises
exist in both cartoon and texture layer. In other words, the
smooth part not only contains the majority of the useful
information, but also contains a small part of the noise. If
we set the same threshold of noise variance for the whole
image, rather than calculating the threshold for each part
of the image, some useful information might be removed.
We therefore introduce the MCA decomposition algorithm
to process an image into smooth (cartoon) layer and texture
layer.

We assume that matrix Dt is the dictionary matrix of
the texture layer and that Dc is the dictionary matrix of
the cartoon layer. A solution for the decomposition could
be obtained by relaxing the constraint in (3) to become an
approximate one:

{𝛼optt ,𝛼optc } = argmin
{𝛼t,𝛼c}

󵄩󵄩󵄩󵄩𝛼t
󵄩󵄩󵄩󵄩1 +

󵄩󵄩󵄩󵄩𝛼c
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+ 𝜆 󵄩󵄩󵄩󵄩x −Dt𝛼t −Dc𝛼c
󵄩󵄩󵄩󵄩
2

2
,

(4)

where 𝜆 is a Lagrange operators. Define xt = Dt𝛼t and xc =
Dc𝛼c. Given xt, we can recover 𝛼t as 𝛼t = D+t xt, where D

+
t

is the Moore-Penrose pseudoinverse of Dt. In order to get
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Figure 1: Flow of the filament extraction algorithm.

piecewise smooth component, add a TV (Total Variation)
penalty [25] to fit the smooth layer. TV is used to damp
ringing artifacts near edges and oscillating. Put these back
into (4), and, thus, we obtain the following:

{xoptt , xoptc } = argmin
{xt,xc}

󵄩󵄩󵄩󵄩D
+
t xt
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󵄩󵄩󵄩󵄩
2

2
+ 𝛾 󵄩󵄩󵄩󵄩𝑇𝑉 (xc)

󵄩󵄩󵄩󵄩 .
(5)

𝛾 is the TV regularization parameter, in multiscale method,
a lower 𝛾 is able to remove the artefacts caused by curvelet.
𝑇𝑉(xc) is a measure of the amount of oscillations in the
cartoon layer. Penalizing with TV, the cartoon layer is closer
to the piecewise smooth image. However, TV suffers from the
so-called staircase effect that impacts the quality of images
reconstruction. The adaptive TV [26] and the higher order
derivative [27] are solutions to reduce the staircase effect.

Then we discuss the choice of dictionaries for the car-
toon and the texture layer. Appropriate dictionaries are
very important for sparse representations over the image.
Generally, the choice of dictionaries depends on experiences.
The structure in the dictionary is more matched with the
image easier to form a sparse representation. The commonly
used dictionary of MCA includes wavelet transform, ridgelet
transform, curvelet transform, discrete cosine transform
(DCT), and so on. The two dictionaries used in this paper
are described as follows.

First, we choose curvelet as the dictionary for cartoon
layer.The curvelet transform based on the multiscale ridgelet
transform was proposed by Cand & Donoho [28]. It first
decomposes the image into a set of wavelet bands and then
analyzes each band with the ridgelet transform at different
scale levels. The curvelet transform performs well at the
detection of anisotropic structures, smooth curves, and edges
of different lengths [29].

We next choose the local DCT as the dictionary for
texture layer. DCT is a variant of the discrete Fourier trans-
form (DFT). It uses a symmetric signal extension to replace

complex analysis with real numbers and is appropriate for the
sparse representation of the texture and periodic part of the
image.

2.3. Filament ExtractionAlgorithmBased onMCA. Theshape
of the filaments can be obtained by applying the above
filament extraction algorithm to radio astronomical images.
We finally use the watershed algorithm to highlight filaments.

The watershed algorithm [30, 31] is based on mathe-
matical morphology. The watershed algorithm segments an
image into nonoverlapping regions and gets a pixel width
and continuous boundary for the purpose of extracting and
identifying a specific area [32, 33]. A grayscale image can be
viewed as a topographic surface. A high grayscale value of a
pixel denotes a peak or hill while a low grayscale denotes a
valley. Each local minimum of pixels and the affected region
are called a catchment basin, and the boundary of catchment
basins forms the watershed. By filling each isolated valley
(local minimum) with differently colored water (labels),
the region of influence of each local minimum gradually
expands outwards. The adjacent regions then converge, and
the boundaries that form the watershed appear.

The whole filament extraction algorithm (https://github
.com/MiWBY/MCA) can be roughly divided into four steps
(as shown in Figure 1).

(1) Convolution. First, using a Gaussian filter, we convolve the
original images into a series of layered images. Different full
widths at half maximum can be set for different image layers:

𝑋j = 𝐺j−1 ∗ 𝑋 − 𝐺j ∗ 𝑋 (𝑗 = 1, 2, . . . , 𝑁s) . (6)

where 𝑋 is the original image, 𝑋j is the jth subimage after
convolution, 𝐺j−1 and 𝐺j are different Gaussian beams for
different spatial components, ∗ is the convolution operation,
and𝑁s is the number of the layers.

In this process, structures at different scales in the
astronomical images can be separated into different layers
(subimages), and each layer contains similar scales, which
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make the input sources become simpler in the later denoising
and extraction process.

(2) Decompostion. We apply the MCA algorithm to each
layered image so that each layered image is decomposed
into a cartoon layer and a texture layer. Here we use the
curvelet as the dictionary for the cartoon layer and local
DCT as the dictionary for the texture layer as described in
Section 2.2. The cartoon layer contains most of filaments and
low-frequency noise, and the texture layer contains sources,
high-frequency noise, and small part of filaments.

Starck et al. [17] proposed the MCA decomposition
algorithm based on BCR algorithm (BlockCoordinate Relax-
ation).The algorithm is given as follows. Input:The subimage
𝑋j after convolution, which is described as the input image
x here, dictionary Dc of the cartoon layer, dictionary Dt of
the texture layer, number of iterations𝐿max , and the threshold
𝛿 = 𝜆 ⋅ 𝐿max.

Output: Cartoon layer xc and texture layer xt.

(1) Initialize 𝐿max, and 𝜆 = 𝑘∗𝜖 (typically, k = 3), where
𝜖 is the value of noise level. Then the threshold 𝛿 =
𝜆 ⋅ 𝐿max.

(2) For 𝑗 = 1 : 𝐿max

For 𝑘 = 1 : 𝑃

(i) Update xc assuming xt is fixed:
(a) Caculate the residual r = x − xc − xt.
(b) Calculate 𝛼c = D+c (xc + r).
(c) Soft thresholding the coefficient 𝛼c with the

𝛿 threshold and obtain 𝛼̂c.
(d) Reconstruct xc by xc = Dc𝛼̂c.

(ii) Update xt with the above method

Apply the TV correction by xc = xc − 𝜇𝛾(𝑇𝑉(xc)/xc),
where 𝜇 is the minimum parameter, and is chosen
by a line-decreasing the overall penalty function, or
as a fixed step-size of moderate value that guarantees
convergence.

(3) Update the threshold by 𝛾 = 𝛾 − 𝜆.
If 𝛾 > 𝜆, return step 2. Else, finish.

(3) Denoise. First, we denoise each layer using the iterative
cleaning algorithm proposed by Men’shchikov et al. [34].
The cleaning algorithm employs a global intensity threshold
for single-scale images, as the larger-scale background has
been effectively filtered out by the spatial decomposition.
This iterative algorithm automatically finds a cut-off level that
separates the signal of important sources from the noise and
background at each scale. Next, we enhance details for both
the cartoon layer and texture layer.

(4) Combination and Extraction. To get the extracted fila-
ments, we first merge the cartoon layer and textual layer
for each layered image. Because filaments are irregular, and
structures of filaments exist in both cartoon layer and texture
layer, it is not appropriate to use just one component to

represent the filaments. For example, if we just use cartoon
layer to represent filaments, filaments may lose some texture.
Thus, we merge the cartoon layer and textual layer to
represent filaments better. Next, the layered subimages are
added together to produce the filaments. Finally, we apply the
watershed algorithm to highlight the contours of filaments.

By applying MCA to decompose a real image, new
features (components) can be obtained. This leads to better
image separability. Furthermore, the smooth components
have a better signal-to-noise ratio than the original image.

3. Extraction Results

3.1. Results for a Simulated Image. Before applying our
method to real radio astronomical images, we simulated an
image that is composed of a straight filament with 37󸀠󸀠 size of
FWHM, a string of sources with 24󸀠󸀠 size of FWHM, a simple
background with 4000󸀠󸀠 size of FWHM, and amoderate-level
noise with noise level=1.05 to test the improved algorithm
(Figure 2(a)). The simulation method is the same as that
mentioned in Men’shchikov et al. [14]. In the simulated
image, there is only one spatial component, while ourmethod
assumes there are many spatial components, which is similar
to real astronomical images. In other words, even if there is
only one spatial component, our method will also treat it as
many components.

We first extract filaments using MCA method without
convolution and denoising (Figure 2). In Figure 2(c), texture
layer (especially in the area marked by red box) still contains
part of filaments structures, which means just using cartoon
layer to represent filaments is insufficient. So it is necessary
to combine cartoon layer and texture layer. However, noises
and sources also exist in texture layer. If the two layers
are combined directly, the reconstructed filaments contains
noises and sources (Figure 2(d)), so denoising is necessary
before combination.

Next, extracted results obtained using our improved
method are shown in Figure 3. Compared to Figure 2(d), the
reconstructed filaments in Figure 3(e) contain less noise. The
edge of the filament is unreal as the result of decomposition.

3.2. Results for Astronomical Images

3.2.1. Decomposition and Denosing Results. Aiming at real
radio astronomical images, we compare the extraction results
of our method with those of the getfilaments method.
We employ data from GALFA-HI of Arecibo as example
images. The equatorial coordinates of the objects are (12.00h,
+10.35∘), and the object name is ’GALFA-HI RA+DEC Tile
004.00+02.35’. The data cube contains 2048 images at differ-
ent velocity (with respect to the local standard stationary sys-
tem). Here we select the 715th image from the 2048 original
images as the experimental image (Figure 4). In the exper-
imental images, filaments describe significantly elongated
structures. After convolution of the 715th image, we obtain
99 layers (subimages) at different scales (Figure 5) and select
the 40th subimage as a comparison example (Figure 5(b)).
In order to display the image properly and improve visual
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Figure 2: Results of the simulated images obtained usingMCAwithout convolution and denoising. (a)Original simulated image. (b) Cartoon
layer. (c) Texture layer. (d) Reconstructed filaments without denoising. (e) Residuals.
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Figure 3: Extraction results for the simulated image obtained using our method. (a) Original simulated image. (b) The 40th subimage
after convolution. (c) Cartoon layer of the 40th subimage after decomposition and denoising. (d) Texture layer of 40th subimage after
decomposition and denoising. (e) Reconstructed filaments. (f) Residuals.

contrast between getfilaments and our method, we mark the
image with different colors according to the intensity (Unit:
MJy/sr) in the image.

First, we apply the MCA algorithm to process image
layers before applying the iterative cleaning algorithm. As
described in Section 2.2, we choose curvelet as the cartoon

layer dictionary and LDCT as the texture layer dictionary for
MCA. We decompose each layered image to get the cartoon
layer and texture layer (Figure 6). The cartoon layer contains
smooth parts of the image and retains most of the low-
frequency information of the filament in the layered image.
The frequency of the texture layer is higher. The texture
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Figure 4: The 715th original image from GALFA-HI. (a) Original image for experiments. (b) Colored image for better visual contrast.
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Figure 5: Images at different scales after convolution of the 715th image. Choose the 40th subimage as comparison example. (a) The 1st
subimage. (b) The 40th subimage. (c) The 60th subimage. (d) The 80th subimage.
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Figure 6: Decomposition results of the 40th subimage obtained using MCA. (a) The cartoon layer obtained using the MCA algorithm. (b)
The texture layer obtained using the MCA algorithm.
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Figure 7: Denoising results for the cartoon layer and texture layer obtained using the iterative cleaning algorithm. (a) Denoising results for
the cartoon layer of the 40th subimage. (b) Denoising results for the texture layer of the 40th subimage.

layer contains more edge information that is difficult to be
distinguished visually in the layered image. The texture layer
is also part of the filament.The texture layer also contains part
of the filament. It shows some artefacts that might be caused
by DCT in texture layer; these artefacts can be removed after
denoising.

We then set different reasonable threshold for cartoon
layer and texture layer, respectively, and apply the iterative
cleaning algorithm to the cartoon layer and texture layer
to remove noise (as shown in Figure 7). Compared to
Figure 6(b), Figure 7(b) almost contains no artefacts.

Next, the cartoon layer and texture layer are fused
according to the intensity ratio (e.g., the information of the
texture layer is expanded by a factor of 5). Small structures can
then be retained and interference information is removed.
Processing results after fusion are shown in Figure 8(c). To
allow comparison with our method, we also use the iterative
cleaning algorithm directly to process the 40th subimage; the
results are shown in Figure 8(b).

As seen in Figure 8(b), most of the noises in the 40th
subimage are removed by cleaning. However, getfilaments
method sets only one noise threshold, and the values less than
the threshold are cleared. This might clear weak information
of the filament. As shown in the red box of Figure 8(b), the
weak part of the filament is directly removed. Figure 8(c) is
the denoised image after MCA decomposition. Structures of

the filament are more complete than those in panel b. Setting
different threshold of noise variance for the two parts can
avoid the removal of useful information, especially in the
area marked by red box. Our method not only removes noise
from the cartoon layer and texture layer but also strengthens
details in the image synthesis process. Applying MCA to
extract filament can retainmuch structural information of the
filament.

3.2.2. Extraction Results. Finally, the layered subimages are
added together to produce the filament. Figure 9 shows the
extraction results obtained using the getfilaments algorithm.
Figure 9(a) is the extracted filament done by getfilaments.
Compared to the input filament in Figure 3(a), most of
noises are cleaned and structures of the filament are also
removed (marked in red boxes in Figures 9(b) and 9(c)).
The extraction results obtained using our method are shown
in Figure 10. Comparing with the getfilaments method,
our method obtains the filament more complete, excludes
noise, and retains more structural information, especially
in the three areas marked by red boxes (Figures 10(b) and
10(c)).

3.3. Peak Signal-to-Noise Ratio. We compare the peak signal-
to-noise ratio (PSNR) of images processed by the getfilaments
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Figure 8: Denoising results of the 40th subimage. (a)The original 40th subimage. (b)The 40th subimage obtained using the iterative cleaning
algorithm directly. (c) The denoised 40th subimage after MCA decomposition and fusion.

algorithm with that of our method.The PSNR is the objective
criterion most widely used to evaluate image quality. An
image has less noise when the PSNR is higher. The PSNR is
defined as follows:

𝑃𝑆𝑁𝑅 = 10 ∗ log10
(2n − 1)2

𝑀𝑆𝐸
. (7)

where𝑀𝑆𝐸 is themean square error (i.e., difference) between
the original image and the image after noise is superimposed
and n is 8 since pixels are represented using 8 bits per sample.

For different intensities of salt-and-pepper noise, we
analyze the PSNRs of images processed by different methods.
Table 1 shows that the PSNR of the images processed using

Table 1: PSNR comparison of images processed using different
methods.

Noise intensity Images processed by different methods
Original Getfilaments Our method

0.1 18.2545 18.3443 18.5836
0.15 15.4864 16.5203 16.8379
0.2 14.9552 15.3325 15.7445
0.3 13.2314 13.7914 13.8200
0.5 11.2925 11.3277 11.8972

our improved method is always higher than that of getfila-
ments method, which means that the images processed by
MCA have less noise.
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Figure 9: Extraction results using the getfilaments algorithm. (a) Extracted filament. Part of information is removed, including noises and
structures. (b) Extracted filamentwith colors for contrast. Structures of the filament are cleaned in threemarked places. (c) Contour extraction
of the filament. (d) Residuals after the subtraction of the extracted filament from the original input image.
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Figure 10: Extraction results obtained using our method. (a) Un-colored extracted filament. Noises are removed, and filament’s structures
are retained. (b) Colored extracted filament. Compared to the filament in Figure 9(b), filament’s structures are more complete, especially in
three marked places. (c) Contour extraction. (d) Residuals after the subtraction of the extracted filament from the original image.
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