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Sunspots are darker areas on the Sun’s photosphere andmost of solar eruptions occur in complex sunspot groups.TheMountWilson
classification scheme describes the spatial distribution of magnetic polarities in sunspot groups, which plays an important role in
forecasting solar flares. With the rapid accumulation of solar observation data, automatic recognition of magnetic type in sunspot
groups is imperative for prompt solar eruption forecast.We present in this study, based on the SDO/HMI SHARP data taken during
the time interval 2010-2017, an automatic procedure for the recognition of the predefinedmagnetic types in sunspot groups utilizing
a convolutional neural network (CNN) method.Three different models (A, B, and C) take magnetograms, continuum images, and
the two-channel pictures as input, respectively. The results show that CNN has a productive performance in identification of the
magnetic types in solar active regions (ARs). The best recognition result emerges when continuum images are used as input data
solely, and the total accuracy exceeds 95%, for which the recognition accuracy of Alpha type reaches 98% while the accuracy for
Beta type is slightly lower but maintains above 88%.

1. Introduction

In 1908, Hale used the principle of the Zeeman effect to
calculate the magnetic field strength inside sunspots and
found that it is stronger than that of the surrounding area
[1]. Because the convection in the magnetized plasma is
suppressed by the strong magnetic field, temperature and
radiation of sunspots are lower than those of their surround-
ings. Sunspots appear as dark areas in the white light images
and are relatively temporary phenomena that can last for a
few days to several weeks or even months. A well-developed
sunspot is composed of a dark center and a lighter black
part around it. The former is the umbra and the latter is the
penumbra. As one kind of noticeable phenomena, sunspots
not only represent the overall level of solar activities in a
certain period, but also give clues to reveal other solar events.

Solar flares are one of the most violent phenomena
occurring in the solar atmosphere. Long-term observations
show that most of solar flares appear above sunspot groups.
However, the mechanism that causes solar flares is far from
fully understood. Numerous literatures have focused on the

relationship between sunspot groups and solar flares [2–9].
The characteristics of sunspot groups are important factors
for forecasting solar flares. Practically, many parameters,
including magnetic gradient, magnetic shear, sunspot num-
bers, the Zernike moments of magnetograms, and McIntosh
sunspot classifications, have been used [10–13]. In particular,
the morphology, that is, magnetic type of sunspot groups,
has always been an important perspective in the prediction
of solar flares. Atac (1987) [14] found that the sunspots pro-
ducing large flares are of type Dki or Eki with magnetic class
D. McIntosh (1990) [15] suggested a 3-component McIntosh
classification to describe the complexity of sunspots, yielding
the establishment of an expert system for predicting X-ray
solar flares. S. Eren et al. (2017) [16] investigated the sunspot
and solar flare data from 1996 to 2014, covering a total of
4262 active regions (ARs).Their results showed that large and
complex sunspot groups have the flare-production potential
about eight times higher than that of small and simple ARs.

Nowadays, both identification and classification of
sunspots are mainly carried out manually by experts, which
is a subjective, time-consuming, and labor-intensive process.
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On the other hand, the increasing number of space missions
has led to a rapid accumulation of solar activity data set.
Therefore, it has been on the agenda for quite a while to
implement automatic identification procedures for sunspot
magnetic types. Although much work has been done on
the automatic recognition of sunspots [17–19], there are few
on automatic classification of sunspot magnetic types by
machine learning method. Sinh Hoa Nguyen et al. (2005)
[20] applied hierarchical learning method based rough set
theory to the problem of classifying sunspots from satellite
images. Trung Thanh Nguyen et al. (2006) [21, 22] used
machine learning techniques to classify sunspot groups
based on the seven-class Modified Zurich scheme. Colak
et al. (2008) [23] adopted image processing algorithms and
fully connected neural networks to automatically detect
and classify sunspots based on the McIntosh classification
system. Mehmmood A. Abd et al. (2010) [24] employed
Support Vector Machines to achieve automatic classification
of sunspot groups on full disk white light solar images.
Sreejith Padinhatteeri et al. (2016) [25] have suggested a
system called Solar Monitor Active Region Tracker-Delta
Finder, which has a good performance on 𝛿 magnetic type
recognition. However, the Mount Wilson classification in
sunspot groups is lacking of overall automatic identification
procedures.

In this work, based on the Mount Wilson classification
system, the magnetic types of ARs are labeled by one of
the unipolar group Alpha, the bipolar group Beta, and other
complex multipole groups, Beta-x. These three magnetic
types are identified automatically by using the convolutional
neural network (CNN) method with SDO/HMI data taken
during the time interval 2010-2017. A training model with
high recognition accuracy is obtained.The paper is organized
as follows: the Mount Wilson magnetic classification is
briefly described in Section 2; both the data source and
the preprocessing method are explained in Section 3; the
structure of CNN is illustrated in Section 4 together with the
training results of models using different input data; Section 5
concludes the paper.

2. Mount Wilson Sunspot
Classification Scheme

In 1919, the Mount Wilson Observatory in California devel-
oped a classification scheme of sunspots according to the
polarity of the corresponding magnetic fields [26]. It consid-
ers bipolar sunspot groups as a basic type, and other types are
regarded as deformations of the bipolar sunspot group. The
category is listed below (https://www.spaceweatherlive.com):

(1) Alpha: a unipolar sunspot group

(2) Beta: a sunspot group having both positive and neg-
ative magnetic polarities, with a simple and distinct
division between opposite polarities

(3) Gamma: a complex type of AR. Unlike the Beta class,
the distribution of positive and negative polarities of
this type is very irregular

(4) Beta-Gamma: a bipolar sunspot group with suffi-
ciently complex distribution and no obvious bound-
aries between opposite polarities

(5) Delta: a bipolar sunspot group with opposite polarity
umbrae sharing one penumbra that spans less than 2
degrees with respect to the solar center

(6) Beta-Delta: a sunspot group of Beta magnetic classi-
fication containing one or more Delta sunspots

(7) Beta-Gamma-Delta: a sunspot group of Beta-Gamma
magnetic classification containing one or more Delta
sunspots

(8) Gamma-Delta: a sunspot group of Gamma magnetic
classification containing one or more Delta sunspots.

From May, 2010, to May, 2017, a total number of 11306
magnetic type classification records covering 1592 ARs are
contained in the Solar Region Summary (SRS) text file,
which can be downloaded from the NOAA/SWPC website
https://www.swpc.noaa.gov/. As shown in Table 1, Alpha
magnetic type appears 3576 times, accounting for one-third
of the total records, and Beta magnetic type appears 6127
times, accounting for 54%. Complex magnetic types: Beta-
Gamma, Beta-Gamma-Delta, and Beta-Delta, appear 1143,
385, and 75 times, respectively, accounting for a small portion
of the total records. In addition, the Gamma, Delta, and
Gamma-Delta magnetic types have not been reported in SRS
files during this period, therefore they are not listed in Table 1.

Statistically, large flares are more likely to occur in ARs
with complex magnetic types, while the ARs of Alpha type
have a lower probability of flare eruption [5]. In this study, the
sunspotmagnetic type falls into three categories, the unipolar
group Alpha, the bipolar group Beta, and other complex
multipole groups, called Beta-x.

3. Data Preprocessing

The data used in this paper are observed by SDO/HMI
[27, 28]. The 720s SHARP data (hmi.sharp 720s - Space-
Weather HMI Active Region Patch) [29] are selected, which
include magnetograms and continuum images with the time
cadence of 12 minutes. The SHARP data provide active
regionmaps in patches that encompass automatically tracked
magnetic concentrations for their entire lifetime. All of the
data files we have used are downloaded from the website
http://jsoc.stanford.edu/ and are in Flexible Image Transport
System (FITS) format. The data selection satisfies the follow-
ing criteria:

(i) The time range is from May, 2010, to May, 2017.
(ii) In order to guarantee enough variations between the

closest AR images, the AR data are taken every 96
minutes.

(iii) The location range of the data is within the ±75
heliolongitude degrees from the solar disk center to
reduce the influence of projection.

(iv) Only when one SHARP number corresponds to one
NOAA AR at the same time, the SHARP data is
selected.

https://www.spaceweatherlive.com
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Table 1: Distribution of magnetic types in 1592 ARs recorded in SRS files.

Type 𝛼 𝛽 𝛽-𝛾 𝛽-𝛾-𝛿 𝛽-𝛿 Total
Number 3576 6127 1143 385 75 11306
Ratio 31.6% 54.2% 10.1% 3.4% 0.6% 100%

Table 2: Distribution of magnetic types of SDO/HMI magnetograms and continuum images.

Alpha Beta Beta-x
SDO/HMI magnetograms 6696 8828 3646
SDO/HMI continuum images 5481 7993 2744

(v) The selected FITS files must be of high quality.
Corrupted data due to instrument failure or data of
large background noise are omitted.

Based on the spatial distribution of magnetic polarities
and penumbras, each AR magnetogram and continuum
image is manually assigned to a corresponding magnetic
type, respectively. In this labelling process, we have referred
to the AR information provided by NOAA SRS files. It
should be noted that a tiny amount of data have no obvious
magnetic type information, which makes it difficult to label
these samples manually. These data cannot be included in
the analysis. The total amount of usable data is shown in
Table 2. In allmagnetograms, there are 6696 pictures ofAlpha
magnetic type, 8828 pictures of Beta, and 3646 pictures of
Beta-x. In all continuum images, there are 5481 pictures of
Alphamagnetic type, 7993 pictures of Beta, and 2744 pictures
of Beta-x. The amount of data for each type in the data set is
unevenly distributed. The smallest number of magnetic type
is for Beta-x in continuum images.

The SDO/HMI magnetograms and continuum images
data are read in batches, and the output is in PNG format
according to

𝑝𝑖 =
(255 + 0.9999) ∗ (𝑥𝑖 − 𝑚𝑖𝑛)

𝑚𝑎𝑥 − 𝑚𝑖𝑛
(1)

where max and min represent the maximum and minimum
of the magnetic field strength, and 𝑥𝑖 and 𝑝𝑖 represent the
original pixel value and processed pixel value of the same
index in the data matrix, respectively. In order to maintain
the uniformity of the data set, the gray value range of the
magnetograms is processed. The value of max is set to be
800.0, and the min is set to be -800.0, that is, in the PNG
images, the gray value of the pixel point with a magnetic
field strength greater than or equal to 800 is assigned to
255, and the gray value of the pixel point with a magnetic
field strength lower than or equal to -800 is assigned a value
of zero. Figure 1 shows an example of AR magnetogram
before and after processing. Compared to the unprocessed
magnetogram, the processedmagnetogramhasmore obvious
characteristic information.

Besides, pictures obtained through the above process are
interpolated into a uniform size of 160×80 to satisfy the input
requirements by CNN structure.

4. Classification Model

4.1. Training Model. As a branch of artificial intelligence,
machine learning algorithms allow machines to learn pat-
terns from a large amount of historical data, thereby intelli-
gently identifying new samples or predicting the future. The
machine learning method adopted in this work is convolu-
tional neural network (CNN), which is one of the typical
algorithms of deep learning [30, 31]. CNN [32–35] is a kind of
feedforward neural network with convolutional computation
and deep structure, but, unlike the traditional multilayer
feedforward neural network, the input of CNN is a two-
dimensional pattern, images for example. The connection
weight of CNN is a two-dimensional weight matrix, which
is also called convolution kernel. Two basic operations in
CNN are two-dimensional discrete convolution and pooling.
Because CNN can process two-dimensional patterns directly,
it has been widely used in the field of computer vision. A
schematic of the CNN structure in this work is shown in
Figure 2:

(i) The input data sequentially pass through three layers
of convolution. The size of the convolution kernel is
5×5. The number of first-layer convolution kernels
is 32, and then each layer is doubled. The convolu-
tion kernel is used to extract image features. When
performing convolution, the all-zero padding is used,
and the step size is set to be 1.

(ii) The result of each convolution is activated by the
nonlinear activation function, followed by pooling.
The number of features is controlled by the pooling to
avoid overfitting. When performing pooling, the all-
zero padding is used, the step size is set to be 2, and
kernel size is 2×2.

(iii) The convolved data features are fed into a fully con-
nected neural network. Within the fully connected
neural network, there is one hidden layer containing
512 neurons, and the output layer has 3 neurons, cor-
responding to three different magnetic types. Among
the 3 nodes, the magnetic type corresponding to the
node with the highest value is the recognition result
of the model.

(iv) The output of the fully connected neural network
passes through a softmax function to obtain the
probability distribution for the output classification.
The result is then compared with the data label to get
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(a) (b)

Figure 1: Magnetogram of NOAA 11158 AR (SDO/HMI, February 14, 2011, 22:24 UT). In gray images, white (positive polarity) and black
(negative polarity) areas indicate strong magnetic fields, while gray areas show regions of weak magnetic fields. (a) and (b) are unprocessed
and processed pictures, respectively.
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Figure 2: A schematic of the CNN structure.
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Table 3: Performance of each training model.

Model Data source Loss function Accuracy
Total Alpha Beta Beta-x

A magnetogram 5.53940 0.876667 0.958 0.763 0.903
B continuum image 5.36543 0.954167 0.985 0.885 0.958
C two-channel picture 5.45285 0.889167 0.958 0.793 0.913

Table 4: Three-class confusion matrix.

Recognized Alpha Recognized Beta Recognized Beta-x
Observed Alpha True Alpha(TA) False Beta A(AB) False Beta-x A(AC)
Observed Beta False Alpha B(BA) True Beta(TB) False Beta-x B(BC)
Observed Beta-x False Alpha C(CA) False Beta C(CB) True Beta-x(TC)

the cross-entropy, so as to obtain the loss function.
The softmax function and the cross-entropy formula
are given by the following:

𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (𝑦𝑘) =
𝑒𝑦𝑘

∑𝑛j=1 𝑒
𝑦𝑗 (2)

where 𝑛 is the number of types, and 𝑦𝑘 is the output
of the 𝑘th network output unit.

𝐻(𝑌 ,𝑌) = −∑𝑌 ∗ log𝑌 (3)

𝑌 is the truth value of the data label, and 𝑌 is the
output of neural networks.

(v) Optimize the model by minimizing the loss function.
Each model stops training after 50,000 iterations.

4.2. Results. We have constructed three different classifica-
tion models, namely, A, B, and C, respectively. Model A uses
HMI magnetogram data as input, while model B uses HMI
continuum image data. Model C uses both magnetogram
and continuum images as two-channel input in CNN. The
corresponding convolution kernel is also set to two channels
in model C.

When training our models, it is required that the amount
of data used for training or testing is the same for each
class. At the same time, the combination of the magnetogram
and continuum image in model C requires integration and
matching of the two data sets. In order to satisfy these
requirements, we have used the undersampling method to
randomly select 2600 pictures for each class as inputs: 400 for
testing and 2200 for training. Totally, there are 6600 pictures
used for training and 1200 pictures for testing. The test set
data do not participate in the training process.

The performance of all models is evaluated by the loss
function and the accuracy rate. The loss function maps the
value of a random event or its associated random variable to
a nonnegative real number to represent the “risk” or “loss”
of the random event. In applications, the loss function is
often associated with the optimization problem as a learning
criterion, which is to solve and evaluate the model by
minimizing the loss function [36]. The total accuracy rate is

obtained by randomly extracting some samples from the test
set for magnetic type recognition after the model training is
completed. These sample data are not used in the training
process and can better reflect the recognition performance
of the model. The recognition accuracy for each magnetic
type is obtained by traversing their test set. The results are
shown in Table 3. In the three models, the value of loss
function for model B is the smallest, and that of model A
is the largest. The total accuracy of model B is the highest,
exceeding 95%, and model A has the lowest total accuracy of
about 87%. Comparing the performance of the three models
in each class, the accuracy ofmodel B is the highest. Although
model A and C have the same recognition accuracy for
Alpha, the accuracy of model C for Beta and Beta-x are
better than that of model A. Among the three categories,
Alpha has the highest accuracy while Beta has the lowest
accuracy. This phenomenon emerges in all three training
models.

In addition, the confusion matrix is used to evaluate the
classification performance of the model for the magnetic
type of the AR. The confusion matrix definition is shown
in Table 4. The number of samples that are correctly recog-
nized as “Alpha” is true Alpha (TA), the number of Alpha
samples that are wrongly recognized as “Beta” is false Beta A
(AB), and the number of Alpha samples that are wrongly
recognized as “Beta-x” is false Beta-x A (AC). The number
of samples that are correctly recognized as “Beta” is true
Beta (TB), the number of Beta samples that are wrongly
recognized as “Alpha” is false Alpha B (BA), and the number
of Beta samples that are wrongly recognized as “Beta-x” is
false Beta-x B (BC).Thenumber of samples that are correctly
recognized as “Beta-x” is true Beta-x (TC), the number of
Beta-x samples that are wrongly recognized as “Alpha” is
false Alpha C (CA), and the number of Beta-x samples that
are wrongly recognized as “Beta” is false Beta C (CB). The
classification result of the above three models is detailed in
Tables 5–7. It can be seen from the tables that Alphamagnetic
type is misidentified as Beta magnetic type occasionally
when the model recognition error occurs. Beta magnetic
type is sometimes misclassified as either Alpha or Beta-x,
and the error rate is more than 4%. Beta-x magnetic type
is mainly misclassified as Beta. When classifying manually,
the disagreement due to individual experience and personal
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Table 5: Details of Model A Classification Results.

Manual classification Automatic recognition
Alpha Beta Beta-x

Alpha(num/400) 383 (95.8%) 17 (4.3%) 0 (0.0%)
Beta(num/400) 36 (9.0%) 305 (76.3%) 59 (14.8%)
Beta-x(num/400) 10 (2.5%) 29 (7.3%) 361 (90.3%)
Total 429 351 420

Table 6: Details of Model B Classification Results.

Manual classification Automatic recognition
Alpha Beta Beta-x

Alpha(num/400) 394 (98.5%) 6 (1.5%) 0 (0.0%)
Beta(num/400) 18 (4.5%) 354 (88.5%) 28 (7.0%)
Beta-x(num/400) 4 (1.0%) 13 (3.3%) 383 (95.8%)
Total 416 373 411

Table 7: Details of Model C Classification Results.

Manual classification Automatic recognition
Alpha Beta Beta-x

Alpha(num/400) 383 (95.8%) 17 (4.3%) 0 (0.0%)
Beta(num/400) 37 (9.3%) 317 (79.3%) 46 (11.5%)
Beta-x(num/400) 11 (2.8%) 24 (6.0%) 365 (91.3%)
Total 431 358 411

opinion is inevitable, mainly in distinguishing Beta magnetic
type and Beta-x magnetic type.

True positive rate (TP rate) and false positive rate (FP
rate) are defined to measure the performance of models.
The TP rate is the percentage of positive samples correctly
classified, and the FP rate is the percentage of negative
samples that are misclassified. The formulas for calculating
TP rate and FP rate of Alpha are shown in the following:

𝑇𝑃 𝑟𝑎𝑡𝑒 = 𝑇𝐴
𝑇𝐴 + 𝐴𝐵 + 𝐴𝐶

(4)

𝐹𝑃 𝑟𝑎𝑡𝑒 = 𝐵𝐴 + 𝐶𝐴
𝐵𝐴 + 𝑇𝐵 + 𝐵𝐶 + 𝐶𝐴 + 𝐶𝐵 + 𝑇𝐶

(5)

Using TP rate as the longitudinal axis and FP rate as the
horizontal axis, Receiver Operating Characteristic (ROC)
curves are drawn [37]. As shown in Figure 3, the (0, 1) point
means that all samples are classified correctly. The nearer
to (0, 1), the higher the classification accuracy of samples.
Models A, B, and C are represented by red, green, and
blue, respectively. The area of the quadrilateral formed by
each point and (0, 0), (1, 1), (1, 0) points is the area under
the curve (AUC) of that point. The larger the AUC value,
the better the classification effect of the model. It can be
seen more intuitively from Figure 3 that model B has the
best classification performance among the three models, and
Alpha has the best classification effect among the three kinds
of magnetic types.

5. Conclusion and Discussion

In order to develop the automatic identification for the AR
magnetic type based on the Mount Wilson classification
scheme, we adopt CNN to train the SDO/HMImagnetogram
and continuum image data from 2010 to 2017. We have
constructed three models: A, B, and C, using magnetograms,
continuum images, and the two-channel pictures as input,
respectively. The conclusions are as follows. First, CNN has
a productive performance in the identification of the AR
magnetic types. The overall accuracy of all three models is
over 87%, and the highest total accuracy is more than 95%.
The recognition accuracy for Alpha type reaches 98%, and the
accuracy for Beta typemaintains above 88%. Second, the best
recognition performance appears when continuum image is
the sole input, followed by two-channel picture as input, and
the performance of training model is relatively the worst
when feeding only themagnetogram data. Finally, Alpha type
is the easiest to recognize while the accuracy for Beta type is
the lowest in the three categories. This phenomenon exists in
all three training models.

By analyzing Mount Wilson sunspot magnetic types in
a large amount of continuum images, it is found that the
Alpha class is generally presented in a single sunspot, Beta
class generally distributes in a relatively discrete and regular
sunspot group, and the majority of Beta-x class appears in
a relatively large and irregularly distributed sunspot group.
Although themagnetic polarity, umbra, and penumbra infor-
mation of sunspot groups need to be used at the same time in
Mount Wilson sunspot classification scheme theoretically, it
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Figure 3: TP rate and FP rate of Alpha, Beta, and Beta-x in model A (red), model B (green), and model C (blue). The AUC value is marked
beside each point.
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Figure 4: Two cases of misidentification of Beta-x as Beta in model B. (a) and (c) are the continuum images, whereas (b) and (d) are the
magnetograms of the same ARs. In continuum images, the dark center is the umbra (i) and a lighter black part around umbra is the penumbra
(ii). In magnetograms, the dark areas indicate the negative polarity (iii) region, and the bright areas indicate the positive polarity (iv) region.

is also feasible to use the continuum images alone to classify
the three types that are defined in this work. However, it is
confusing that the training performance with magnetogram
or two-channel picture as input is not as good as that using
continuum image only. Specific case analysis may shed a
stripe of light over the black box. As shown in Figure 4,

for model B, the cases that the Beta-x magnetic type is
misclassified into Beta magnetic type mainly consist of two
different origins: (1) a heteropolar region can be seen in the
magnetogram while there is a penumbra in the continuum
image corresponding to the opposite polarity region, but no
obvious multiple umbrae, as shown by the red box in Figures



8 Advances in Astronomy

(a) (b)

iv

iii

(c)

i

ii

(d)

(e) (f)

Figure 5: Three cases of misidentification of Beta-x as Beta in model A. (a), (c), and (e) are the magnetograms, whereas (b), (d), and (f) are
the continuum images of the same ARs. In continuum images, the dark center is the umbra (i) and a lighter black part around umbra is the
penumbra (ii). In magnetograms, the dark areas indicate the negative polarity (iii) region, and the bright areas indicate the positive polarity
(iv) region.

4(a) and 4(b),mainly due to the inability to obtain the polarity
information of themagnetic field in the continuum image; (2)
there is no obvious heteropolar region in the magnetogram
while the corresponding region in the continuum image
has no obvious umbra, and the distribution of sunspots is
diffusing, as shown in Figures 4(c) and 4(d). The latter may
belong to the early or late stage of an AR. Such a situation is
highly dependent on the subjectivity of manual prelabeling.
In fact, although the classification rules are clarified, it is very
difficult for the classification results to be 100% unified when
experts perform manual classification.

As shown in Figure 5, for model A, there are three per-
spectives that the Beta-x magnetic type is misclassified into
Beta magnetic type. First, as shown by the red box in Figures
5(a) and 5(b), there is no noticeable heteropolar region in the
magnetogram, but multiple umbrae in the same penumbra
can be seen in the corresponding continuum image. Errors
may occur due to the inability to accurately obtain the
umbra and penumbra information of the sunspot from the

magnetogram alone. Second, as shown in Figures 5(c) and
5(d), similar to the reason (2) ofmodel B, themagnetic type of
the AR is controversial and cannot be completely counted as a
model classification error.The artificial subjective conscious-
ness accounts for a large part of the reason.Third, theARwith
sufficiently complex distribution and no obvious boundary
between opposite polarities contains a bipolar sunspot group
with opposite polarity umbrae sharing one penumbra that
spans less than 2 degrees with respect to the solar center,
as shown by the red box in Figures 5(e) and 5(f). The
magnetic type Beta-Gamma-Delta can be determined from
the magnetogram and continuum image by referring to the
above Mount Wilson sunspot classification scheme. In fact,
it can be clearly seen from the magnetogram alone that the
magnetic type of theAR is Beta-x, but themodel classification
is wrong, which may be caused by the incomplete feature
extraction. This is also the main reason for the poor training
performance when the model uses only the magnetogram
data.
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The structure of the magnetogram is more complex than
that of continuum image, but the amount of data available for
training is insufficient, yielding that the CNN method is not
able to extract picture features well. This is possibly one of
the main reasons why the training performance is not good
when using only themagnetogram data or using two-channel
picture as the input.

In further work, we plan to improve the recognition
accuracy and try to refine the classification. Due to the dif-
ferent information content of magnetograms and continuum
images, we will use different convolutional network struc-
tures to extract feature information for these two kinds of data
separately. Then the extracted features can be integrated and
fed into a fully connected neural network. Furthermore, it is
necessary to continuously supplement and balance the data
set.

Data Availability

The magnetograms and continuum images data used
to support the findings of this study are observed by
SDO/HMI; all of the FITS files we have used are downloaded
from the website http://jsoc.stanford.edu/. The SRS text
files can be downloaded from the NOAA/SWPC website
https://www.swpc.noaa.gov/. The train set and test set data
for machine learning of this study are available from the
corresponding author upon request.
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