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The small parameter method was applied for solving many rotational motions of heavy solids, rigid bodies, and gyroscopes for
different problems which classify them according to certain initial conditions on moments of inertia and initial angular velocity
components. For achieving the small parameter method, the authors have assumed that the initial angular velocity is sufficiently
large. In this work, it is assumed that the initial angular velocity is sufficiently small to achieve the large parameter instead of the
small one. In this manner, a lot of energy used for making the motion initially is saved. The obtained analytical periodic solutions
are represented graphically using a computer program to show the geometric periodicity of the obtained solutions in some interval
of time. In the end, the geometric interpretation of the stability of a motion is given.

1. Introduction autonomous system having one first integral [2]. Consider
that the ellipsoid of inertia of the body is arbitrary [3]. The

Consider a heavy solid of mass M rotating about a fixed  well-known general equations of motion and their first

point O in presence of a uniform gravity field of force [1].  integrals are [4]

The fundamental equations of motion and their three first
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System (1) of equations of motion represents nonlinear c\/g
differential equations of the considered problem. These A= P
equations are of the first order in unknown angular velocity 0
components p, g, and r and geometric angles y,y’, and y". _ onl’
The quantities A, B, and C represent the moments of inertia bw?
of the body and (x,, y,,z,) represent its gravity center. g _zy[Ab—a ]
denotes the gravity acceleration. t denotes the time of the &= (1-w?) ° (3)
motion. The aim is to find the solution to this system using (1+B,)
1
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such that p,;andy,, are the initial values of the corre-
sponding quantities.
The variables q;,7;,y;, and y; are obtained as follows:

-1 . —1 ,-1 -1 .

G =-A P+ A A (yéa _ez)’z)+~--)
r1—1+05/\ Spptees

S (6)
Vi=rv2+A up,+
Yl =141 s, + A7 % (55 = 0.55,,) + ...,

where
Sy = a[V(Pgo - Pg) +e(yy —v2) + el(Ygo - Y%)]
+ bAII [—Vz(f’%o - Pg) +a 1)’6(?20 ~72) -

-1_1
e,=e ta z,

ex(¥20 = 12)}>-

(7)

Assuming that the velocity r, is sufficiently small, the
parameter A is large.

2. Construction of Periodic Solutions, with Zero
Basic Amplitudes

In this section, the periodic solutions, with zero basic am-
plitudes [7], of the autonomous system (4) are achieved and
the large parameter method is applied. Without loss of
generality of solutions, it is considered that

. . 1
£,(0,0) = p,(0,0) = yz(O,X) - 0. 8)
Consider the generating system ((1/1) =0), that is,
(A — ), of (4) in the form:
b +o’p” =0, ©
P2 vy =

with a period Ty = 27n. There are three possibilities of the
values of frequency w which are 1-w=1; 2-w=m/n
where m and n are primes; 3 — w equals an irrational
number.

Consider the case when w = m/n, then the solution of the
generating system (9) becomes
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where a; and bj are the constants to be determined. The
autonomous system (4) has periodic solutions with a period
T, + a, where a is a function of 1/A such that « (0) = 0. These
solutions are reduced to the generating ones (10) when
(1/A) =0 (A — ©0) and written in the form:
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From the first integral (4) and initial conditions (12), one
has the following:
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The following derivatives are obtained:
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From (5), (7), (11), and (17), it is obtained that
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where y, and ¢, are the initial values of the corresponding Using (5), (11), and (17), the following is obtained:
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Canceling the singular terms [8] from (20), one gets
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From the previous results, the following is obtained:

Making use of (21), (22), (11), and (13), the periodic
solutions p, and y, of the autonomous system are deduced.
Using (6), (18), (22), and (23), the following periodic so-
lutions, with zero basic amplitudes, are obtained:
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The periodic motions of the body at different times
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FIGure 1: The periodic motion p, against the time ¢.

The periodic motions of the body at different times
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t

FIGURE 2: The periodic motion y, against the time ¢.

The stability of the solutions and the amplitude of the motion
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FIGURE 3: The stability of the solution p, against y,.

3. Conclusion

It is concluded that the method of the small parameter failed
to solve this problem under the studied condition r, which is
sufficiently small because achieving the solutions by this
method depends on assuming sufficiently large angular
velocity r,, to define the small parameter (¢) proportional to
(1/r,). With the sufficiently small assumption, the choosing
of the small parameter (¢) is impossible, and so the author
had to look for another technique.

The large parameter technique is the only one that solves
this problem under the studied condition. The advantage of
this method is that you save an enormous amount of energy
given to the body at the start of the motion. The presented
method proves the ability to solve this problem when the

component of the angular velocity about the moving z-axis is
sufficiently small. Under this technique, gyroscopic motions
are obtained under low energy initially instead of high
energy in using the small parameter technique. It is clear
about the periodicity of the solutions p, and y, from Fig-
ures 1 and 2 in a defined interval of time. The simple smooth
closed curves with different amplitudes of the solution p,
against y, show the stability [9] of the motions, see Figure 3.
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