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In this paper, the problem of the slow spinning motion of a rigid body about a point O, being fixed in space, in the presence of the
Newtonian force field and external torque is considered. We achieve the slow spin by giving the body slow rotation with a
sufficiently small angular velocity component r, about the moving z-axis. We obtain the periodic solutions in a new domain of the
angular velocity vector component r, — 0, define a large parameter proportional to 1/r,, and use the technique of the large
parameter for solving this problem. Geometric interpretations of motions will be illustrated. Comparison of the results with the

previous works is considered. A discussion of obtained solutions and results is presented.

1. Introduction

In [1], the problem of rigid body dynamics is considered.
The author in [2] gave important space applications to this
problem. In [3], the authors presented valuable and im-
portant studies for the evolution of motions of a rigid body
about its mass center. In [4], the authors introduced a new
procedure for solving Euler-Poisson equations (of a ro-
tatory rigid body over a fixed point). The author in [5]
constructed periodic solutions for Euler-Poisson equations
utilizing power series expansion containing a small pa-
rameter proportional to the inverse of sufficiently high
angular velocity component. In [6], the author studied
many perturbation techniques for solving the linear and
nonlinear systems of ordinary and partial differential
equations such as Poincare’s method, KBM method,
Poincaré-Lindstedt method, and multiple scales method.
The authors in [7] studied new types of integrable two-
variable systems with quartic second integrals. The study in
[8] presented the motion for the rigid body in the presence
of a gyrostatic momentum in cases of external effects and
without external effects. The author considered the fast spin

motion of a rigid body and achieved a small parameter
proportional to the inverse of high angular components
about the z-axis. The author applies the small parameter of
Poincare’s method for solving this problem. In [9], the
author investigated the motion over the fixed point O of a
fast spinning heavy solid in a uniform gravity field (the
classical problem). He assumed fast spinning of the body,
achieved a small parameter, and used Poincare’s method
for the solution. In all previous works, the rotary motion for
a fast-spinning body with gyro moments was studied.
Initially, the authors assumed that the body rotates with a
sufficiently large angular velocity component r, about the
moving z-axis which moves with the body. The authors
achieved a small parameter proportional to 1/r, and used
the small parameter technique to solve the considered
problems in the domain (¢, r, — 00, ¢ — 0). The fact of
slow motion of that body which must be achieved on a new
parameter named the large parameter and must be solved
using a new procedure named the large parameter tech-
nique was not considered, although this motion saves high
energy given at the initial moment of the body and can
solve the problem in a new domain (¢, r, — 0, € — ©0).
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2. Equations of Motion and Change of Variables

Consider a rigid body of mass M [10], with arbitrary ellipsoid
of inertia surface, rotating about a fixed point O in the
presence of the Newtonian force field O, under the influence
of the external torque vector about the moving axes

¢= €1z+£22+£3 k. Let the attracting center O, lie on the

Z-axis which is fixed in space. Let the element dm lie on the
body at the point p (x, ¥, z) and have a position vector p from
O and a position vector r from O,. Equations of motion and
their first integrals are achieved and solved with a sufficiently
large parameter proportional to 1/r,, where r, is sufficiently
small. We deduce the system of equations of motion and
their first integrals of the considered problem and use the
large parameter method for solving it.

The differential equations of motion and their first in-
tegrals are obtained [10]. Let h, be the angular momentum
vector which rotates in space at the same angular velocity
of the rigid body and k = (y,y',y") be the unit vector fixed
in space in the direction of the downward Z-axis, so

hy=(Ap+8€)i+(Bg+&)j+(Cr+&)k, (1)
w=pi+qj+rk, ()
where A, B, andC are the body’s principal moments of

inertia in the moving frame. The six nonlinear equations of
motion for this case are obtained in the following form:

dhu_ ELp B - % _ -
i —[A 3 +(C B)qr]z_+[B at+(A C)P”]J_
(3)
+ Ci+(B—A) k
ot Pa| %
dK 0K S
- = _— = 4
dt ot tank=0. @

These equations have three first integrals named as
follows:

(a) The Jacobi-integral
T +V = const, (5)

where T'is the kinetic energy of the body and V is the
potential one.

(b) The angular momentum integral

h,. K = const. (6)

(c) The geometric integral

K.K =1 (7)

Equations (3) and (4) are nonlinear differential equa-
tions for the motion of a rigid body around a fixed point in
the field of Newtonian force with the presence of rotary
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torque vector £(¢,,¢,, ¢5), around the x-axis, the y-axis, and
the z-axis, respectively.

These equations are of first order in unknown variables
pq.7.y,y', andy”. The quantities A, B,C, ¢;,¢,, and £; are
constants. The integration of such equations gives the so-
lutions p,q,7,y,y', andy" as functions in time ¢ and the
rigid body parameters.

The equations of motion for a coherent object around a
fixed point in the asymmetric attraction field [5, 9] and their
three initial integrals result as special cases from equations
(3), (4), (5), (6), and (7).

Let (xg, y,2,) be the center of mass in the moving
coordinate system (Oxyz); R is the distance from the fixed
point O to the attracting center Oy; Py, qo» o> Yo» Yo» and Y
are the initial values of the corresponding variables. Initially,
let the body rotate about the z-axis with a sufficiently small
angular velocity component r,, such that the z-axis makes an
angle 6, #0.5nm(n=0,1,2,...) with Z-axis being fixed in
space.

Without a loss of generality, we choose the positive z-
axis, and the x-axis does not make an obtuse angle with Z-
axis. According to this restriction, we obtain [9]

Y20,0<y, < 1. (8)

Assume the parameters as follows:

A
aza) (ab))
2_Mg€
¢ = C
n
c\y 9)
g

o
!
XO = ZXO’ (xoyozo)’
2 2 2 2
£ =xy+y,+2p

where ¢ is large since r is small and symbols such as (abc)
mean cyclic permutations and indicate equations which are
omitted.

Introducing new variables as follows:

P:C\/ﬁpl’

=71,
y=vove  (Payy'y"), (10)
k= 3—952,

R

T
t=—.

To
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Substituting equajltlon (10) into equations (3) to (7) when S, = “(P%o _ P?) n b(‘ﬁo _ qf)
¢, = ¢, =0, we obtain
P+ Aqr + AT g = aT (vay! - zgy) + kaAyiy))s =2[xg(y1o = 1) + Yo (y10 = 1) + 20 (1 = ¥1)]
(11)

+k

a(yio- 1) +b(vi ) +(1-v7)].
1+ Bipimy —B_lfalplfs =¢ b (201 = Xoy1 +kbByy,y7),

1-y/)e
(12) Sy =a(pio¥io — P1¥1) +b(‘11o)’1(§_‘11)’1l)+%~
. - c\Yo )
P=¢ " (=Cip1ds +xG¥1 ~ Yo¥1 +KCiy1y1), (13) (0
71 =”1Y1,_5_IQ1Y¥’ (14)
3. Reduction of the Equations of Motion to a
Pi=€ piyl -y (15) Quasi-Linear Autonomous System

d In this section, we reduce the equations of motion to a quasi-
N/ -1 ! _ . .
=€ (qyi—-piyi) |-= i) (16) linear autonomous system [11]. From equations (17) and
(18), we obtain

r=1+¢7S, (17) r=1 +0.5e‘2[s1 +220(1-y7) —k(l —y'{z)] +oe,
rly{’=1+g"152, (18) y{'z1+s_ISZ—O.5£_2[SI+2zé(1—y{')—k(1—y:2)]+~-~.
! n (21)
2 2 2 -2
Yyt =) (19)

Differentiating equations (11) and (14) and using (21),
where one obtains

P+ w'zp1 = e_l{zé(a_l - Alb_l)y1 +ADb X+ k(w2 - Al)y1 + [b_l (x0— zoy1) — kBlyl]A_lr(;IQ}
+ 5_2{ [_wzplsl + Al xS, + A\Cpig; — Aoy — yovi +a” yo(ay: — pavi) - a'IZépl]
+ A1k[P1(1 - V;2> +q;(1=Cyiy1 =S, (1 + Bl)Vl] + 0-5”(_)1331’1(14_131 - AlB_l)
X [Sl +2z0(1—y1) - k(l - yqz)] + A71r51€3(b71x6 - kblyl)Sz}
+ 8_3{0.526((1_1 - Alb_l)y1 [S1 +2z5(1—y7) - k<1 - y'{z)]

+0.5A_1r(_)1€3(k31y1 - b_lxé) [Sl +2z(1—y7) - k(l - y;’2>] + plSz(ZkA1 - a_lzé)} e,

(22)

yoty =€ [(1+B) - B 'r'e]py
+ 872[_51)’1 +(1+B)p,S, + (1= C)piauys + Xgy, +xob” ' — YI(y(;YII tzgb + q%) + k<CIYI2 - Bl>y{] (€5
a2k s

where We note that w2>0 when A<B<C or A>B>C but
@' >0 when A <B<C only.
In case A > B> C, we find that the term (A" !B, — A;B™!)
is positive and since r, is sufficiently small; that is, the term
(24)  (A7'B, = A;B ")ry'¢; tends to infinity, and w2 is negative.
2 . N Solving equation (11) for q, and equation (14) for y;, we
w = _(A B, -AB )”o ¢ obtain

_(A-0OB-C _(@-1)kb-1)

2
=—-A.B >
@ 121 AB ab
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q, = AIlr;l(l —A71A11r51€3r;1 +) - where
1
b+ la  (vovd — zovi + kaAyly")], X= xo<bw'2> A+ A7),
1
yi=r1 (3 ++e ayy)- (26) ( w'z) [1+B,-B 'ry'e;], o8
Making use of equations (21) and (26) into equations < ,2) , gl 1 2
(22) and (23), we obtain a quasi-linear autonomous system Ab ) * k(Al @ )
with  two degrees of freedom and depend on + A €3(b_ + kB )]
P> P1 Y1 V1 Pros Pros Vier and Yy
Introducing the new variables as follows: Using equations (27), (21), and (26), we obtain
p=pi-¢ (X +07) S, =8, +2 S, 4, (i=1,2), (29)

(27)

Y2=v1—€ Vb where

“(Pio - Pi) + bX§<P§0 - Pi) =2x0(y20 = v2) - 2)’(;()"20 - )"2) + k[“()’io - Y%) + b(?io - )"i)]>
Si2 = alx(Pao = P2) + X1 (P2V20 = P2¥2)] = ng [“7 1)’6(?20 - Pz) - Xz(l.’zo).’zo - Pz)’z)] = vx0(P20 = P2)
~ Yo% (I"zo - Pz) + (29— k)Sy + k[W (P20Y20 = P2Y2) + V1b(1‘720).’20 - Pzi’z)]’

Sa1 = a(paoy0 — P2¥2) — bX3(P20)'/20 - 1.72).’2)’

.20 .2 - . . 22 S, ¢
Sy = a[v(p%o - P%) +X(v20 = 72) +X1(Y§o - V%)] + bX3[—V1(P20 - P2> +a 1}/6(7’20 - Yz) _X2<V20 - Yz)] . 3” )
(CC\/E)
(30)
where rr= 1405628, +& (S, — 208y +kSy) +--+,
PL=1+e 'Sy +e (S, —0.58) (32)

-1 —14-1 -1
X3=A (1-A Aj'ry &),
’ 1 ( LY ) 8_3(512_'5(;321 +kSy;) +

X, =y +a 'z)— kA, (31)
V=V —Xs In terms of p, -¥,, and the rigid body parameters, we
! 3 find that
Formulas (21) and (29) lead to

91 =—Xspr+ € 1X3(a71)’(; _Xz)"z) +e [X3V1p2(kA1 - ailzé) + 511152()(3 - 0-5A;1)+X3821(kA15’2 + “71)/(;)] +

1 - _ _ . . (33)
Yi=Pate 1”1132 +e? [X3(a 1)’(; —X2Y2 ~ SZIPZ) - 0-5511)’2] +
Substituting equations (27), (29), (30), (32), and (33) into . 2 e 2F : .-l
equations (23) and (24), we obtain a quasi-linear autono- hyt@ pp=¢ (Pz,Pz,VpYz,S )’ (34)
mous system of two degrees of freedom in the following Yy +y, = g’2¢( Do P Var Vo€ )
form:

where
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F:F2+571F3+...,¢:¢2+s’1¢3+...,

Fy=f,- VX1<1 - “”2),1’2)‘/’2 ¢t V<1 - w'2> (X +x172),

Fs=fr=X19:- %(1 - w’z) (+xv2)- 95 = 93 = vf2 + v2x1<1 - w’z)pz,

fr=-wS;p, + Alxé(b_lsm + X3?2p2) + ACix3 P2 5
- Y(;X3Y2P2(A1 + ail) - a’1p2 (20 + yob2) + Alk(l - )"i)lh +(C1 = D)xsv272P2
—(1+B,)Syy, + 0575 &5 [2p,(A™'B, = A,B7")S,, + A (b” ' x) — kByy,)S,

f3==20"p,S;, +(x +X1Y2){_w2811 —a ' (zg+ yoin) + A [C1X§P§ + k(l - Y%)”’ +Ab xS,
+ Arxs P2 (Xov1 P2 = YoVP2) = P2P2 [a_ 1)’6 (v +x) + 2A1kV1?2]
+ X352 (V1¥202 + v12P,) (Cy = 1) = (1= By) (83,0, + S272)
+ 0.526((1_1 - Alb_l)yzS11 +(2kA1 —-a 1zé)pZS21 + X3(a_1y(; _Xz).’z)
x [_Al (2Cix3 P22 + Xo12) + )’(;Yz(A1 + afl) + Yz)"i (1- C1)]
+0.5r5 & {(A7'B, = A;BTY)[2p,(S1, — 20801 + kSyy) + (x + x172)S1] + [2A71[(67 ' xg = kB,y,)S,, — kB, 7Sy, p, |
+ Ail(kBly2 - bilxé)S“]},

@, =[(1+B,)Sy (1= C)xs12P2p2 + xé(b_l + V%) + [k(cl)"g - Bl) ~ Yob2 — Z(;b_l —X§P§ - 311])’2’

@3 = (1+By)[P2S + (X + X1¥2)Sa1] + x5 (1 = Cy) x {(ail)’(; _Xz)"z))"zpz = Po[v1P2P2 + (X +X1Y2)5’2]}
= 29,812 = VPaSu + 2%V V202 = Yo (M¥2D2 + VVaPs) — VPz(b_lz(; + X;P%) + 2)(§(a_ 1}’(; - Xz)"z) X Y20,
+ k[zclvlyz)'zzpz + v(Clj/g - Bl)pz] + [be ', —(b71z6 + 2kB1)y2]821.

(35)

System (34) has the first integral obtained from equa-
tions (17)-(19) as follows:

.2 - .. _ . - . . .2 -2
V;"’Yz +2¢ l(Wsz +V1)’2P2+821) +e 2[”ng +2X3V2(a 1)’(;_?(27’2 _321[92) _(1 "’)’2)811 +2322] +oe=(y) - L

(36)
We aim to find the periodic szolutions for system (36) p,(0,0) =0,
under the condition A<B<C (w'" is positive) [12]. In this ]
case, the body rotates about the minor axis of the ellipsoid of P2(0,0) =0, (37)
inertia surface [13] with initial sufficiently small angular . -1
velocit YZ(O’ ¢ ) =0
y 1o
The generating system of equation (34) is
4. Forfnal. Constr.uction of the f’z(O) +a0”p® =0,
Periodic Solutions ® (38)
.. 0 _ g
2 T ,

Without a loss of generality, since the system (34) is au-
tonomous, we assume that [14]

which has periodic solutions as follows:



p¥ = M, cosw't + M, sinw'r, (39)
yz(o) = M;cosT,

with a period T, = 27tn, where M;, i = (1,2, 3), are constants
to be determined. Consider the required periodic solutions
of system (34) in the following form:

pz(‘r, e_l) =(M, +f;)cosw' T+ (M, + B,)sinw'r

+ ¥ e*G, (1),
kZ:; ¢ (40)

5_1) = (M; + B;)cos T + is"ka(r),

k=2

with a period T(e')=T,+a(e!). The quantities
B, w'B,, andB; represent the deviations of solutions
Dy Py andy, at any ¢ from their initial values when
&€ — 00. Let the initial condition of system (40) be of the
following form:

Y2(7>
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such that

g (1) = a)i JT Fi(t))sinw' (7 —t,)dt,,
(43)
h (1) = J (t,)sin (7 —t,)dt,

0

(k=2,3),

where

Pl L (dF
k(T) (k 2)| 82 “qe2-k ﬁ:‘g-l:O)

1 dk—2¢
()bk( ) = (k 2)| <d€2_k >ﬁ_£1_0.

We note that the right-hand sides of (34) begin with
terms of order ¢ % and so

(44)

(06 ) =M, +p i@ = E(p" 557" 0") = B (45)
Pa\Vs € * P> . .
. 610 = (o0, 00, 30) =40, k-2
Pz(o’ € ) w (M, +py), . (0) ©) parinds;
1 (41) Now, we find the expressions of ¢, and F,". Periodic
)’2(0"g ) M; + B, solutions (39) are reformulated in the following form:
-1
y,(0,e 7)) =0.
2( ) 3 = Ecos(w't - 1),
Consider the new function as follows: o _ (46)
" Yy, = MjcosT,
0 ou ) 0
U=u+ u,3+ B, + u,83+0.5—uz/3f+-~-,
oM, T an, 2 T o, oM i
! where E = \[M? + M7 and 7 = tan™ ' (M,/M),).
< U=G,H, ) Using equations (29) and (39), we obtain
U= gphy
(42)
s’ =S (P " ") Gj=12),
SO - a(cos2 n- 0.5) + b)éw'z(sin2 n- 0.5) + 0.5(17)(%0.)'2 - a)cos 2(w't - 17)]
—2M; [xy(1 = cos 7) + ygsin 7] — 0.5kM5C, (1 — cos 2 7),
SO = M3E{a cos” 1+ 0.5 (bw'y; — a)cos[(w' — 1)1 - 5] = 0.5 (b y; + a)cos[(w' +1)7 — 11]},
SO = aE{y;[cos - cos (@' = )] + x, M5 [cos 5 — cos T cos (@'t — 1) ]} = by3E[cos 5 — cos (w7 — 1)] (47)
+x,M;sintsin(w't - )
— vxgE[cos n - cos (w1 — 17)] + kEM{va[cos  — cos T cos (@'t — )] = bsin Tsin (w'7 - 1)} + (25 — k)S Y,
SO = a{vE2 [c052 n— cos’ (w't - 11)] +yM; (1 = cos 7) + y, M3sin’ T}

+ b&{ai LMy sin T — v, B0 [sin2 n— sin’ (0’7 - 11)] + x,M3sin® T} - Sé?&/(CC\/ﬁ )
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(51)

7
Substituting equations (46) and (47) into equation (35),
we obtain
F{ = M,L(0')cos 't + M,L(')sinw't +- -, (48)
4
¢{” = My;N (0')cos 7+,
L(w) = o[ (@M} + b3 ) + b 3 (M7 + M3)
+ A,C,0” (M} + M3) + 2M,x00” + k(4 +0.5M30’C, ) - [zo’a“ + %(1 - w’2>] (49)
+0.57,"65(A7'B, — A,B7") [aM] + bw”* 3M3 — b x3(M] + M3)-2Mx) — 0.5kM3C, |,
N(') = _(aMf ¥ bw'ZXgMg) ~(M2+ M%)[aBl + o1 - b)]
(50)
+2M;xy — [zéb_l - 'VX1<1 - w'2>] +k(M§C1 - Bl)].
From equations (33), (49), and (50), we obtain v = Pz(To ta 8—1) B P2(0 sil) -0
-1 .
9:(To) = —mn(w') " M,L(@"), g, (T,) = ninM,L(«'), v, = po(To +a, s’l) - pz(O, s’l) =0,
; 52
hy(T,) = 0,h, (T,) = nnM;N (@), v, =Y2(To+“a€71)—)’2(0a871) o, (52)

where the constants M;,w'M,,and M;, the deviations
B, (e ), w'B,(e71), and B, (¢71), and the correction of the
period « are determined from the periodicity conditions and
their derivatives:

Due to the existence of first integral (36) for system (34),
the condition y; = 0 is not independent [15]; then, integral
(36) becomes

yg(To +a, e’l) + jzz(TO + a,e’l) +2¢7 ! [vyz(TO + a,eil)pz(TO +a, 571) + vl)’/z(TO + a){l) X j)z(TO +q, sil) + SZI(T0 + a,sil)]
+£72{v2p§(TO + 0(,871) +2X3§’2(T0 + (x,sfl)[afly(; —Xz?z(To +a, 871) - 321(T0 + a,sil)j)z(To +a, 871)]

_SH(T0 +0c,e_l)[l +)'/§(T0 + oc,s'l)”» +2822(T0 +oc,s'1)} +...

€
+ siz{vzpi(o, 871) + 2)(3)'/2(0, 871) [aily(; _Xz?z(o» 871) - 821(0, sil)j)z(O, 871)] - 811(0, 871)

: [1 +y§(o,e‘1)] +2522(0,e_1)} T

Using condition (41) and equation (52), we obtain
‘/’§+2(M3+ﬁ3)%+£_1‘/’1(W1’V/2:W4)5_1) =0, (54)

where ¢, is an entire function in their variables and
¢,(0,0,0,6 ') = 0; then if M;#0, form (54) gives

Y3 = fl(‘//p%)%’ 871)) (55)

where f, is an entire function in all their arguments and
£1(0,0,0,6° ') = 0; then, the condition y; =0 in (52) is
satisfied with the following condition:

(53)

Vi =y, =v,=0. (56)

Substituting initial conditions (41) into equation (56)
with 7 = 0, we obtain

M3 +2MB; + 3 + 26 My (M +B)) + -+ = (V(,),)_Z - L

(57)

Assume that y; does not depend on & we obtain that
M=) " -1,

(58)
B2+ 2M,B; + 26 'vMy (M, + B,) +--- = 0.



From (58) and (8), we obtain

()

M3 = " >
0

By=— (M +py)+---,

where y is an arbitrary parameter and M; is the arbitrary
constant.

This means that periodic solutions (40) depend on ar-
bitrary constant M and the function f3; (¢”!) which is equal
to 0 when ¢ — 00. Independent periodic solutions (52) are
expanded in a power series of a (neglecting terms of £ 2a);
then, we obtain

pz(TO,{l) + (xj)Z(TO,sfl) +...= pz(O, 571),
pz(TO,s’l) + ocj')z(TO,{l) +...= pz(o, 871),
)'/Z(To,sfl) + ocj}z(TO,sfl) +...= )'/2(0, {1).

Using initial values (41) in the above relations, we put
independent periodicity conditions (56) in the following
form:

0<M3<OO, (59)

(60)
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Pz(To’sil) +aw (M, +B,) = (M, +B,),
Pz(T0>571) — 0 (M, +B,) = aw' (M, +B,),
i’z(To’ 5_1) = a(M; + Bs).

Using equations (40), (59), and the last equation of (61),
we obtain the following function:

ale ") =& 2 (My+ By) H[H, (To) + eFy (To) + ..
(62)

(61)

Thus, neglecting the terms of order a* and ¢ 2« in (61),
we find that the terms of the order e * are neglected. Using
equations (37) and (41), we obtain the periodic solutions
with basic amplitudes equal to zero, that is [16],

M, =M, =0. (63)

Substituting equations (62), (63), and (40) into the first
two equations from (61), we obtain the following system for
determining f3; and f3,:

G, (Ty) + € 'G5 (Ty) + @'y (M5 + ﬁs)il[Hz (To) +€ 'Hy (To)] +e?(..)=0,

Gz (To) + 5_1G3 (To) - w’ZﬁI (M5 +B5)

Due to (51), the above system becomes

_nnp, (w')_l[Ll (@) - &N, (w')] L eV [Gy(Ty) +...] =0,

nnp, [Ll (0') - w”N, (w')] +e! [G3 (Ty) +.. ] =0,
(65)

W, (‘0/) =d, +(d,+ d3)r61€3,

(64)

1[H2 (To) +€ 'Hy (T,)] +&%(...) =0.

where L, (0') and N, (") are obtained from (50) replacing
M, M,, M5 by 3, B,, and M5 + f3;. Making use of equations
(24), (28), (31), and (49), we obtain

Li(o")- “-’,2N1 (@)= (ﬂ% +ﬁ§)W1 (@) +2,W, (") (66)
+hW; (0" )+ W, (@),

where

W, (@) = (dy - dsded;) + 1 €5 [dsdg (dg + dy) + B~ 'd, — dyo(1 +a” 'ded;) ],

Wi (w') = (dsdedy, +dyy) + rEIfs{ds [(dm —dy) - B_1d11]+b_1d10(a_1d6d11 + dls)]}ralgy

W, (") = -0.5ad,, ﬁf +<%> §]rgle3,

d=b'(a-1)(Qa-b-1),

dy=b’[b(a-b)+(a-1][aA (a-1)(1-b)"' +bB '],
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dy =05A" (1-A)[ab ' (1-a)(1-b)"' + AB™'],
dy=a'[1-b7@-1)(b-1)

ds = (ab) *[ab+ (a-1)(b-1)],

dg=b"'(a+b-1),

d, = (ab)"' (2b-1)[ab+ (a-1)(b-1)],

dg = (Ab) '[ab+ (a-1)(b-1)],

dy=(ab)"' (2b-1)[A'a(a-1)+ B 'b(b-1)],
dyy=(Ab) " "(a-1)+(aB) ' (b-1),

d,,=(ab) ' -b)(a+b-1)[ab+(a-1)(b-1)],

dyy =(ab?) " (1-b)[b? ~ (a— 1) + 0.05b(a — 1) (b - a)M3],

dys=(Ab) ' (a-1)[ab+(@a-1)(b-1)],

(67)
dyy=(ab) ' (1-b)(a+b-1)[aA"" (a—1)+bB ' (b-1)], (68)
dys = 0.75b(b - a)M; — (a - 1).

Since the z-axis is oriented towards the minor axis of the Using (65), the expressions for 8, and f3, are obtained in
ellipsoid of inertia for the body, then W, (w') >0 for all o' the form of power series expansions beginning with terms of
under consideration. Assume that [17] order greater than ¢ 2. So, we obtain the first terms of the

) / ) required periodic solutions and the correction of the period
2)Wa (@) + kW; () #0. (69) a(e7!) in the following forms:
P = e_l{—xé (a-1)" [1 +bB ' (a- 1)_1r61€3] +x,M; cosr} ey (70)

gy =¢'a(1-b)"ya " +,Mysint— A7 (1-b)"'ry' € [y + (20— kaA, )My sint+ads [kb (1 - b)dg — zg (2b - 1)]]} +-+-

(71)
ri=1-¢ "M, [x}(1-cost)+ ygsint+0.25M;C, (1-cos27)] +---, (72)
y1=M;scost+---, (73)
y1=—M;sint+---, (74)

pr=1 +s"2{(1 ~b) "My ygsint+(1-a)” ' M,xg(1-cost)—-0.5b"" (1-b)~'d, M3z} (1-cos21)
+0.25M3k (2abdsdg +C,) (1 -cos27)
+75'8, [—abA_1 (1-B) *M,yjsint+abB ' (a-1)""M;xy(1-cost)+0.5b" " (1-b)"" xz{M3 (1 - cos27) (75)
[A7'a’bds (1-b) ' (20° —2b+1) +d |
+0.5k (1-b)"'M3(1-cos)7) [b'dj3—aA™'d,; (1-b) "' = (1-b) (2b-1)'deds ||} +--,

a(e!) =& *nn{Myxq—zgb™" +(ab)~ (kdy, - zgd;)de +k(M5C, = B, ) + (ab)~'ry' & [20[de (ds +d) +d;B™"|

(76)
+k[ds(dz—dyy)—d B} +..
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New solutions (70)-(76) are obtained in terms of the
large parameter ¢ and a sufficiently small angular velocity
component r, about the minor axis of the ellipsoid of inertia.
The case of the motion of the body with a sufficiently small
angular velocity component r, about the major axis of the
ellipsoid of inertia is cons1dered in a separate paper since w'”
is negative in this case. The motion considered here is a

Advances in Astronomy

generalization of many problems studied in a previous work
[18]. That is, the obtained solutions give many special cases
for gyroscopic problems with new treatment by the large
parameter technique [19] which saves high energy given for
the body at the initial motion. The correction terms in our
solutions in terms of the parameter ¢ are

Ap, = s_l{x(;b_l[BIl<1 - wzw'_2> + w'_zA_lr(;lQ] +(x—x1 )M, cosr} +oee,

Ag, = s‘l{—y(;(aA,aﬁ)“r(;‘e3 + A7 Mysint[x, - x/ —XZA“A;1r5153]} +

Ar =€ [0]+...,Ap, =€ "[0]+...,Ap, =€ '[0] +---, -
77
Ayy = s_z{aM3 (x-x")(1=cost) - bM3y(;(aAAf)_lr51€3 sint
+ 0.5M§(1 —cos27)|a(1-b)"! o —x1) —Xzb(AAf)_lralg]} e,
A(x(sfl) = sfznn{(l -B)(x,-x;)-B 1)(1”(;163} +
Also,
Apy, = Ap, +e! (0 —x " )MscosT -,
Agy = Aqy + & TAT M (x) - x T - kA )sinT + -+,
Ary, = —0.25872M§C1(1 —Cos2T) + -+, o8
78
Ay, =€ 0] +...,Ay),
Ayyy = Ay + £_2~{0.25kM§C1 (1 -cos27) + 0.5M§ (1 -cosT) [a(l -p! O -x") - kb]} +
Aocl(e_l) = Aa+ s_znn[zé(Z -b) '+ k(MgC1 - Bl) +x, (1 +Bl)] oo,
where cosf = 1",
* -1
X = Alxé(bwz) ,
* 2\~ 1 2 -1 -1 ﬂ = M
xo=(1-@") k(A -0?)-zg(a ' -ApT)], (79) dt (1 _y"2>’
) (A7), -
tan ¢, _)/_(:’

5. Geometric Interpretation of Motion

In this section, we explain the geometric interpretation of
motion using Euler’s angles 0, v, and ¢ [20] which are de-
termined from the obtained periodic solutions. Since the
initial system is autonomous, the periodic solutions remain
so, if the time ¢ is replaced by (t + t,), where ¢, is the arbitrary
interval time. So, Euler’s angles for this problem are given by

0

do _ dy
E =71 — COS 9<dt)

Substituting equations (70)-(76) into equation (80) in
which ¢ is replaced by (t +t,) and using the relations (10),
the following expressions for Euler’s angles 0, v, and ¢ are
obtained:



Advances in Astronomy 11

TaBLE 1: The differences between the previous works and the considered work.

Ser. The previous problems The considered problem
1 The body rotates fast The body rotates slow
2 1, is sufficiently high 7, is sufficiently small
3 e—0 £—> 0
4 Poincare’s method is used for solving the problems The large parameter method is used for solving the problem
5 High kinetic energy is required for the motions Low kinetic energy is required for the motion
6 The domain of the solutions F (¢, r, — 00, ¢ — 0) The domain of the solutions F (t, r, — 0, £ — 00)
7 0, vy, and ¢ have the domain G (¢, r, — 00, ¢ — 0) 0.y, and ¢ have the domain G (¢, r, — 0, € — ©0)
8 w'" is positive for A<B<C or A>B>C w'" is positive for A< B<C and negative for A>B>C
i -1
%o :<E>+”o fot-ovs
6, = tan” ' M,
-2
0="0,—¢ "[6,(t+1,) - 0, (1)),
(81)
v =y, +¢& ccosecByfcos B [w, (£ +1,) — vy (£)]s
9 =@y tryt—¢ ccotfy \ cos 6 (o1 (£ +t0) = 91 (0)]
-2
—& “tan 0y [, (t +to) = 92 (t)],
where

0, (t) = a, sinry't —a, cosry't — a, tan 6, cos 2r; 't,

v, (t) = ayry' sinry't +asry cosry't +0.5(y, — ag)tan 6,

+0.257," (x, — ag)tan 8, sin 27 't, ¢, () = v, (),

ay=(1-b) "'y [1-abA™ (1-b)"'r'es],

a,=(1-a) 'xg[1 +abB™' (1-a) 'r'ts],

ay = 05200 (1-b) {ry e [a’bds A7 (1 -b) ' (26° - 2b + 1) + dy] - d,} (82)
+0.25k{(2abdsds + C,) +2(1 = b) 'ry 63 [b7'dyy —aA™ (1 -b) " 'dy, + (b - 1)(2b - 1) 'ded, |},

a,=-xj(a-1)" [1 +bB '(a- 1)71r61€3],

as=(1-b)y;—aA " (1-b)"?r; e;{y; + ads[kb(1 - b)d — z; (2b - 1)]},

ag=a(l1-b)"" [Xz - aA_1r61€3(1 -b)! (x> —Xl)],

a, = x; + 0.25kC, tan 6,

6. Comparison between the Previous Problems 7. Conclusions
and the Considered Problem

From this study, we treat the problem of the slow spinning

In this section, we make a comparison between the previous motion about the minor axis of the ellipsoid of inertia of a
works and the considered work through Table 1. rigid body to find the periodic solutions and the correction
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of the period of the equations of motion of it in the presence
of Newtonian force field and an external torque. This
problem is solved in a new domain of the angular velocity
component r, — 0.

The well-known Poincare’s method [5] cannot solve this
problem because we cannot achieve the small parameter
which must be proportional to a sufficiently high angular
velocity component r, — 00. So we must search other
techniques that come from the sufficiently small assumption
of r, and depend on achieving large parameter instead of a
small one. This technique is named the large parameter
method. The advantage of this method is as follows: as-
suming low energy at the initial instant instead of high
energy, obtaining a slow periodic motion instead of a fast
periodic one, and giving the solutions in a new domain of
motion r, — 0 and ¢ — 00, The case when A < B< C [21]
cannot be solved here since " is negative in this case. So we
will treat this case separately in the future, in shaa Allah. The
correction terms for our solutions are given in terms of r,
and e. The geometric interpretation of motions is given to
describe the orientation of the motion at any instant of time.
The cases of gyroscopic motions and regular precession are
obtained as special cases from this study when we apply the
symmetry conditions. The practical importance of this work
is very wide since it is used in many applications of life such
as military life and civil one. The case of the gyro motion
which is symmetric about the z-axis, i.e., A = B<C, is ob-
tained as a special case from our work [22]. There are many
interesting space applications of these problems in [2].
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