
Research Article
Central Configurations and Action Minimizing Orbits in Kite
Four-Body Problem

B. Benhammouda ,1 A. Mansur ,1 M. Shoaib ,1 I. Szücs-Csillik ,2 and D. Offin 3
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In the current article, we study the kite four-body problems with the goal of identifying global regions in the mass parameter space
which admits a corresponding central configuration of the four masses. We consider two different types of symmetrical
configurations. In each of the two cases, the existence of a continuous family of central configurations for positivemasses is shown.
We address the dynamical aspect of periodic solutions in the settings considered and show that the minimizers of the classical
action functional restricted to the homographic solutions are the Keplerian elliptical solutions. Finally, we provide numerical
explorations via Poincaré cross-sections, to show the existence of periodic and quasiperiodic solutions within the broader
dynamical context of the four-body problem.

1. Introduction

To understand the dynamics presented by a total collision of
the masses or the equilibrium state of a rotating system, we
are led to the concept of central configurations. A config-
uration of n bodies is central if the acceleration of each body
is a scalar multiple of its position [1–4]. Let ri ∈ R2 and
mi, i � 1, . . . , n, denote the position and the mass of the ith
body, respectively. Also, let rij � ‖ri − rj‖ represent the
distance between the ith and jth bodies. An n-body system
forms a planar noncollinear central configuration [5, 6] if

fij � 􏽘
n− 1

k�0,k≠i,j
mk Rik − Rjk􏼐 􏼑Δijk � 0, (1)

where Rij � r− 3
ij and Δijk � (ri − rj)∧(ri − rk) represent the

area of the triangle determined by the sides ‖ri − rj‖ and
‖ri − rk‖.

*e four-body problem can be considered from two
different perspectives. *e perturbative approach where we
study the dynamical aspects as a perturbation of the three-

body dynamics and assume that one of the masses is van-
ishingly small, or the global approach where we allow the
masses to vary independently and stay positive. In this paper,
we take the global approach and will study analytically the
problem of central configurations and their dynamical
aspects.

*e computation of central configurations is a difficult
problem for n≥ 4. To overcome this difficulty, symmetries or
other restriction methods are used to reduce the number of
variables and obtain partial answers; see, for example, Cors
and Roberts [7]; Albouy et al. [8]; Shoaib et al. [9]; Érdi and
Czirják [10]. In this paper, we consider a four-body problem
with one axis of symmetry so that the four different masses
make a convex or concave kite.

Since the classification of central configurations as one of
the problems for the 21st century by Smale [11], it has attracted
a lot of attention in recent years and has helped in the un-
derstanding of the n-body problem [12–23]. Ji et al. [24] and
Waldvogel [25] study a rhomboidal four-body problem with
two pairs of masses and use Poincaré sections to find regions of
stability for the rhomboidal four-body problem. In addition,
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Waldvogel [25] also takes advantage of the simplicity of the
equations and study its collisions and escape manifolds. Yan
[26] considers the same problem for four equal masses and
studies the linear stability of its periodic orbits. One of our
results will consider the same model but with only one pair of
masses. We will analytically derive regions of central config-
urations and will also investigate the existence of periodic
orbits. Mello and Fernandez [27] prove the existence of kite
central configurations for four- and five-body problems on a
circle. In one special case, our rhomboidal model is similar to
their model for which we also identify a number of periodic
orbits and discuss its action minimizing orbits. Gordon [28]
has proved that the elliptic Keplerian orbit minimizes the
Lagrangian action of the two-body problem with periodic
boundary conditions. It is also known that the Eulerian and
Lagrangian elliptical solutions for the planar three-body
problem are the variational minimizers of the Lagrangian
action functional [29, 30]. In the study by Mansur and Offin
[31]; Mansur et al. [32]; Mansur et al. [33], the authors have
extended these ideas to prove that the homographic solutions
to the constrained parallelogram four-body problem are the
variational minimizers of the Lagrangian action functional. In
this paper, we prove that the minimizers for the action
functional restricted to the homographic solutions are the
Keplerian elliptical solutions for the four-body problem with
three equal and unequal masses. Perez-Chavela and Santoprete
[13] show the existence of kite central configurations for a pair
of symmetric masses and show that such a configuration must
always possess a symmetry. Similarly, Celli [34] proves the
existence of planar diamond and trapezoidal central configu-
rations for two pairs of equal masses. Corbera and Llibre [35]
give a complete classification of the same problem and show
that this setup has exactly 34 different classes of central
configurations.

More recently, Deng et al. [36] and Corbera et al. [37]
prove that any four-body setup with perpendicular diagonals
must be a kite [35, 38]. Santoprete [39] studies a four-body
problem with a pair of equal masses and a pair of parallel
opposite sides and show that if the opposite masses are equal,
then the four-body arrangement must have a line of sym-
metry and will be a kite.

*e paper is organized as follows: Section 2 discusses the
equations of motion for the four-body problem. Section 3
discusses the existence of central configurations and the
action minimizing orbits for the four-body problem where
three masses are equal and arranged at vertices of an
isosceles triangle and the fourth mass is on the axis of
symmetry. In Section 4, we discuss the variational tech-
niques where the action functional corresponding to these
family of solutions is shown to be a minimizer. Section 5
discusses the existence of central configurations and the
action minimizing orbits for the four-body problem where
two symmetric masses are equal on the horizontal axis and
two nonequal masses are on the vertical axis.

2. Equations of Motion

Consider four positive point masses m0, m1, m2, and m3
having position vectors ri and interbody distances rij. For a

general four-body setup, equation (1) gives the following six
central configuration equations when n � 4:

f01 � m2 R02 − R12( 􏼁Δ012 + m3 R03 − R13( 􏼁Δ013 � 0,

f02 � m1 R01 − R21( 􏼁Δ021 + m3 R03 − R23( 􏼁Δ023 � 0,

f03 � m1 R01 − R31( 􏼁Δ031 + m2 R02 − R32( 􏼁Δ032 � 0,

f12 � m0 R10 − R20( 􏼁Δ120 + m3 R13 − R23( 􏼁Δ123 � 0,

f13 � m0 R10 − R30( 􏼁Δ130 + m2 R12 − R32( 􏼁Δ132 � 0,

f23 � m0 R20 − R30( 􏼁Δ230 + m1 R21 − R31( 􏼁Δ231 � 0.

(2)

Lemma 1. Consider a four-body problem with masses m0,
m1, m2, and m3 and position vectors r0 � (0, c),
r1 � (− 1, − a), r2 � (0, b), and r3 � (1, − a), where a> 0 and
b> c, then

(a) .e symmetric masses m1 and m3 are equal.
(b) .e central configuration equations are

f01 � m1 R03 − R13( 􏼁Δ013 + m2 R02 − R12( 􏼁Δ012,

f12 � m0 R10 − R20( 􏼁Δ120 + m1 R13 − R23( 􏼁Δ123.
(3)

Proof. Consider four positive masses m0, m1, m2, and m3
with position vectors r0 � (0, c), r1 � (− 1, − a), r2 � (0, b),
and r3 � (1, − a), where a> 0 and b> c. Using the definitions
of Rij, Δijk, and ri(i � 0, 1, 2, 3, 4), we obtain

R01 � R03 � R30 �
1

(a + c)2 + 1􏼐 􏼑
3/2,

R13 �
1
8
,

R02 �
1

(b − c)3
,

R12 � R21 � R32 �
1

(a + b)2 + 1􏼐 􏼑
3/2,

(4)

with

Δijk � − Δjik � − Δikj � − Δkji,

Δijk � Δjki � Δkij,

Δijk � 0, if i � j or i � k or j � k,

Δ012 � Δ023 � c − b,

Δ013 � 2(a + c),

Δ123 � − 2(a + b).

(5)

Using the symmetry of the problem and the relations (4)
and (5), it is trivial to see that

f02 � m1 − m3( 􏼁 R01 − R21( 􏼁Δ021 � 0. (6)

Since Δ021 ≠ 0 and R21 ≠R01, therefore m3 � m1. *is
completes the proof of Lemma 1 (a).
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From the geometry of the problem, Δm1m0m3 and
Δm1m2m3 are both isosceles, and therefore R01 � R03,
R12 � R32, and Δ032 � Δ012 and hence f03 � f01. *is also
implies that f13 ≡ 0. By a similar argument, it can be shown
that f23 � f12. *is leaves two independent equations f01
and f12 from the set of equations given in (2). *is com-
pletes the proof of Lemma 1.

3. Three Equal Masses at the Vertices of a
Triangle and a Fourth Mass on the
Axis of Symmetry

In this section, we consider a four-body problemwhere three
equal masses (m1 � m2 � m3) are arranged at the vertices of
an isosceles triangle and a fourth mass m0 is on the axis of
symmetry as shown in Figure 1. We start by showing the
existence of central configuration for a concave kite four-
body problem and then explicitly find regions where such a
configuration exists for positive masses. We also discuss the
action minimizing orbits for this particular problem.

3.1. Central Configurations

Theorem 1. Consider four point masses m0 and m1 � m2 �

m3 having position vectors r0 � (0, 0), r1 � (− 1, − a),
r2 � (0, b), and r3 � (1, − a), where a> 0 and b> 0. .en,
there exists a unique mass ratio μ0(a, b):

μ0 �
m0

m1

�
(a + b)2 + 1􏼐 􏼑

3/2
− 8􏼒 􏼓(a + b)b2 a2 + 1( 􏼁

3/2

4 a2 + 1( )
3/2

− b3􏼐 􏼑 (a + b)2 + 1􏼐 􏼑
3/2 ,

(7)

such that r � (r0, r1, r2, r3) is a central configuration for
μ0 > 0 in Rμ0(a, b) subject to the constraint g(a, b) � 0. .e
region Rμ0(a, b) and the constraint g(a, b) are given below:

Rμ0(a, b) � (a, b) |
2
�
3

√ < b<
�
3

√
∧ 0< a<

�
3

√
− b∨ a >

�����
b2 − 1

√
􏼐 􏼑􏼠 􏼡∨ b≥

�
3

√
∧a>

�����
b2 − 1

√
􏼐 􏼑􏼨 􏼩,

g(a, b) � − b
1
b3

−
1
α

􏼒 􏼓 + 2a −
1
8

+
1
β

􏼠 􏼡 � 0,

(8)

where α � ((a + b)2 + 1)3/2 and β � (a2 + 1)3/2.
Before we attempt to prove Theorem 1, we will need help

from the following lemmas.

Lemma 2. .e function g defined by (8) is negative for all
0< a<

�
3

√
and 0< b≤B � (2/

�
3

√
)((3/7) + (2

�
3

√
/7))1/4 ≃

1.13.

Proof. Let 0< a<
�
3

√
and 0< b≤B, then we have

g(a, b)

b
�
1
α

+
2a

b

1
β

􏼠 􏼡 −
4 + ab2

4b3
. (9)

Consider the equation of the straight line segment that
lies in the first quadrant:

x +
2a

b
y −

4 + ab2

4b3
� 0. (10)

For positive x and y,

x +
2a

b
y −

4 + ab2

4b3
< 0, (11)

is equivalent to

x<
4 + ab2

4b3
,

y<
4 + ab2

8ab2
.

(12)

To prove that g(a, b)b− 1 < 0, we need to show that
1
α
<
4 + ab2

4b3
,

1
β
<
4 + ab2

8ab2
.

(13)

For (1/α)< (4 + ab2/4b3), it is trivial to see that

1
α

�
1

1 +(a + b)2􏼐 􏼑
3/2 <

1
b3
<
4 + ab2

4b3
. (14)

Similarly, to show that (1/β)< (4 + ab2/8ab2), we need

m1 (–1, –a) m1 = m3 (1, –a)

r13

r03

r01

r02r12 r23

m1 = m2 (0, b)

m0 (0, 0)

Figure 1: Concave kite four-body configurations with three equal
masses m1 � m2 � m3.
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β>
8ab2

4 + ab2
, (15)

or 1 + a
2

􏼐 􏼑
3
>

8ab2

4 + ab2
􏼠 􏼡

2

. (16)

Inequality (16) is equivalent to

1 + a
2

􏼐 􏼑
3
4 + ab

2
􏼐 􏼑

2
− 64a

2
b
4 > 0. (17)

Expanding the left-hand side of (17), we obtain the
following:

p(a, b) � b
4
a
8

+ 8b
2
a
7

+ 16 + 3b
4

􏼐 􏼑a
6

+ 24b
2
a
5

+ 48 + 3b
4

􏼐 􏼑a
4

+ 24b
2
a
3

+ 48 − 63b
4

􏼐 􏼑a
2

+ 8b
2
a + 16.

(18)

For positive a and b,

p(a, b)> 48a
4

+ 48 − 63b
4

􏼐 􏼑a
2

+ 16,

≥ 48a
4

+ 48 − 63B
4

􏼐 􏼑a
2

+ 16,

� 48 a
2

−
1
�
3

√􏼠 􏼡

2

≥ 0.

(19)

Consequently, g(a, b)< 0 for 0< a<
�
3

√
and 0< b≤B.

*is completes the proof of Lemma 2.

Lemma 3. .e partial derivative of g defined by (3) satisfies
gb(a, b)> (3/α2), for all a> 0 and b> 0.

Proof. For positive a and b, we have

gb(a, b) �
2
b3

+
α − bαb

α2
,

�
2
b3

+
α − 3b(a + b)c

α2
,

(20)

where c � (1 + (a + b)2)1/2 and αb is the derivative of α
w.r.t. b.

Since b3 < α for all a> 0 and b> 0, then

gb(a, b)>
2
α

+
α − 3b(a + b)c

α2
. (21)

Using the fact that α � c3 and c2 � 1 + (a + b)2, we get

gb(a, b)>
3

����������

1 +(a + b)2
􏽱

1 + a2 + ab( 􏼁

c6 . (22)

Since a and b are positive, therefore

gb(a, b)>
3
α2

. (23)

*is completes the proof of Lemma 3.

Remark 1. Numerically, it is easy to show that g(a, 2) � 0
when a � 0.14 and a � 1.32. For a ∈ I � (0.14, 1.32),
g(a, 1)< 0 and g(a, 2)> 0, when a ∈ I, see Figure 2.

*erefore, by intermediate value theorem g(a, b) has at least
one root b ∈ (1, 2) when a ∈ I.

Lemma 4. Consider the function g defined by (3). .en, for
any a0 ∈ I � (0.14, 1.32) there exists an interval U ⊂ I

containing a0 and an interval V ⊂ (1, 2) containing b0 such
that there is a unique continuously differentiable function b �

ψ(a) defined on U with b ∈ V that satisfies g(a, b) � 0.

Proof. Let a0 be any number in the interval I � (0.14, 1.32);
then, using Lemma 3, we have g(a0, 1)< 0. *en, numeri-
cally, one can check that g(a0, 2)> 0 for a0 ∈ I. *us, by the
mean value theorem, there exists at least one b0 ∈ (1, 2),
solution of g(a0, b) � 0. By Lemma 3, gb(a0, b)> 0 for all
b> 0, hence the solution b0 is unique. Since g has continuous
partial derivatives and g(a0, b0) � 0, with gb(a0, b0)≠ 0,
then by the implicit function theorem, there exists an open
interval U ⊂ I containing a0 and an interval V ⊂ (1, 2)

containing b0 such that there is a unique continuously
differentiable function b � ψ(a) defined on U with b ∈ V

that satisfies g(a, b) � 0. *is completes the proof of Lemma
4.

Proof of .eorem 1. Let m1 � m2 � m3 and c � 0, and then
from Lemma 1, we obtain the following central configura-
tion equations:

f01 � R01 − R13( 􏼁Δ013 + R02 − R12( 􏼁Δ012 � 0,

f12 � m0 R01 − R02( 􏼁Δ012 + m1 R13 − R12( 􏼁Δ123 � 0.
(24)

Solving the above equations, we obtain

μ0(a, b) �
m0

m1
�
ϕ1(a, b)(a + b)b2 a2 + 1( 􏼁

3/2

4ϕ2(a, b) (a + b)2 + 1􏼐 􏼑
3/2 , (25)

such that constraint (3) holds, where
ϕ1(a, b) � ((a + b)2 + 1)3/2 − 8 and ϕ2(a, b) � (a2 + 1)3/2−

b3. It is proved in Lemmas 2, 3, and 4 that constraint (8) is
satisfied by showing the existence of a smooth curve:

ψ(a) � (a, b) | g(a, b) � 0, 0< a<
�
3

√
, 1< b<

�
2

√
􏼈 􏼉. (26)

To find the region where μ0 > 0, we solve the following
inequality for a and b:

g (a, 0.5)g (a, 1)

g (a, 1.5)

0.5 1.0 1.5
a

–600

–500

–400

–300

–200

–100

Figure 2: Graph of g(a, b) for values of b � 0.5, 1, and 1.5.
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ϕ1(a, b)

ϕ2(a, b)
> 0. (27)

*e functions ϕ1(a, b) and ϕ2(a, b) are positive in Rϕ1
and Rϕ2, respectively, where

Rϕ1 � (a, b) | (0< b≤
�
3

√
∧a>

�
3

√
− b)∨(b>

�
3

√
∧a> 0)􏼈 􏼉,

Rϕ2 � (a, b) | (0< b≤ 1∧a> 0)∨ b> 1∧a>
�����
b2 − 1

√
􏼐 􏼑􏽮 􏽯.

(28)

*erefore, the configuration r � (r0, r1, r2, r3) shown in
Figure 1 forms a central configuration in
Rμ0 � (Rϕ1∩Rϕ2)∪(Rc

ϕ1
∩Rc

ϕ2
), where

Rμ0 � Rϕ1∩Rϕ2􏼐 􏼑∪ R
c
ϕ1
∩Rc

ϕ2􏼐 􏼑

� (a, b) | (0< b≤ 1∧a>
�
3

√
− b)∨ 1< b<

2
�
3

√ ∧ 0< a<
�����
b2 − 1

√
∨(a>

�
3

√
− b)􏼐 􏼑􏼠 􏼡􏼨

∨ b �
2
�
3

√ ∧ 0< a<
1
�
3

√ ∨ a>
1
�
3

√􏼠 􏼡􏼠 􏼡􏼠 􏼡∨
2
�
3

√ < b<
�
3

√
∧ 0< a<

�
3

√
− b∨a>

�����
b2 − 1

√
􏼐 􏼑􏼠 􏼡∨ b≥

�
3

√
∧a>

�����
b2 − 1

√
􏼐 􏼑􏼩,

(29)

such that (8) holds. Since g(a, b) � 0 has an absolute
minimum at (a0, b0) � (0.53, 1.15) and is monotonically
decreasing for 0< a< 0.53 and increasing for a> 0.53.

*erefore, g(a, b)≠ 0 for b< 1.15. Hence, the region Rμ0
simplifies to

Rμ0 � (a, b) |
2
�
3

√ < b<
�
3

√
∧ 0< a<

�
3

√
− b∨a>

�����
b2 − 1

√
􏼐 􏼑∨ b≥

�
3

√
∧a>

�����
b2 − 1

√
􏼐 􏼑􏼠 􏼡􏼨 􏼩. (30)

*e region Rμ0 is shown in Figure 3. *is completes the
proof of *eorem 1.

To be able to comment on the values of μ0 in the central
configuration region, we use interpolation techniques and
write the solution of g(a, b) � 0 as b � ψ(a), where

ψ(a) � − 99.4142a
11

+ 713.882a
10

− 2296.59a
9

+ 4371.32a
8

− 5475.35a
7

+ 4748.21a
6

− 2919.84a
5

+ 1282.71a
4

− 400.891a
3

+ 88.7673a
2

− 13.8585a + 2.4259.

(31)

*e function ψ(a) accurately approximates the solution
of g(a, b) � 0 in the central configuration region where μ0 is
positive. *e approximation error is between 10− 10 and
10− 6. *is gives μ0 as a function of a as follows:

μ0(a) �
(a + ψ(a))2 + 1􏼑􏼐 􏼑

3/2
− 8􏼒 􏼓(a + ψ(a))ψ2(a) a2 + 1( 􏼁

3/2

4 a2 + 1( )
3/2

− ψ(a)3􏼐 􏼑 (a + ψ(a))2 + 1􏼐 􏼑
3/2 .

(32)

*e function μ0(a) is a bounded, well-defined contin-
uous function of a except when q(a) � a2 + 1 − ψ(a)2 � 0.
To identify the values of a where q(a) � 0, we write it as

q(a) � − 9883.18a
22

+ 141940.a
21

− 966255.a
20

+ 4.14813 × 106a19
− 1.26042 × 107a18

+ 2.88398 × 107a17
− 5.16176 × 107a16

+ 7.41023 × 107a15
− 8.68138 × 107a14

+ 8.40051 × 107a13
− 6.77049 × 107a12

+ 4.57074 × 107a11
− 2.59398 × 107a10

+ 1.2402 × 107a9
− 5.00236 × 106a8

+ 1.705 × 106a7
− 492405.a

6
+ 120891.a

5

− 25214.6a
4

+ 4405.41a
3

− 621.741a
2

+ 67.2389a − 4.88501 � 0.

(33)

*e numerical solution of q(a) � 0 shows that it has
three real roots a � 1.14605, a � 1.2471, and a � 1.44556.
However, a careful observation of the region of existence of
central configuration for the four-body problem in Figure 1
shows that a � 1.14605 defines a boundary between the
region of existence and nonexistence and a � 1.2471 and a �

1.44556 are outside the domain of interest. Hence, μ0(a)

uniquely defines the positive values of the mass ratio m0/m3
for the four-body problem as described in *eorem 1. *e
region of existence of central configuration for the four-body
problem with three equal masses is given in Figure 3. Taking
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advantage of the interpolated expression b � ψ(a), μ0(a) is
given for b ∈ (0.1, 1.14) in Figure 4 which shows μ0(a) to be
an increasing function of a with the minimum and maxi-
mum at the end points of the domain.

3.2. Action Minimizing Orbits in the Triangular Four-Body
Problem. In this section, we introduce the analytical de-
scription of a family of periodic solutions in the four-body
problem using variational techniques.

Theorem 2. For the four-body problem considered in .e-
orem 1, the minimizers for A(q) restricted to the homographic
solutions qi(t) � ϕ(t)qi,0 are precisely the Keplerian elliptical
solutions and the minimum of the action is equal to
(3/2)(2π)2/3T1/3(ξ(a, b)/η(a, b))2/3.

Define the Lagrangian action as

A(q) � 􏽚
T

0
L(q(t), _q(t))dt, (34)

where the Lagrangian L is defined by

L(q, _q) � 􏽘
4

i�1

mi

2
‖ _q‖

2
− U(q),

U(q) � 􏽘
i< j

mimj

qi − qj

�����

�����
.

(35)

Let us call Ωcm the y-coordinate of the center of mass in
the configuration described earlier in Section 2, then

Ωcm �
(b − 2a)m1

3m1 + m0
, (36)

and the center of mass is

COM � 0,Ωcm( 􏼁. (37)

In this case, we have the following Cartesian coordinates
for the points q0,0, q1,0, q2,0, q3,0:

q0,0 � 0,Ωcm( 􏼁,

q1,0 � − 1, − a − Ωcm( 􏼁,

q2,0 � 0, b − Ωcm( 􏼁,

q3,0 � 1, − a − Ωcm( 􏼁.

(38)

Observe that

r0 � q0,0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � Ωcm,

r1 � r3 �

������������

1 + a +Ωcm( 􏼁
2

􏽱

,

r2 � b − Ωcm.

(39)

We focus on solutions of the form qi(t) � ϕ(t)qi,0. *ese
solutions are called homographic solutions. We will restrict
the action functional to solutions of this type.

Proof of .eorem 2. *e kinetic energy term K is equal to

K �
1
2

􏽘

3

i�0
mi _qi(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

� | _ϕ(t)|
2
r
2
1 m1 +

1
2

m0
r0

r1
􏼠 􏼡

2

+ m1
r2

r1
􏼠 􏼡

2
⎛⎝ ⎞⎠⎛⎝ ⎞⎠

� _qi(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

m1 +
1
2

m0
r0

r1
􏼠 􏼡

2

+ m1
r2

r1
􏼠 􏼡

2
⎛⎝ ⎞⎠⎛⎝ ⎞⎠,

(40)

where we have used | _q1(t)|2 � | _ϕ(t)|2r21. *e potential en-
ergy is given by

U � 􏽘
0≤ i< j≤ 3

mimj

qi − qj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
, (41)

and using |qi − qj| � |ϕ(t)||qi,0 − qj,0|, we get

b = √—3 – a

gab = 0

a = 1.14605

b = 1.15 b = 1.15

a = 1.14605

0.0 0.2 0.4 0.6 0.8 1.0 1.2

1.0

1.2

1.4

1.6

a

b

b = √ 1 + a2

b = √—3 – a

b = √—1 + a2

Figure 3: Region of existence of central configuration for the
concave kite four-body problem with (m1 � m2 � m3, m0).
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a

2

4

6

8

10

μ0

Figure 4: Values of μ0(a) in the region of central configuration.
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U �
m0m1

|ϕ(t)|

2
�����
a2 + 1

√ +
1
b

􏼠 􏼡

+
m2

1
|ϕ(t)|

2
����������

(a + b)2 + 1
􏽱 +

1
2

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠.

(42)

Multiplying and dividing by r1, we obtain

U �
1
q1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

m0m1r1
2

�����
a2 + 1

√ +
1
b

􏼠 􏼡􏼠

+m
2
1r1

2
����������

(a + b)2 + 1
􏽱 +

1
2

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠⎞⎟⎟⎟⎠.

(43)

As defined previously, we use (m0/m1) � μ0, and by
letting m1 � 1, we have

U �
1
q1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

μ0r1
2

�����
a2 + 1

√ +
1
b

􏼠 􏼡􏼠

+r1
2

����������

(a + b)2 + 1
􏽱 +

1
2

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠⎞⎟⎟⎟⎠.

(44)

Now, we are ready to compute the action restricted to
this class of homographic solutions. We have

A � 􏽚
T

0
1 +

1
2

m0
r0

r1
􏼠 􏼡

2

+
r2

r1
􏼠 􏼡

2
⎛⎝ ⎞⎠⎛⎝ ⎞⎠

q1
.􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

2
dt

+ 􏽚
T

0
μ0r1

2
�����
a2 + 1

√ +
1
b

􏼠 􏼡􏼠 +r1
2

����������

(a + b)2 + 1
􏽱 +

1
2

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠⎞⎟⎟⎟⎠
1
q1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
dt

� 2 + m0
r0

r1
􏼠 􏼡

2

+
r2

r1
􏼠 􏼡

2
⎛⎝ ⎞⎠⎛⎝ ⎞⎠ 􏽚

T

0

q1
.􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

2
dt

+ μ0r1
2

�����
a2 + 1

√ +
1
b

􏼠 􏼡 + r1
2

����������

(a + b)2 + 1
􏽱 +

1
2

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ 􏽚
T

0

1
q1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
dt.

(45)

Let

η(a, b) � 2 + m0
r0

r1
􏼠 􏼡

2

+
r2

r1
􏼠 􏼡

2
⎛⎝ ⎞⎠,

ξ(a, b) � μ0r1
2

�����
a2 + 1

√ +
1
b

􏼠 􏼡

+ r1
2

����������

(a + b)2 + 1
􏽱 +

1
2

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠.

(46)

*en,

A(q) � η􏽚
T

0

q1
.􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

2
dt + ξ 􏽚

T

0

1
q1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
dt. (47)

*e infimum of A(q) is

inf
q

A(q) � inf
a>0,b>0

inf
q1

η􏽚
T

0

q1
.􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

2
dt + ξ 􏽚

T

0

1
q1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
dt

⎧⎨

⎩

⎫⎬

⎭

� inf
a>0,b>0

η inf
q1

􏽚
T

0

q1
.􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

2
dt +

ξ
η

􏽚
T

0

1
q1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
dt⎛⎝ ⎞⎠

⎧⎨

⎩

⎫⎬

⎭.

(48)

By Gordon’s result, we have

inf
q1

􏽚
T

0

q1
.􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

2
dt +

ξ
η

􏽚
T

0

1
q1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
dt⎛⎝ ⎞⎠ �

3
2
(2π)

2/3
T
1/3 ξ(a, b)

η(a, b)
􏼠 􏼡

2/3

.

(49)

*en,

inf
q

A(q) � inf
a>0,b>0

η(a, b)
3
2
(2π)

2/3
T
1/3 ξ(b, c)

η(b, c)
􏼠 􏼡

2/3⎧⎨

⎩

⎫⎬

⎭

� inf
a>0,b>0

3
2
(2π)

2/3
T
1/3η(a, b)

1/3
(ξ(a, b))

2/3
􏼚 􏼛.

(50)

Let ϕ(a, b) � (3/2)(2π)2/3T1/3η(a, b)1/3(ξ(a, b))2/3, then
ϕ(a, b) attains its infimum at (a0, b0) if and only if
η(a, b)(ξ(a, b))2 attains its infimum at (a0, b0). It is chal-
lenging to see that for positive values of a0 and b0, the
function ϕ(a, b) is convex and coercive. However, we have
proved that b can be written as b � ψ(a) and used inter-
polation to find ψ(a) as given in equation (31). Hence, we
can nowwrite η(a, b), ξ(a, b), and ϕ(a, b) as functions of one
variable. For convexity, we use the second derivative test and
show that (z2ϕ(a)/za2)> 0 when a ∈ (0.1, 1.14) Hence,
ϕ(a) is convex when a ∈ (0.1, 1.14). For coercivity, we see
that ϕ(a) is continuous for all positive values of a,
ϕ(a)⟶∞ as a⟶ 0, and when a⟶∞, ϕ(a)⟶∞,
which implies ϕ(a) is coercive. Hence, ϕ(a) attains
inf
a>0

ϕ(a)􏼈 􏼉 at unique a0 > 0 and satisfies ϕ(a0) � 0.

4. Three Unequal Masses m3 � m1 ≠m2 ≠m0

In this section, we discuss a four-body problem which has
two symmetric equal masses (m3 � m1) on the horizontal
axis and two nonequal massesm0 andm2 on the vertical axis.
*e position vectors of the four masses m0, m1, m2, and m3
are r0 � (0, c), r1 � (− 1, 0), r2 � (0, b), and r3 � (1, 0), re-
spectively. For c> 0, the four masses make an isosceles
triangle with m0 inside the triangle (Figure 5), and for c< 0,
the convex kite configuration is obtained (Figure 6).

4.1. Central Configurations

Theorem 3. Consider four point masses m0, m1 � m3 ≠m2
having position vectors r0 � (0, c), r1 � (− 1, 0), r2 � (0, b),
and r3 � (1, 0), where b> 0 and b> c such that
r � (r0, r1, r2, r3) is a central configuration.

(a) *en, there exist unique mass ratios:
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μ0 �
m0

m1
�

b 8 − b2 + 1( 􏼁
3/2

􏼐 􏼑(b − c)2 c2 + 1( 􏼁
3/2

4 (b − c)3 − c2 + 1( )
3/2

􏼐 􏼑 b2 + 1( )
3/2 ,

μ2 �
m2

m1
�

c 8 − c2 + 1( 􏼁
3/2

􏼐 􏼑(c − b)2 b2 + 1( 􏼁
3/2

4 b2 + 1( )
3/2

− (b − c)3􏼐 􏼑 c2 + 1( )
3/2 .

(51)

(b) *e region of existence of central configuration
where the four positive masses are arranged in a
concave kite configuration is given by

Rt � (b, c) | 0< c<
1
�
3

√ ∧c +
�����
c2 + 1

√
< b<

�
3

√
􏼠 􏼡􏼨

∨
1
�
3

√ < c<
�
3

√
∧

�
3

√
< b< c +

�����
c2 + 1

√
􏼠 􏼡􏼩.

(52)

(c) *e region of existence of central configuration
where the four positive masses are arranged in a
convex kite configuration is given by

Rr � (b, c) | −
�
3

√
< c≤ −

1
�
3

√ ∧c +
�����
c2 + 1

√
< b<

�
3

√
􏼠 􏼡􏼨

∨ −
1
�
3

√ < c< − 2 +
�
3

√
∧

c2 − 1
2c
< b<

�
3

√
􏼠 􏼡􏼩.

(53)

Proof of .eorem 3. Consider four point masses with po-
sition vectors (r0, r1, r2, r3) and masses m0, m1, m2, and m3,
where m3 � m1. *e solution of f01 � 0 and f12 � 0 gives

μ0 �
m0

m1
�

R12 − R13( 􏼁Δ123
R01 − R02( 􏼁Δ012

�
βcb(α − 8)

4α(b − c)(β − c)
,

μ2 �
m2

m1
�

R01 − R13( 􏼁Δ013
R12 − R02( 􏼁Δ012

�
αcc(8 − β)

4β(b − c)(α − c)
,

(54)

where α � (1 + b2)3/2, β � (1 + c2)3/2, and c � (b − c)3. *e
mass ratios μ0 and μ2 are well-defined functions of b and c

except at b � c and b � c ±
�����
1 + c2

√
.

To find central configuration regions where μ0 > 0, it is
sufficient to show that α − 8 and β − c have the same sign. It
is trivial to see that Rα − 8 � 0 when b �

�
3

√
. Similarly, β −

c � 0 when b � c +
�����
c2 + 1

√
. Hence, β − c is positive in

Ra � (a, b) | b> 0∧c< b∧b< c +
�����
c2 + 1

√
􏽮 􏽯. (55)

*e complement of Ra, where β − c< 0, is given by

R
c
a � (a, b) | b> 0∧c< b

2
− 1􏼐 􏼑(2b)

− 1
􏽮 􏽯. (56)

It is to be noted that the sign of c will be determined
according to whether the four-body configuration is concave
(c> 0) or convex(c< 0). After some simplifications, the
central configuration region for μ0 > 0, c> 0 is given by

Rt1
� (b, c) | 0< c<

1
�
3

√ ∧
�����
c2 + 1

√
+ c< b<

�
3

√
􏼠 􏼡􏼨

∨
1
�
3

√ < c≤
�
3

√
∧

�
3

√
< b<

�����
c2 + 1

√
+ c􏼠 􏼡

∨ c>
�
3

√
∧c< b<

�����
c2 + 1

√
+ c􏼐 􏼑􏽯.

(57)

Similarly, the central configuration region for
μ0 > 0, c< 0 is given by

Rr1
� (b, c) | c< 0, c +

�����
c2 + 1

√
< b<

�
3

√
􏽮 􏽯. (58)

Consider the mass ratio μ2. Let c> 0. Since b> c,
therefore for μ2 > 0, (β − 8)(α − c)− 1 must have the same
sign. It is trivial to see that 8 − β> 0 when c ∈ (0,

�
3

√
) and

α − c> 0 for all b> 0 and c> 0. *erefore, μ2 > 0 in

Rt2
� (b, c) | (0< b≤

�
3

√
∧0< c< b)∨(b >

�
3

√
∧0< c<

�
3

√
)􏼈 􏼉.

(59)

Similarly, when c< 0 (rhomboidal configuration), the
central configuration region where μ2 > 0 is given by

m1 = m3 (1, 0)m1 (–1, 0)

m2 (0, b)

r23r12

m0 (0, c)

r02

r03
r01

Figure 5: Concave four-body configurations with a pair of equal
masses (m1 � m3).

m1 = m3 (1, 0)

m0 (0, c)

m2 (0, b)

r23

r03

r02
r12

r01m1 (–1, 0)

(0, 0)

Figure 6: Convex four-body kite configurations with two equal
masses (m1 � m3).

8 Advances in Astronomy



Rr2
� (b, c) | (0< b≤

�
3

√
∧0< c< b)∨(b>

�
3

√
∧0< c<

�
3

√
)􏼈 􏼉.

(60)

Hence, the region of existence of central configuration
for the concave kite four-body problem where all the masses

m0, m1 � m3, and m2 are positive is given by Rt � Rt1
∩Rt2

and the corresponding convex kite central configuration
region is given by Rr � Rr1

∩Rr2
, where

Rt � (b, c) | 0< c<(
�
3

√
)
− 1∧ c +

�����
c2 + 1

√
< b<

�
3

√
􏼐 􏼑∨ (

�
3

√
)
− 1 < c<

�
3

√
∧

�
3

√
< b< c +

�����
c2 + 1

√
􏼐 􏼑􏽮 􏽯,

Rr � (b, c) | −
�
3

√
< c≤ − (

�
3

√
)
− 1∧ c +

�����
c2 + 1

√
< b<

�
3

√
􏼐 􏼑∨ − (

�
3

√
)
− 1 < c<

�
3

√
− 2∧ c

2
− 1􏼐 􏼑(2c)

− 1 < b<
�
3

√
􏼐 􏼑􏽮 􏽯.

(61)

*e regions Rt and Rr are shown in Figures 7 and 8,
respectively.

4.2. Action Minimizing Orbits in the Convex Kite Four-Body
Problem. In this section, we discuss the minimization
property of a four-body problemwhich has two equal masses
(m1 � m3) on the horizontal axis and two positive masses
m2 and m0 on the vertical axis, which is also the axis of
symmetry.

Theorem 4. For the four-body problem considered in .e-
orem 1, the minimizers for A(q) restricted to the homographic
solutions qi(t) � ϕ(t)qi,0 are precisely the Keplerian elliptical
solutions, and the minimum of the action is equal to
(3/2)(2π)2/3T1/3(ξ(b, c)/η(b, c))2/3.

Let us call Ωcm the y-coordinate of the center of mass in
the configuration described earlier in Section 3.1, then

Ωcm �
m0c + m2b

m0 + 2m1 + m2
, (62)

and the center of mass is COM � (0,Ωcm). Observe that

r0 � q0,0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � c − Ωcm

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌,

r1 � r3 �

�������

1 +Ω2cm

􏽱

,

r2 � b − Ωcm

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌.

(63)

Proof of .eorem 4. *e kinetic energy term K is equal to

K �
1
2

􏽘

3

i�0
mi _qi(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

� | _ϕ(t)|
2

m1r
2
1 +

m2

2
r
2
2 +

m0

2
r
2
0􏼒 􏼓

� | _ϕ(t)|
2
r
2
1 m1 +

1
2

m2r
2
2 + m0r

2
0

r21
􏼠 􏼡􏼠 􏼡

� _q1(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

m1 +
1
2

m2r
2
2 + m0r

2
0

r21
􏼠 􏼡􏼠 􏼡,

(64)

where we have used the fact that | _q1(t)|2 � | _ϕ(t)|2r21.
On the other hand, the potential energy is given by

U � 􏽘
0≤ i< j≤ 3

mimj

qi − qj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
, (65)

and using |qi − qj| � |ϕ(t)||qi,0 − qj,0|, we get

U �
1

|ϕ(t)|

m2
1
2

+
2m1m2�����
1 + b2

√ +
2m1m0�����
1 + c2

√ +
m2m0

|c − b|
􏼠 􏼡. (66)

Multiplying and dividing by r1, we obtain

U �
1
q1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

m2
1r1

2
+
2m1m2r1�����
1 + b2

√ +
2m1m0r1�����
1 + c2

√ +
m2m0r1

|c − b|
􏼠 􏼡. (67)

Defining μ0 � m0/m1, μ2 � m2/m1, and m1 � 1,

U �
1
q1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

r1

2
+

2μ2r1�����
1 + b2

√ +
2μ0r1�����
1 + c2

√ +
μ2μ0r1
|c − b|

􏼠 􏼡. (68)

Now, we are ready to compute the action restricted to
this class of homographic solutions:

A � 􏽚
T

0
1 +

1
2

μ2r22 + μ0r20
r21

􏼠 􏼡􏼠 􏼡
q1

.􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

2
dt

+ 􏽚
T

0

r1

2
+

2μ2r1�����
1 + b2

√ +
2μ0r1�����
1 + c2

√ +
μ2μ0r1
|c − b|

􏼠 􏼡
1
q1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
dt

� 2 +
μ2r22 + μ0r20

r21
􏼠 􏼡 􏽚

T

0

q1
.􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

2
dt

+
r1

2
+

2μ2r1�����
1 + b2

√ +
2μ0r1�����
1 + c2

√ +
μ2μ0r1
|c − b|

􏼠 􏼡 􏽚
T

0

1
q1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
dt.

(69)

Let

η(b, c) � 1 +
1
2

μ2r22 + μ0r20
r21

􏼠 􏼡,

ξ(b, c) �
r1

2
+

2μ2r1�����
1 + b2

√ +
2μ0r1�����
1 + c2

√ +
μ2μ0r1
|c − b|

.

(70)

*erefore,

A(q) � η􏽚
T

0

q1
.􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

2
dt + ξ 􏽚

T

0

1
q1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
dt. (71)

*e infimum of A(q) is
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inf
q

A(q) � inf
b>0,c>0

inf
q1

η􏽚
T

0

q1
.􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

2
dt + ξ 􏽚

T

0

1
q1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
dt

⎧⎨

⎩

⎫⎬

⎭

� inf
b>0,c>0

η inf
q1

􏽚
T

0

q1
.􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

2
dt +

ξ
η

􏽚
T

0

1
q1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
dt⎛⎝ ⎞⎠

⎧⎨

⎩

⎫⎬

⎭.

(72)

By Gordon’s result, we have

inf
q1

􏽚
T

0

q1
.􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

2
dt +

ξ
η

􏽚
T

0

1
q1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
dt⎛⎝ ⎞⎠

�
3
2
(2π)

2/3
T
1/3 ξ(b, c)

η(b, c)
􏼠 􏼡

2/3

.

(73)

μ0 > 0
μ2 > 0
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Figure 7: Region of existence of central configuration for the concave kite four-body configuration where m1 � m3 � m≠m0 ≠ m2.
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Figure 8: Region of existence of central configuration for the convex kite four-body configuration where m1 � m3 � m≠m0 ≠ m2.
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*en,

inf
q

A(q) � inf
b>0,c>0

η(b, c)
3
2
(2π)

2/3
T
1/3 ξ(b, c)

η(b, c)
􏼠 􏼡

2/3⎧⎨

⎩

⎫⎬

⎭

� inf
b>0,c>0

3
2
(2π)

2/3
T
1/3η(b, c)

1/3
(ξ(b, c))

2/3
􏼚 􏼛.

(74)

Let ϕ(b, c) � (3/2)(2π)2/3T1/3η(b, c)1/3(ξ(b, c))2/3, and
then ϕ(b, c) attains its infimum at (b0, c0) if and only if
η(b, c)(ξ(b, c))2 attains its infimum at (b0, c0). Similar to the
concave case, we need to show that for positive values of b0 and
c0, the function ϕ(b, c) is convex and coercive. For convexity,
we compute the Hessian matrix for ϕ(b, c) and numerically
show that H(b, c) is positive semidefinite in the region Rr.

*at concludes that the function ϕ(b, c) is convex. For
coercivity, we see that ϕ(b, c) is continuous for all positive
values of b and c, ϕ(b, c)⟶∞ as (b, c)⟶ (0, 0), and
when b⟶∞ and c⟶∞, ϕ(b, c) tends to ∞, which
implies ϕ(b, c) is coercive. Hence, ϕ(b, c) attains inf

b>0,c>0
ϕ(b, c)􏼈 􏼉 at unique (b0, c0), b0 > 0, c0 > 0, and

satisfiesϕ(b0, c0) � 0.

5. Hamiltonian Formulation of the
Problem: Some Numerical Examples

It is well known that the study of the trajectories of ce-
lestial bodies under their mutual gravitational attractions
is important for understanding their movement and
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Figure 9: *e progressive evolution of a Poincaré surface of sections for different energy levels in the unequal masses case (m0 � 1.28155,
m2 � 0.31, m3 � m1 � 1, b � 1.1, and c � 0.1).
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navigation. In that sense, a special type of the four-body
problem with analytical and numerical investigation can
contribute to the understanding of the dynamical be-
havior of quadruple stellar systems (e.g., the HD 98800
quadruple system with two pairs of stars orbiting each
other). Several authors studied the stability and dynamical
evolution of symmetric quadruple systems for stars and
exoplanetary systems of two planets [40, 41]. In this
section, we will study the periodic behavior of the kite
four-body problem.

Consider the four-body problem introduced in Lemma
1, which has a pair of equal masses and one axis of symmetry.
Using the symmetries and position coordinates from
Lemma 1, we obtain the following reduced Hamiltonian in
the case of unequal masses:

H � 􏽘
3

i�0

p2
i

2mi

−
m0m1

r01
−

m0m2

r02
−

m0m3

r03
−

m1m2

r12
−

m1m3

r13
−

m2m3

r23
,

(75)

where

H = –3.200000000
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Figure 10: *e progressive evolution of a Poincaré surface of sections for different energy levels in the unequal masses case (m0 � 1.28155,
m2 � 0.31, m3 � m1 � 1, b � 1.1, and c � 0.1).
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r
2
01 � 1 + q1 − c( 􏼁

2
,

r
2
02 � (b − c)

2
,

r
2
03 � 1 + q3 − c( 􏼁

2
,

r
2
12 � 1 + q1 − b( 􏼁

2
,

r
2
13 � 4 + q1 − q3( 􏼁

2
,

r
2
23 � 1 + b − q3( 􏼁

2
,

b> c,

(76)

and qi and pi, i � 0, 3, are the generalized coordinates and
momenta (we assume for simplicity that the gravitational
constant is equal to 1).

For the investigation of the reduced Hamiltonian
equations of motion (75), we have selected examples from
concave and convex kite four-body problems introduced in
Section 2. We have used classical numerical methods and
found periodic orbits for a given vector field. *e stability
of a periodic orbit for an autonomous vector field can
be calculated by Poincaré maps, which replaces the flow
of the n-dimensional continuous vector field with an
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Figure 11: *e progressive evolution of a Poincaré surface of sections for different energy levels in the unequal masses case (m0 � 1.28155,
m2 � 0.31, m3 � m1 � 1, b � 1.1, and c � 0.1).
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(n − 1)-dimensional map [42]. In this article, the analysis
of periodic and quasiperiodic orbits is performed using the
Poincaré surface of the section technique by picking the phase
element p1 � 0. In the n-dimensional case, the Poincaré
surface of the section has dimensionality 2n − 2. *e inter-
section points of the solution curves with the corresponding
(pi, qi), i � 0, n − 1, plane still lie on a smooth curve [43].

In order to construct the Poincaré surface of the
section and to find the corresponding periodic orbits, we
plot the motion from the 4D phase space (q1, q3, p1, p3) in
a “cut plane” p1(t) � 0, q1t> 0. Since H is conserved, any
point on this surface of the section will uniquely define the

orbit. Our Poincaré surface of sections (Figures 9–11)
describe the concave four-body problem in the unequal
mass case with energy values E ∈ − 3.52, . . . , − 2{ }, plot-
ting q3(t) versus p3(t), and m0 � 1.28155, m2 � 0.31,
m3 � m1 � 1, b � 1.1, and c � 0.1. *e initial conditions
considered here satisfy the central configuration equa-
tions introduced in Section 2. We wish to note that in
case of the energy level − 3.52, we can see many little
islands of quasiperiodic orbits. It should be emphasized
that increasing the energy levels increase the Poincaré
surface of sections in size, as a blowing up effect (see
Figures 9–11).
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Figure 12: *e progressive changing of a Poincaré surface of sections for different energy levels in the unequal masses case (m0 � 2.658,
m2 � 1.03, m3 � m1 � 1, b � 1.9, and c � 0.7).

14 Advances in Astronomy



Another interesting unequal mass case is for increased
masses m0 � 2.658, m2 � 1.03, and m3 � m1 � 1 compared
to the previous case. Similarly, using different energy levels,
in this case for energy values E ∈ − 8.34, . . . , − 7.3{ }, the
variation of the “horseshoe with open side to the left” as the
letter D shape to the “horseshoe with open side to the right”
as the letter C shape can be observed (Figures 12–14). As
earlier, in this particular case, we observe quasiperiodic
orbits and the increasing size of the Poincaré surface of
sections.

In the equal mass case, we have chosen the following
particular case: m4 � 5.17662, m � 1, b � 1.9, and c � 0.7.
In this situation, we detected an interesting

transformation of the Poincaré surface of sections through
the energy levels E ∈ − 13.6, . . . , − 11{ }. In the case of lower
energy levels, the outside part of the orbit indicates
chaotic behavior. Moreover, by increasing the energy
levels, the inside part of the orbit disintegrates, but the size
of the Poincaré surface of sections has just a minor
variation (Figure 15).

Consequently, we developed the surface of sections
with around 300 points, which presents the progressive
disintegration of the surfaces of solution curves of regular
motion (KAM surface) generated with the increase in H

from − 3.615 to − 2 in our first example (Figures 9–11),
from − 8.34 to − 7 in our second example (Figures 12–14),
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Figure 13: *e progressive changing of a Poincaré surface of sections for different energy levels in the unequal masses case (m0 � 2.658,
m2 � 1.03, m3 � m1 � 1, b � 1.9, and c � 0.7).
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and from − 13.6 to − 11 in our third example (Figure 15). It
seems that there exist invariant curves (for example, in the
plots for H equal to − 3.5) near resonances. *ese invariant
curves could form “island sequences” (small groups in a
row) and “islands cycles” (small islands inside of islands).
One can observe that transitions between levels fuse at
progressive integration, and the KAM surfaces progres-
sively disappear.

In both cases (nonequal and equal masses), the
surfaces show unique types of orbits, including quasi-
periodic and island orbits. Let us mention that com-
paring both cases, when the values of m0 are increased,
then there is a noticeable effect influence on the stability
and the existence of quasiperiodic orbits in concave and

convex kite four-body problems. In other words, we
conjecture that the increasing central mass plays a sta-
bilizing role.

*e described Poincaré surface of sections allows
to study the local stability of the kite four-body problem,
the transition from ordered to stochastic motion. *ey
contribute significantly in numerical studies and in
verification of the concordance between analytical and
numerical results.

6. Conclusions

In this paper, we investigated the central configurations
of convex and concave kite four-body problems, deriving
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regions of central configuration. *ree four-body ar-
rangements are discussed which include two concave
four-body configurations and one convex four-body con-
figuration. In one of the concave configurations, three of the
masses on the vertices of the triangle are equal and the mass
on the axis of symmetry can take various positive values. In
the second case of concave configuration and the case of the
convex configuration, there is only a pair of equal masses
and the two masses on the axis of symmetry are nonequal.
In each of the three cases, regions of central configuration
are derived for positive masses. In the first concave case, we
can write the mass ratios as a function of one variable and
show its optimum values give values of the parameter. In the
other two cases, the mass ratios are written as functions
of two variables. *e action minimizing orbits for both
the concave and convex configurations is analyzed, and it
is shown that the minimizers of the action functional re-
stricted to the homographic solutions are the Keplerian
elliptical solutions. Using the Hamiltonian formalism, we
have identified regions with periodic and quasiperiodic
orbits. Moreover, we studied the chaotic behavior in the
phase space utilizing the Poincaré surface of sections. It was
shown that increasing the value of the central mass m0 plays
a stabilizing role in the case of both convex and concave
four-body problems.
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