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In this work, we investigate the problem of constructing new integrable problems in the dynamics of the rigid body rotating about
its fixed point as results of the effect of a combination of potential and gyroscopic forces possessing a common symmetry axis. We
introduce two new integrable problems in a rigid body dynamics that generalize some integrable problems in this field, known by
names of Chaplygin and Yehia–Elmandouh.

1. Introduction

One of the classical problems manifesting in mathematical
physics is the issue of determining whether a dynamical
system, especially a mechanical one, is integrable or not.
Integrability in this context often points out to Liouville
integrability. (e Liouville integrability concept is defined as
the Hamiltonian system with n degrees of freedom that is
completely integrable if it has n independent integrals of
motion which are in involution, i.e., their Poisson brackets
are zero [1]. (e integrable systems possess miscellaneous
properties such as their behavior that can be globally tested
in an infinite interval of time, gratitude to the theories of
perturbation, those systems that can be applied to give an
appointed inference about the nonintegrable systems nearby
them, and in general, the motion equations can be solved by
quadratures [2].(e problem of integrability is split into two
categories. (e first one is finding the sufficient conditions
for the integrability, and this requires the construction of a
sufficient number of first integrals of motion. Numerous
methods can be utilized to construct the first integrals of
motion such as the direct method, Darboux method, and
Yehia method (see, e.g., [3–13]). (e second one deals with
obtaining the necessary conditions of the integrability (see,

e.g., [14–20]), but we must introduce the required number of
the integrals to confirm the integrability.

One of the significant issues in applications in assorted
branches of science such as physics and astronomy is the
problem of a rigid body and its extension to a gyrostat (see,
e.g., [21–23]). So, it is a beneficial model for research from
different points of view [24–29]. Consequently, the present
work interested in analyzing the general motion of a rigid
body about its fixed point that happens under the effect of a
combination of potential (velocity-independent) forces and
gyroscopic (velocity-dependent) forces. (e gyroscopic
forces are specified by l � (0, 0, l3), while the potential forces
are characterized by V(γ). As it outlined in [30], this motion
can be characterized by the Lagrangian:

L �
1
2
ω · ωI + l · ω − V, (1)

where ω � (p, q, r) is the angular velocity, and
I � diag(A, B, C) is the inertia matrix of the body. (e
equations of motion corresponding Lagrangian (1) are
[30–32]

ω
.
I + ω ×(ωI + μ) � c ×

zV

zγ
, c

.
+ ω × c � 0, (2)
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where c � (c1, c2, c3) is the unit vector which is fixed up-
ward in space, and μ is expressed as

μ c1, c2, c3( 􏼁 �
z

zγ
(l · c) −

z

zγ
· l􏼠 􏼡γ. (3)

It is well-known that the Euler-Poisson equation (2) has
three classical integrals of motion. (ey are as follows:

(1) Area integral:

I1 � (ωI + l) · c � f, (4)

where the arbitrary constant f denotes the value of
area integral. (is integral is sometimes named as a
cyclic integral due to it correspondences the cyclic
variable ψ, the angle of precession.

(2) Jacobi integral:

I2 �
1
2
ω · ωI + V � h, (5)

where the arbitrary constant h identifies the value of
the Jacobi integral.

(3) Geometric integral:

I3 � c · c � 1. (6)

Taking into account the Jacobi theorem on the last in-
tegrating multiplier [33], four integrals of motion are needed
to confirm the integrability of the equation of motion (2).
(ence, the existence of a fourth integral independent of
those (4), (5), and (6) is sufficient to prove the integrability. It
is worth noticing that the integrable case either generally
integrable or conditionally integrable according to the fourth
integral is either valid on an arbitrary level of the cyclic
integral I1 or valid on a single level of cyclic integral I1 which
is usually zero.

(e problem of a rigid body which is described by the
equation of motion (2) was studied in diverse posterior
works from the point of view of the integrability. (ose
works include three types of problems.

(e first problem deals with the problem of the motion
of a rigid body about a fixed point under the action of its
weight. It is characterized byV � r0 · c, and μ � 0, where r0 is
a constant vector that represents the center of the mass
vector. It attracted the attention of the researchers for a long
time, nearly two and a half centuries, and thus, it has a great
history. It includes three (no more) general integrable
problems bearing the names of who discovered them, Euler,
Lagrange, and Kowalevski, and one conditional integrable
problem of Goriatchev–Chaplygin (see, e.g., [34]).

(e second problem concerns the motion of a rigid body
about its fixed point under the effect of its weight, and
moreover, there is a rotor spinning about its axis of sym-
metry which is fixed in the body with a constant angular

velocity. It is worth mentioning that it is a simple multibody
that consists of the main body and the rotor, and it is termed
in literatures a gyrostat. (e second problem regards as a
generalization to the first problem, and it is determined by
V � r0 · c and μ � k, where k is a constant vector charac-
terizing the gyroscopic moment due to the existence of the
rotor. It contains three general and one conditional inte-
grable problems generalizing those in the first problem by
adding the gyrostatic moment. (e general cases are
Lagrange, Joukovsky [34], and Yehia [35], while the con-
ditional case is the Sretensky case which generalizes the
Goriatchev–Chaplygin case in the first problem. In [36], the
author proved that the equations of the motion for the
current problem does not own more than the three men-
tioned cases.

(e third problem studies the problem of the motion of a
rigid body in an incompressible ideal fluid, infinitely
extending and at rest at infinity. (e simple connected body
is either described by the traditional Kirchoff equations [37]
or by their Hamiltonian [38] form, while the body bounded
by a multiconnected surface is described either by Lamb
equations [39] or by its equivalent Hamiltonian form (see,
e.g., [34]). (e utilization of the equations of Kirchhoff and
Lamb to describe this problem lacks to demonstrate the link
between this problem and the other problems of rigid body
dynamics. (e link between both problems is proved by
Yehia who introduced the equations of motion for a rigid
body in a liquid by removing the translation motion that
appears as cyclic variables (see, [40]), and the reduced
problem is described by V � r0 · c + (1/2)γJ · c and
μ � k − 2cK, where J andK are the constant 3 × 3 matrices.
(e integrable cases for the third problem have been in-
troduced in [34, 40].

To dodge the ambiguity, we summarize those problems
in Table 1. Obviously, each problem is a generalization of the
previous one by inserting some of the additional parameters,
which represented terms having certain physical
interpretations.

According to the methodology used, this work deals only
with two-dimensional mechanical systems, as it is outlined
down in section two. It is obvious that this problem has three
degrees of freedom in which one of them can be ignored due
to the presence of a cyclic variable, precession angle, by
utilizing the Routh procedure. (ence, the current problem
can be characterized by Routhian (see, [41]).

R �
1
2

_c
2

1 − c
2
3

+
C 1 − c

2
3􏼐 􏼑φ

. 2

A − (A − C)c
2
3

⎡⎢⎣ ⎤⎥⎦ +
f Cc3 + Al3 1 − c

2
3􏼐 􏼑􏼐 􏼑

A A − (A − C)c
2
3􏽨 􏽩

φ
.

−
1
A

V +
f − l3c3( 􏼁

2

2 A − (A − C)c
2
3􏽨 􏽩

⎛⎝ ⎞⎠.

(7)

One can do the transformation,

dt �
C 1 − c

2
3􏼐 􏼑

A − (A − C)c
2
3
dτ, (8)
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to Routhian (7), and we get

R0 �
A

2
φ�2 +

A − (A − C)c
2
3

C 1 − c
2
3􏼐 􏼑

2 c�
2
3

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦ +
fCc3 + Al3 1 − c

2
3􏼐 􏼑

A − (A − C)c
2
3􏽨 􏽩

φ�

−
C 1 − c

2
3􏼐 􏼑

A − (A − C)c
2
3􏽨 􏽩

V +
f − l3c3( 􏼁

2

2 A − (A − C)c
2
3􏽨 􏽩

⎡⎢⎣ ⎤⎥⎦,

(9)

where τ is the fictitious time, and dash refers to the derivative
with respect to τ.

2. Basic Equations

A method for constructing the two-dimensional integrable
mechanical systems in which the additional integral is a
polynomial in velocities has been presented by Yehia in [42],
and it has been developed in [43]. (is method has been
successfully applied to construct new integrable problems
(not necessarily plane) whose complementary integral is a
polynomial in velocities up to degree four (e.g.,
[4–6, 44–49]). (is method is restrictively employed for two
mechanical systems. (ere are a wide class of beforemen-
tioned systems such as the n-dimensional mechanical sys-
tems admitting (n − 2) cyclic variables and the particle
motion on a smooth surface under the influence of distinct
types of forces. A further example is a present problem
which describes the rotation of a rigid body about a fixed
point under the effect of potential and gyroscopic forces
possessing a common axis of symmetry, so the motion has a
cyclic variable, and this enables us to apply Routh procedure
to lessen the degrees of freedom from three to two [32, 33].

(e two-dimensional mechanical systems are described
by Lagrangian equation.

L �
1
2

b11q1
. 2

+ 2b12q1
.
q2

.
+ b22q2

. 2
􏼐 􏼑 + b1q1

.
+ b2q2

.
− V,

(10)

where the functions bij, bi, and V rely on the generalized
coordinates q1andq2, and dots refer to the derivatives with
respect to the time t. Birkhoff theorem [50] guarantees the
existence of a certain canonical transformation which is
applied to turn Lagrangian (10) into

L �
Λ
2

_ξ
2

+ _η2􏼒 􏼓 + l1
_ξ + l2 _η − V, (11)

where Λ, l1, l2, andV are the functions in the two variables
xandy. (e usefulness of this step is to diminish the number
of functions from six to four. It is obvious that the La-
grangian (10) has a Jacobi integral in the form

I1 �
Λ
2

_ξ
2

+ _η2􏼒 􏼓 + V � h, (12)

where h is an arbitrary constant. According to Liouville
theorem for the equivalent Hamiltonian system, system (11)
is completely integrable if it has another first integral in-
dependent on the Jacobi integral (12).

Executing the time transformation (see Appendix A for
more details about time transformation),

dt � Λdτ, (13)

to Lagrangian (11), we get

L0 �
1
2

ξ′
2

+ η′
2

􏼒 􏼓 + l1ξ′ + l2η′ − U, (14)

where U � Λ(h − V), and ′ refers to the derivative with
respect to τ. (e Lagrangian equations corresponding to
Lagrangian (14) are

ξ″ +Ωη′ �
zU

zξ
,

η″ +Ωξ′ �
zU

zη
,

(15)

where Ω � zl1/zη − zl2/zξ. (is system has a Jacobi integral
in the form

I1 �
1
2

ξ′
2

+ η′
2

􏼒 􏼓 + U � 0. (16)

Now, we are going to find an additional first integral that
is independent on the Jacobi integral (16). Based on [42], the
complementary integral that is assumed to be quartic in
velocities can be expressed as

I2 � ξ′
4

+ P3ξ′
3

+ Q3ξ′
2

η′ + P2ξ′
2

+ Q2ξ′η′ + P1ξ′ + Q1η′ + R,

(17)

where the functions Pj, Qj, andR depend on the two vari-
ables ξ and η. Calculating the derivative of (17) with respect
to τ and using the Jacobi integral (16) to remove all the even
powers of η′ as in [42], we get the following nonlinear system
of partial differential equations:

M.DξX + N.DηX � B, (18)

where X � (P1 P2 P3 Q1 Q2 Q3 R U Ω)T is
the vector of the unknown functions. DξX and DηX are
partial derivatives according to the variables ξ and η of the
vector X. M and N are the matrices and given as follows:

Table 1: Different problems in a rigid body dynamics.

No. Problem Potential function V
Vector

function μ
1 Heavy rigid body V � r0 · c μ � 0
2 Heavy gyrostat V � r0 · c μ � k
3 Rigid body in a liquid V � r0 · c + (1/2)cJ · c μ � k − 2cK
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M �

1 0 0 0 0 0 0 3P3 0
1 0 0 0 0 0 0 2Q3 0
0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 1 2P1 0
1 0 0 0 0 0 1 P1 0
1 0 0 0 0 0 1 Q2 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (19)

N �

0 0 0 − 1 0 2U 0 Q3 0
0 0 0 1 0 0 0 0 0
0 0 0 0 − 1 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 − 1 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 2U 0 1 Q2 0
0 0 0 2U 0 0 1 Q1 0
0 0 0 0 0 0 1 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (20)

(e right-side vector B is given by B �

− 2ΩQ2 2ΩP2 − 3ΩQ3 − 4U 3ΩP3 0 4Ω − ΩQ1 + 4ΩUQ3 2ΩQ2U ΩP1( )T.
System (18) composed of nine nonlinear partial differ-

ential equations with nine unknown functions is not easy to
solve exactly. Notice that the solution of this system de-
termines a two-dimensional integrable system with an ad-
ditional quartic integral in the velocities which is valid on a
zero level of Jacobi integral.

(e sixth equation in (18), which is zP3/zξ+

zQ3/zη � 4Ω, and the definition of Ω, allow us to write
Lagrangian (14) in the form

L0 �
1
2

ξ′
2

+ η′
2

􏼒 􏼓 +
1
4

P3ξ′ − Q3η′( 􏼁 − U. (21)

3. Applications to Rigid Body Dynamics

In the present section, we investigate the construction of new
integrable systems with a quartic integral in the dynamics of a
rigid body movement. Seeing that the metric corresponding
to Lagrangian (9) is ds2 � dφ2 + g(c3)dc2

3, it is more suitable
to use the variable p instead of η through the relation

η � 􏽚
dp

f(p)
, (22)

where

f(p) �

������������������������������������

p − p1( 􏼁 p − p2( 􏼁 p − p3( 􏼁 p + p1 + p2 + p3( 􏼁

􏽱

,

(23)

where p1, p2, andp3 are the arbitrary parameters. We con-
sider a certain class of problems in a rigid body dynamics in
which the gyroscopic forces are determined by

Ω(ξ, p) � a1Ω1(p)cos ξ + a2Ω0(p), (24)

and the potential forces are characterized by

U(ξ, p) � u(p) + a3v(p)sin ξ −
a1a2

8
f0(p)cos ξ

+ a
2
1m(p)cos 2 ξ,

(25)

where a1, a2, anda3 are the arbitrary constants. (e moti-
vation for the choice of the two functions (24) and (25) is
that they represent a large class of problems in the dynamics
of a rigid body. Certain clarifications should be made for two
particular cases.

(1) Time-reversible case: this case is characterized by
the absence of gyroscopic forces, i.e., Ω � 0. (is
happens if a1 � 0anda2 � 0, (e potential function
(25) reduces to U � u(p) + a3v(p)sin ξ which is a
Kowalevski-type potential. Furthermore, if we
change ξ⟶ 2ξ, the potential function takes the
form U � u(p) + a3v(p)sin 2 ξ which is a Chap-
lygin-type potential. (e previous studies con-
cerning those types of potentials lead to several
generalizations for integrable problems in the rigid
body dynamics in which the additional integral is a
quartic polynomial in the velocities (e.g., [51–53]).
(is type of problem is referred in literatures as
time-reversible systems.

(2) Time-irreversible case: this case involves a gyro-
scopic forces acting on the motion besides the po-
tential forces. We can split it into two subcases.

(a) When setting a1 � 0, the gyroscopic forces is
characterized by Ω � a2Ω0(p), and the potential
function (25) becomes U � u(p) + a3v(p)sin ξ.
(e potential function is a type of Kowalevski-
gyrostat type potential or Chaplygin-gyrostat
type potential (if ξ⟶ 2ξ ). (is problem has
been studied in several works such as [51, 52].
(ese studies lead to a generalization of a
Kowalevski case and Chaplygin case by adding a
constant gyrostatic moment.

(b) When a1a2 ≠ 0, the full structure of Ω and U is
considered in [49], but the authors solved the
basic equations for a special cases leading to the
Kowalevski case, and they introduced two in-
tegrable problems generalize Kowalevski case
and Sokolov case.

Inserting the expressions (22), (24), and (25) into the
equations (18)–(21), we have
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L �
1
2

η′
2

+
p′

2

f(p)
⎛⎝ ⎞⎠ + a1J1(p)cos ξ + a2J0(p)( 􏼁ξ′ + u(p)

+ a3v(p)sin ξ −
a1a2

8
f0(p)v(p)cos ξ + a

2
1m(p)cos(2ξ),

(26)

I � ξ′
4

+ P3ξ′
3

+ Q3ξ′
2

p′ + P2ξ′
2

+ Q2ξ′p′ + P1ξ′ + Q1p′
+ R � ε0,

(27)

where Qj � (Qj/
�����
f(p)

􏽰
). In what follows, we inscribe Q

instead of Q for simplicity. Taking into account the trans-
formation (22) and inserting the two expressions (24) and
(25) into the basic equation (18), we get the following
nonlinear system of partial differential equations in the
following form:

Q3
df

dp
+ 2f

zQ3

zp
− 2

zP3

zξ
� 0, (28)

zP3

zp
+

zQ3

zξ
− 4a2Ω0 − 4a1Ω1 cos ξ � 0, (29)

8a3v + 6a1fQ3Ω1( 􏼁cos ξ − 16a
2
1m sin 2 ξ − 2f

zQ2

zp
+ 2

zP2

zξ
+ a1a2f0v sin ξ − Q2

df

dp
+ 6a2fQ3Ω0 � 0, (30)

zQ2

zξ
+

zP2

zp
− 3P3 a1Ω1 cos ξ + a2Ω0( 􏼁 � 0, (31)

8a
2
1 Q3f

dm

dp
+ 2fm

zQ3

zp
+ Q3m

df

dp
􏼨 􏼩cos 2 ξ − a1a2f0v

df0

dp
Q3 − 24a3vP3 + 2a1a2ff0v

zQ3

zp
􏼨

+ a1a2ff0Q3
dv

dp
− 16a1fQ2Ω1 + a1a2Q3vf

df0

dp
􏼩

cos ξ + 3a1a2vf0Q3 + 8a3vQ3
df

dp
+ 16a3fv

zQ3

zp
+ 8a3Q3f

dv

dp
􏼨 􏼩sin ξ + 8Q3f

×
du

dp
− 48a

2
1P3m sin 2 ξ − 8f

zQ1

zp
− 4Q1

df

dp
+ 8

zP1

zξ

+ 8Q3u
df

dp
+ 16fu

zQ3

zp
+ 16fa2Q2Ω0 � 0,

(32)

a1a2f0vQ3 sin ξ + 8 a3vQ3 − a1Ω1P2( 􏼁cos ξ + 4
zQ1

zξ
+ 4

zP1

zp
− 8a2P2Ω0 − 16a

2
1mQ3 sin 2 ξ � 0, (33)

zR

zξ
� 2a

3
3fQ3mΩ1 −

a
2
2a1

2
f0fvQ3Ω0 − a1fQ1Ω1 + 4a1Q3uΩ1f +

a1a2

8
Q2vf

df0

dp
+

a1a2

4
ff0v

zQ2

zp
􏼨

− 2a3vP2 +
a1a2

8
Q2ff0

dv

dp
+

a1a2

8
f0vQ2

df

dp
􏼩cos ξ

+ − a
2
1mQ2

df

dp
−

a2a
2
1

4
ff0vQ3Ω1 − 2a

2
1mf

zQ2

zp
+ 4a2a

2
1fQ3m ×Ω0 + 2a

3
1fQ3mΩ1􏼨 􏼩cos 3 ξ

− a
2
1fQ2

dm

dp
cos 2 ξ + − 2a3fv

zQ2

zp
−

a1a2

4
f0vP2 × Q2 + 4a2a3fQ3Ω0 − a3fQ2

dv

dp
􏼨 􏼩sin ξ

+ 4a
2
1P2m + 2a1a3fvQ3Ω1􏼨 􏼩sin 2 ξ − a2fQ1Ω0 − Q2f

du

dp
− Q2u

df

dp
− a3v

df

dp
− Q2u

df

dp

−
a
2
1a2

4
ff0Q3Ω1 + 4a2fQ3uΩ0 − 2fu

zQ2

zp
,

(34)
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zR

zp
� 2a

2
1mQ2 sin 2 ξ −

a1a2

8
Q2f0v sin ξ + a1P1Ω1 cos ξ −

a1a2

8
Q2f0v sin 3 ξ + a2P1Ω0

a
2
1 16fm

zQ1

zp
+ a2ff0vQ2Ω1 − 16a2fmQ2Ω0 + 8Q1m

df

dp
+ 8Q1f

dm

dp
􏼨 􏼩cos 2 ξ − 8a

3
1fQ2mΩ1 cos 3 ξ

+ − a1a2f0vQ1
df

dp
+ 2a1a

2
2ff0Q2Ω0 − a1a2Q1ff0

dv

dp
− 16a1fuQ2Ω1 − 8a

3
1fmQ2Ω1 − a1a2vfQ1

df0

dp
􏼨

+ 8a
3
1vP1 − 2a1a2f0fv

zQ1

zp
􏼩cos ξ + 16a3fv

zQ1

zp
+ 8a3vQ1

df

dp
− 16a2a3fQ2vΩ0 + a1a2P1f0v + 8a3fQ1

dv

dp
􏼨 􏼩sin ξ

− 8a1 2a1mP1 + a3vfQ2Ω1( 􏼁sin 2 ξ + 8Q1u
df

dp
+ a

2
1a2fQ2f0v − 16a2fQ2uΩ0 + 16fu

zQ1

zp
+ 8Q1f

du

dp
� 0,

(35)

where

Ω0 �
dJ0

dp
,

Ω1 �
dJ1

dp
.

(36)

It is obvious that systems (28)–(35) are a nonlinear
system of partial differential equations, and so in general,
their solution is somewhat difficult. For simplicity, we turn
these equations to the system of ordinary differential
equations by setting the integral coefficients in a more
suitable form. After some trials, the integral coefficients can
be expressed as follows:

P3(ξ, p) � a1f0(p) + a1f1(p)cos ξ,

Q3(ξ, p) � 8a1 sin ξ,

P2(ξ, p) � P0(p) + 16a3p sin ξ + a1a2G(p)cos ξ + a
2
1T(p)cos 2 ξ,

Q2(ξ, p) � a3q1(p)cos ξ + a1a2q2(p)sin ξ + a
2
1q3(p)sin 2 ξ,

P1(ξ, p) � f3(p)cos ξ + a
2
1a2f4(p)cos 2 ξ + a

3
1f5(p)cos 3 ξ + a1a3f6(p)sin 2 ξ + a2a3f7(p)sin ξ + f8(p),

Q1(ξ, p) � a2a3f9(p)cos ξ + a1a3f10(p)(cos 2 ξ + 1) + a1f11(p)sin ξ + a2a
2
1f12(p)sin 2 ξ + a

3
1f13(p)sin 3 ξ.

(37)

Inserting the expressions of the integral’s coefficients
(37) into the equations (28)–(35) and equating the

coefficients of trigonometric functions to zero, we obtain the
following system of ordinary differential equations:

a1 f1 + 4
df

dp
􏼠 􏼡 � 0, (38)

a2f
df0

dp
− 4Ω0􏼠 􏼡 � 0, (39)

a1 4Ω1 −
df1

dp
− 8􏼠 􏼡 � 0, (40)

a3 q1
df

dp
+ 2f

dq1

dp
− 32p − 8v􏼠 􏼡 � 0, (41)
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a1a2 q2
df

dp
+ 2f

dq2

dp
+ 2G − f0v − 48fΩ0􏼠 􏼡 � 0, (42)

a
2
1 q3

df

dp
+ 2f

dq3

dp
+ 4T + 16m − 24fΩ1􏼠 􏼡 � 0, (43)

a1a2
dG

dp
− 3f0Ω1 − 3f1Ω0 − q2􏼠 􏼡 � 0, (44)

a
2
1 2

dT

dp
− 3f1Ω1 + 4q3􏼠 􏼡 � 0, (45)

a3 q1 − 16( 􏼁 � 0, (46)

dP0

dp
− 3a

2
2f0Ω0 −

3
2
a
2
1f1Ω1 � 0, (47)

a2a3 f9
df

dp
+ 2f

df9

dp
− 2f7 − 6f0v − 4fq1Ω0􏼠 􏼡 � 0, (48)

a1a3 f10
df

dp
+ 2f

df10

dp
+ 8

d
dp

(vp) − 4f6 − 3f1v − 2q1fΩ1􏼠 􏼡 � 0, (49)

f3 + a1 f
df11

dp
+
1
2
f11

df

dp
− 8f

du

dp
− 8u

df

dp
􏼠 􏼡 + a

3
1 4m

df

dp
+ 3mf1􏼠 􏼡 + a1a

2
2
3
8
f0v − 2fq2Ω0􏼒 􏼓 � 0, (50)

a2a
2
1 8f12

df

dp
+ 16f

df12

dp
+ 8

d
dp

f0vf( 􏼁 + 32f4 + 96f0m − 32fq3Ω0 − 32fq3Ω0 − 16q2fΩ1􏼠 􏼡 � 0, (51)

a
3
1 2f

df13

dp
+ f13

df

dp
+ 6f5 − 8

d
dp

(mf) − 2q3fΩ1 + 6mf1􏼠 􏼡 � 0, (52)

a1a3 f10
df

dp
+ 2f

df10

dp
− 8

d
dp

(vf) − 2q1fΩ1 − 3f1v􏼠 􏼡 � 0, (53)

a1 2P0Ω1 − f11( 􏼁 + 2a1a
2
2GΩ0 + a

3
1 16m + TΩ1( 􏼁 −

df3

dp
� 0, (54)

a
2
1a2 2TΩ0 − 2f12 + f0v + GΩ1 −

df4

dp
􏼠 􏼡 � 0, (55)

a
3
1 TΩ1 − 3f13 − 16m −

df5

dp
􏼠 􏼡 � 0, (56)

a2a3
df7

dp
− f9 − 32pΩ0􏼠 􏼡 � 0, (57)
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a1a3
df6

dp
− 2f10 − 16pΩ1 + 8v􏼠 􏼡 � 0, (58)

a
2
1a2 GΩ1 − f0v( 􏼁 + 2a2P0Ω0 −

df8

dp
� 0, (59)

zR

zξ
� F0(p) + F1(p)cos ξ + F2(p)cos 2 ξ + F3(p)cos 3 ξ + F4(p)sin ξ + F5(p)sin 2 ξ + F6(p)sin 3 ξ, (60)

zR

zp
� F7(p)cos ξ + F8(p)cos 2 ξ + F9(p)cos 3 ξ

− a
4
1 q3m −

Ω1f5

2
􏼨 􏼩cos 4 ξ + a3 a

2
2f7Ω0 + a

2
1

f6Ω1
2

+ mq1 −
1
2

vq3􏼠 􏼡􏼨 􏼩

sin ξ −
a1a2a3

16
v q1f0 + 8q2( 􏼁 − 8f7Ω1 − 16f6Ω0􏼈 􏼉sin 2 ξ +

a3a
2
1

2
f6Ω1 + 2mq1 − vq3􏼈 􏼉

sin 3 ξ +
a1

2
f3Ω1 −

a
2
3
2

q1v + a2f8Ω0 + a
4
1q3m −

a
2
1a

2
2

16
q2f0v,

(61)

a
4
1a2 f0f5v − 8fq2mΩ1 − vff13

df0

dp
− f0f13v

df

dp
− 16fq3mΩ0 − 16f4m + fq3Ω1f0v + vf0f5􏼨

− 2ff0v
df13

dp
+ 8ff12

dm

dp
+ 8f12m

df

dp
− f13f0f

dv

dp
+ 16fm

df12

dp
􏼩 � 0,

(62)

a3a
3
1 vf13

df

dp
+ ff13

dv

dp
− ff10

dm

dp
− 2fm

df10

dp
− 2f6m − f10m

df

dp
− vf5 − fq3Ω1v + 2fv

df13

dp
+ fq1Ω1m􏼨 􏼩 � 0, (63)

a1 − 16a1mf3 + a
2
1 16f13f

du

dp
+ 16fm

df11

dp
+ 8f11f

dm

dp
+ 8f11m

df

dp
− 16fq3uΩ1 + 16uf13

df

dp
+ 32fu

df13

dp
􏼠 􏼡􏼨

+ a
2
1a

2
2 − ff0f12

dv

dp
+ fq2f0Ω1v + f4vf0 − 2ff0v

df12

dp
+ 2fq3f0Ω0v − vff12

df0

dp
− 16fq2Ω0m − f12f0v

df

dp
􏼠 􏼡

+ a
2
3 8ff10

dv

dp
+ 8f10v

df

dp
+ 16fv

df10

dp
+ 8f6v − 8fq1Ω1v􏼠 􏼡 − 8a

4
1q3fΩ1m􏼩 � 0,

(64)

a
2
1a2a3 f10f0v

df

dp
+ 16fq1mΩ0 − 16mf7 + f0f6v + f0f10f

dv

dp
− 16fq3vΩ0 + 8ff12

dv

dp
+ 8vf12

df

dp
− 8fq2vΩ1􏼨

− 8f4v + ff10v
df10

dp
− 16fm

df9

dp
− 8ff9

dm

dp
+ 16fv

df12

dp
− 8f9m

df

dp
− fq1Ω1f0v + 2ff0v

df10

dp
� 0,

(65)

− 2a
2
1f8m +

a1a2

16
f0f3v +

a2a
4
1

16
− ff13v

dv

dp
− ff13

dv

dp
− 2ff0v

df13

dp
− f0vf13

df

dp
− f0f5v + 2fq3Ω1f0v􏼨 􏼩

+ a2a
2
1 ff12

du

dp
−

1
16

ff11v
df

dp
+ 2fu

df12

dp
− fq2uΩ1 + f12u

df

dp
−

1
16

ff11f0
dv

dp
−

1
16

ff11v
df0

dp
− 2fq3uΩ0 −

1
8

ff0v
df11

dp
􏼠 􏼡

+
a2a

2
3

2
f7v + 2fv

df9

dp
− 2fq1Ω0v + f9f

dv

dp
+ f9v

df

dp
􏼨 􏼩 +

a
2
1a

3
2

8
fq2Ω0f0v􏼩 � 0,

(66)
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a38f3v + a1 32fu
df10

dp
− 16fq1Ω1u − 8f11v

df

dp
− 8ff11

dv

dp
+ 16f10u

df

dp
+ 16ff10

du

dp
− 16vf

df11

dp
􏼠 􏼡

+ a
3
1 8f13v

df

dp
+ 16vf

df13

dp
+ 32fm

df10

dp
+ 16mf10

df

dp
+ 8f5v + 16ff10

dm

dp
− 16fq1mΩ1 + 8f13f

dv

dp
􏼠 􏼡

+ a1a
2
2 2ff0q1Ω0v − ff0f9

dv

dp
− f0f7v − f9fv

df0

dp
− 2f0fv

df9

dp
+ 16fq2Ω0v􏼠 􏼡􏼩 � 0,

(67)

a3 16f8v + a2 16f9u
df

dp
+ 16f9f

du

dp
− 32fq1Ω0u + 32fu

df9

dp
􏼠 􏼡 + a2a

2
1 − 8fq2vΩ1 − 3f10vf

df0

dp
+ 8f9f

dm

dp
+ 8f4v􏼠􏼨

− 6ff0v
df10

dp
− 16fq1Ω0m − 3f0f10f

dv

dp
+ 16fv

df12

dp
− 3f10f0v

df

dp
+ 3fq1Ω1f0v + 8f12f

dv

dp
+ f6f0v + 8f9m

df

dp

− 16fq3Ω0v + 8f12v
df

dp
+ 16fm

df9

dp
− 16f7m􏼡􏼩 � 0,

(68)

a1 16f11u
df

dp
+ 16f11f

du

dp
+ 32fu

df11

dp
− 16a1f3m + 2a2f0f8v + a

2
1 − 8f11m

df

dp
− 16fq3uΩ1 − 16fm

df11

dp
− 8f11f

dm

dp
􏼠 􏼡􏼨

+ a
4
1 8ff13

df

dp
+ 8f13m

df

dp
+ 16fm

df13

dp
􏼠 􏼡 − 32a

2
2fq2Ω0u + a

2
3 − 8fq1Ω1v + 8f6v + 16fv

df10

dp
+ 8f10v

df

dp
+ 8ff10

dv

dp
􏼠 􏼡

+ a
2
1a

2
2 − f0f12f

dv

dp
+ fq2Ω1f0v + 16fq2Ω0m − f0vf12

df

dp
− f4f0v − vff12

df0

dp
− 2ff0v

df12

dp
+ 2fq3Ω0f0v􏼠 􏼡􏼩 � 0,

(69)

a3 a
3
1 f10m

df

dp
+ 8f10f

dm

dp
− 8fq1Ω1m + 16fm

df10

dp
− 8fq3Ω1v − 16f6m􏼠 􏼡 + a1 a

2
2 f7f0v − 2ff0v

df9

dp
− f0ff9

dv

dp
􏼠􏼨􏼨

+ 2fq1f0vΩ0 − 16fq2Ω0v − f9fv
df0

dp
− f9f0v

df

dp
􏼡 + 32fu

df10

dp
+ 8f11v

df

dp
+ 16fv

df11

dp
+ 16f10 × u

df

dp

− 16fq1Ω1u + 8f11f
dv

dp
+ 16ff10

du

dp
􏼩 + 8vf3􏼩 � 0,

(70)

where Fi(p), i � 0, 1, . . . , 9 is given in Appendix
B. Systems (38)–(68) consist of thirty-two nonlinear or-
dinary differential equations in nineteen unknown func-
tions.(e solution to this system is somewhat intricate, and
we cannot generally solve it as in the reversible case for
arbitrary values of the parameters. But we solve it for
certain values of the parameters leading to rigid body
dynamics.

3.1.TwoNewIntegrableProblems. (emetric corresponding
to the Lagrangian (9) that describes themetric of a rigid body
matches with the Lagrangian (26) if we set

ξ � 2 φ − φ0( 􏼁,

p1 � p2 � p3 � 1,

p � 1 +
c
4
3

1 − c
2
3
.

(71)

We are going to solve equation (70) taking into ac-
count condition (71). As a result of the complexity of those
equations, we utilize the Maple program. We consider
separately the two cases that are a1a2 ≠ 0 and a2 � 0. Let us
illustrate the causes of choosing those cases. In our works
for constructing integrable systems with quartic integrals,
it seems that some potentials are appropriate, with the
attendance of a constant gyrostatic moment, while others
are not. For more elucidation, we admit the Chaplygin
case describing the motion of a rigid body in an in-
compressible ideal fluid and its generalization as an
example:

V1 � a c
2
1 − c

2
2􏼐 􏼑 + 2bc1c2 +

λ
2c

2
3
, μ � (0, 0, k), (72)

V2 � a c
2
1 − c

2
2􏼐 􏼑 + 2bc1c2 +

λ
2c

2
3

+ ρ
1
c
4
3

−
1
c
6
3

􏼠 􏼡, μ � (0, 0, 0),

(73)
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where a, b, λ, andρ are the arbitrary parameters, while k is a
constant characterizing the gyrostatic moment. (ese two
cases were previously introduced in [53, 54], respectively. It
is worth noticing that the singular term ρ((1/c4

3) − (1/c6
3)) is

not compatible with the existence of the gyrostatic moment
as it is outlined in (72), but in the absence of a gyrostatic
moment, this term appears. As we see later, this situation
appears, and it is followed by the discovery of two new cases.
(e new cases will be directly announced without any details
due to most of the calculations cannot be displayed in a
suitable size.

3.1.1. First New Integrable Case. We first consider the case in
which a2a1 ≠ 0; taking into account the condition (71) and

using the Maple program, we obtain a new integrable
problem in a rigid body dynamic after tedious manipula-
tions which are not writable in a suitable size in the gen-
eralized coordinates θ and φ. (erefore, we introduce it in
the traditional Euler-Poisson variables for the sake of
simplicity and to make the comparison clear with previous
results.

Theorem 1. Let the principal inertia matrix for a rigid body
satisfy the condition A � B � 2C, and the potential and gy-
roscopic forces characterized by Vandμ, respectively, are given
by

V � κ c c
2
2 − c

2
1􏼐 􏼑 − 2 dc1c2􏽨 􏽩 +

λ
c
2
3

+ K 2cc1c2 + d c
2
2 − c

2
1􏼐 􏼑􏽨 􏽩 k − ]

c
2
1 + c

2
3

c
2
1

􏼠 􏼡 −
k]c

2
3

c
2
1

−
]2c2

3 c
2
3 + 2c

2
2􏼐 􏼑

2c
4
1

+ K
2 d

2

2
c
4
3 + 4c

2
1c

2
2􏼐 􏼑 − c

2
c
2
3 c

2
1 + c

2
2􏼐 􏼑 + 2c

2
1c

2
2􏼐 􏼑2 + c dc1c2 c

2
1 − c

2
2􏼐 􏼑􏼢 􏼣,

(74)

μ � 2Kc3 cc2 − dc1( 􏼁 −
2]c3 1 + c

2
2􏼐 􏼑

c
3
1

, 2Kc3 cc1 + dc2( 􏼁 +
2]c2c3

c
2
1

, k + K 2cc1c2 + d c
2
2 − c

2
1􏼐 􏼑􏽨 􏽩 +

] 1 + c
2
2􏼐 􏼑

c
2
1

⎛⎝ ⎞⎠, (75)

or, equivalently,

l � 0, 0, k + K 2cc1c2 + d c
2
2 − c

2
1􏼐 􏼑􏽨 􏽩 +

ν 1 + c
2
2􏼐 􏼑

c
2
1

⎛⎝ ⎞⎠,

(76)

where k, κ, c, d, λ, K, and] are the arbitrary parameters. Cen,
the Euler-Poisson equation 2) with (74) and (76) is integrable
on a zero level of the area integral:

I1 � 2pc1 + 2qc2 + r + k + K 2cc1c2 + d c
2
2 − c

2
1􏼐 􏼑􏼐 􏼑􏼐

+
] 1 + c

2
2􏼐 􏼑

c
2
1

⎞⎠c3.

(77)

(e additional integral admits the form

I2 � p
2

− q
2

+ cκc
2
3 + cK

2
c
2
3 c c

2
1 − c

2
2􏼐 􏼑 + 2 dc1c2􏼐 􏼑 − K d 2] + 2k + c

2
3(3k − 3] − r) −

λ c2
1 − c2

2( 􏼁

c2
3

􏼠 􏼡􏼢 􏼣

2

+ 2pq + dκ c
2
3 + dK

2
c
2
3 c

2
1 − c

2
2􏼐 􏼑 + 2 dc1c2􏼐 􏼑 + cK c

2
3(3k − 3] − r) −

2λc1c2

c2
3

􏼠 􏼡􏼢 􏼣

2

+(k − ])(r − k + ])

− K 2cc1c2 + d c
2
2 − c

2
1􏼐 􏼑􏼐 􏼑 2 p

2
+ q

2
􏼐 􏼑􏽨 􏽩 + 2λ 1 +

1
c
2
3

􏼠 􏼡 + 2c
2
3 c

2
3 − 1􏼐 􏼑 c

2
+ d

2
􏼐 􏼑K

2
− 2 d(k − ])K + cκ􏼐 􏼑

− 4c3(k − ]) 2K(k − ]) cc1 + 2 dc2( 􏼁 + κ dc1 − 2cc2( 􏼁􏼂 􏼃q + c2p(2c(k − ])K + dκ)( 􏼁
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− 8(k − ]) Kc
2
((k − ])) × c

4
3 − c

2
3 −

1
4

􏼒 􏼓K − κc1c2c
2
3􏼔 + c 2(k − ])dK

2
c1c2c

2
3􏽨

+ K
dκ
2

c
2
3 + dκ c

2
3 c

2
1 −

1
2

􏼒 􏼓 − 2λc1c2􏼠 􏼡 −
κ(k − ])

2
c
2
3 −

(k − ])d
2
K

2 16c
2
1c

2
3 + 1􏼐 􏼑

8
+ d (k − ])

2
+ λ􏼐 􏼑c

2
3 − 2 dλ

1
4

− c
2
1􏼒 􏼓􏼒 􏼓K

+
K

2]c
4
3

c
2
1

c
2

+ d
2

􏼐 􏼑
]
c
2
1

􏼢 􏼣 c
2
3 2c

2
1 + c

2
3􏼐 􏼑􏼐 􏼑 − 2 c

2
1 + c

2
2􏼐 􏼑 − 2K c

2
1 + c

2
2􏼐 􏼑 2cc1c2 + d c

2
2 − c

2
1􏼐 􏼑 + 2 2c

2
3 − 1􏼐 􏼑r􏼐 􏼑

+
2]2 4c

4
1 − c

2
3􏼐 􏼑

c
4
1

p
2

− q
2

􏼐 􏼑 −
2k]c

2
3r

2

c
2
1

+
2]c

2
3 p

2
+ q

2
􏼐 􏼑

c
2
1

2K cc2 − dc1( 􏼁c1 − r􏼂 􏼃

−
4]4c2

3

4c
8
1

c
6
1 − 1 + c

2
2􏼐 􏼑c

4
4 + 2 c

2
2 + 1􏼐 􏼑

2
c
2
1 + c

2
2c

2
3 c

2
2 + 2􏼐 􏼑􏼔 􏼕 +

]
c
6
1

r

× − 2]2 c
2
1 c

2
1 + 3c

2
2􏼐 􏼑 + c

2
3 c

2
1 + c

2
2􏼐 􏼑􏼐 􏼑 − 2k]c

2
3c

2
1 c

2
1 − c

2
2 + 2􏼐 􏼑 − c

4
1 2λ c

2
3 − 1􏼐 􏼑 + 4kKc

2
3 2cc1c2 + d c

2
1 + c

2
2􏼐 􏼑􏼐 􏼑􏼐 􏼑􏽨

−
2]3c2

3

c
6
1

k c
2
1 5c

2
1 + 4c

2
3 − 6􏼐 􏼑 + c

2
3 2 − c

2
3􏼐 􏼑􏼐 􏼑 + K c2 2cc1 c

2
1 − c

2
2􏼐 􏼑 − dc

3
2􏼐 􏼑 c

2
1 + c

2
3􏼐 􏼑 + dc

2
1 c

2
1 + 2c

2
2􏼐 􏼑 3c

2
1 + c

2
3􏼐 􏼑􏼐 􏼑􏽨

+
2]λ
c
4
1

] c
2
2 − c

2
1􏼐 􏼑 + c

2
1 k + K 2c dc1c2 + d c

2
2 − c

2
1􏼐 􏼑􏼐 􏼑􏼐 􏼑􏽨 􏽩 −

2]c
2
3κ

c
4
1

]c2 c2 4c
4
1 + c

2
3􏼐 􏼑􏼐 􏼑 − 2 dc1 2c

2
1 + c

2
3􏼐 􏼑 + c

2
1 2c3( 􏼁􏽨

× cc2 − dc1( 􏼁q − 2c3 cc1 + dc2( 􏼁p + k 4 dc1c2 − 4( 􏼁 c
2
3 + 4c

2
2􏼐 􏼑 + 2]2 − 5K dk c

6
3 − 4 2cq −

1
2

dp􏼒 􏼓c1 + c2 cp +
3
2

dq􏼒 􏼓􏼒 􏼓􏼔

× Kc
5
3 + 2 k 5 − 8c

2
1􏼐 􏼑d + 5cc1c2􏼐 􏼑K − k

2
− 2q

2
􏼐 􏼑c

2
3 − 4 5cc

3
1q + c2(cp + 4 dq)c

2
1 + c1

dp

2
− 2cq􏼠 􏼡 − c2 cp +

3 dq

2
􏼠 􏼡􏼠 􏼡

× Kc
3
3 + c

2
3 k 16c

2
1 − 8c

−
1 5􏼐 􏼑d + 2c1c2 6c

2
1 − 5􏼐 􏼑c􏼐 􏼑K + c

2
1 2p

2
− 6q

2
− 4k

2
􏼐 􏼑 + 4c1c2pq + k

2
􏼐 􏼑 + 8K (− cq − dp)c

3
1􏼐 􏼑

c2(cp − dq)c
2
1 +

3
2

cqc1 +
c2

2
(cp + 2 dq)c3c

2
1 + 4qc

2
1 2c1c2p + q( 􏼁􏼃 +

4]
c
2
1

−
1
2

kK
2
c
2
3 c

2
+ 2d

2
􏼐 􏼑 + c

4
3 2ckc1( 􏼁( 􏼁􏼔

× cc1 + dc2( 􏼁 + d
2
kK

2
+ 3k

2
+ p

2
− 2q

2
􏼐 􏼑d − 3pqc􏼐 􏼑K + 2k 3qc2 − pc1( 􏼁( 􏼁d + c 2qc1 + c2q( 􏼁Kc

3
3 + 2k c

4
1􏼐 􏼑􏼐 􏼑􏼐 􏼑

− c dc1c2 − c
2
c
2
1 c

2
2 + c

2
3􏼐 􏼑K

2
+ c

2
3 2k

2
c
2
1 − 2􏼐 􏼑 −

1
2
p
2

+
3
2
q
2

􏼒 􏼓d + 2c pq − 2k
2
c
2
1c

2
2􏼐 􏼑􏼒 􏼓K +

k
3

2

− 4Kk dq c2 + c c
2
1 c2p − c1q( 􏼁 +

1
2

c2p + 3c1q( 􏼁􏼒 􏼓c3􏼒 􏼓.

(78)

(eorem 1 characterizes a new integrable problem in a
rigid body dynamics. (e present case generalizes a special
version of the case introduced by Yehia and Elmandouh in
2016 by adding a new parameter ] [48]. Also, it includes the
case announced by Elmandouh in 2015 (K � 0) [3]. More-
over, it generalizes the case presented by Yehia and Elman-
douh in 2013 by inserting two arbitrary constants (k � ] � 0)
[6]. It generalizes the integrable case which was introduced by
Goriatchev in 1916 by adding four arbitrary parameters

], k, K, and ρ [55]. It also contains five arbitrary parameters,
], k, K, λ, and ρ, more than the case introduced by Chaplygin
in 1903 [56]. To avoid confusion, we summed up the com-
parisons between this case and the related earlier cases in
Table 2.

Regrettably, the physical interpretation for the whole
system with the full set of all associated parameters is un-
known. Disregarding the singular terms in both potential
and vector functions, the problem describes physically the
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motion of an electrically charged heavy rigid body about a
fixed point under the action of potential and gyroscopic
forces admitting a common axis of symmetry [6].

3.2. Second New Integrable Problem. In this subsection, we
solve the basic equations in the case in which a2 � 0 taking
into account the conditions.

Theorem 2. Let the inertia matrix of a rigid body be
I � diag(2C, 2C, C), and assume this body be in motion
under the action of a combination of following potential and
gyroscopic forces which are characterized by Vandμ,
respectively,

V � κ 2dc1c2 + c c
2
1 − c

2
2􏼐 􏼑􏽨 􏽩 +

λ
c
2
3

+ ρ
1
c
4
3

−
1
c
6
3

􏼠 􏼡 −
K]c

2
3

c
2
1

2cc1c2 + d c
2
2 − c

2
1􏼐 􏼑􏽨 􏽩 +

]2c2
3 c

2
3 − 2􏼐 􏼑

2c
2
1

+ K
2 2 dc c1c2 c

2
1 − c

2
2􏼐 􏼑 +

d
2

2
c
2
3 + 4c

2
1c

2
2􏼐 􏼑 − c

2
c
2
3 c

2
1 + c

2
2􏼐 􏼑 + 2c

2
1c

2
2􏼐 􏼑􏼢 􏼣,

(79)

μ � 2c3( 􏼁 K cc2 − dc1( 􏼁 −
] 1 + c

2
2􏼐 􏼑

g
3
1

⎛⎝ ⎞⎠, 2c3 K cc1 + dc2( 􏼁 +
]c

2
2

c
2
1

􏼠 􏼡, K 2cc1c2 + d c
2
2 − c

2
1􏼐 􏼑 + ]

2 − c
2
3􏼐 􏼑

c
2
1

⎛⎝ ⎞⎠, (80)

or, equivalently,

l � 0, 0, K 2cc1c2 + d c
2
2 − c

2
1􏼐 􏽩 + ]

2 − c
2
3􏼐 􏼑

c
2
1

⎡⎣ ⎞⎠⎛⎝ ⎞⎠, (81)

where c, d, κ, K, λ, ρ, and] are the arbitrary parameters. Cen,
the Euler-Poisson equation (2) with the two expressions (79)
and (80) is completely integrable on a zero level of the cyclic
integral:

I1 � 2 pc1 + qc2( 􏼁 + r + K 2cc1c2 + d c
2
2 − c

2
1􏼐 􏽩 + ]

2 − c
2
3􏼐 􏼑

c
2
1

⎡⎣ c3
⎛⎝ ⎤⎦.

(82)

Its additional integral takes the form

I2 � p
2

− q
2

+ c
2
3(K dr + cκ) + cK

2
c
2
3 c c

2
1 − c

2
2􏼐 􏼑 + 2 dc1c2􏼐 􏼑 − λ

c2
1 − c2

2( 􏼁

c2
3

􏼢 􏼣

2

+ 2pq + dκ c
2
3 − c

2
3 Kcr − dK

2
c c

2
1 − c

2
2􏼐 􏼑 + 2 dc1c2􏼐 􏼑 −

2λc2
1c

2
2

c2
3

− dK
2

c c
2
1 − c

2
2􏼐 􏼑 + 2 dc1c2􏼐 􏼑 −

2λc2
1c

2
2

c2
3

􏼢 􏼣􏼢

2

−
]2 c

2
1 + c

2
2􏼐 􏼑

2

c
8
1c

4
3

2c
4
1 ρ + λc

4
3􏼐 􏼑 − ]2c2

3􏽨 􏽩 +
4] pc1 + qc2( 􏼁

c
2
1

×
]2c3

3 c
2
1 + c

2
1􏼐 􏼑

c
4
1

+
c
2
3 − 1􏼐 􏼑 c

4
3λ + ρ􏼐 􏼑

c
5
3

− 2K
2

c
2

+ d
2

􏼐 􏼑 2c
2
3 − 1􏼐 􏼑c

3
3

⎡⎣ ⎤⎦

+ 2K 2cc1c2 + d c
2
2 − c

2
1􏼐 􏼑􏽨 􏽩

Table 2: Comparison the first integrable case with previous results.

No. Authors Conditions of the parameters References
1 Yehia and Elmandouh [48] ] � 0 [48]
2 Elmandouh [3] K � 0 [3]
3 Yehia and Elmandouh [6] k � ] � 0 [6]
4 Goriatchev [55] ] � K � ρ � k � 0 [55]
5 Chaplygin [56] ] � K � ρ � k � λ � 0 [56]
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× −
]K

2
c
6
3 c

2
+ d

2
􏼐 􏼑

c
2
1

−
ρr

c
4
3

+
] λc

4
3 − ρ􏼐 􏼑

c
2
1c

2
3

+
2]3c4

3 c
2
1 + c

2
2􏼐 􏼑

c
6
1

⎡⎣ ⎤⎦ + 2
ρκ
c
4
3

+
]2c4

3

c
4
1

􏼠 􏼡 2dc1c2 + c c
2
1 − c

2
2􏼐 􏼑􏽨 􏽩

+ 2 p
2

+ q
2

􏼐 􏼑
ρ c

2
3 − 1􏼐 􏼑

c
6
3

+
2]c3 pc1 + qc2( 􏼁

c
2
1

+
4]Kc

2
3 cc2 − dc1( 􏼁

c1

⎡⎣ ⎤⎦

+ ρ
ρ − 2λc

4
3􏼐 􏼑 1 − c

2
3􏼐 􏼑

2

c
12
3

+
2K

2

c
4
3

c
2 1 − 2c

2
3􏼐 􏼑 − 4c1c2 cc2 − dc1( 􏼁 cc1 + dc2( 􏼁􏽨 􏽩⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

+
]2c2

3

c
4
1

K
2

c
2

+ d
2

􏼐 􏼑c
2
3 5c

2
3 − 8c

2
3 + 2􏼐 􏼑 + 4Kc3 c

2
1 + c

2
2􏼐 􏼑 × (4cq − dp)c1 + c2(2cp + 3 dq)( 􏼁􏽨

− 2c
2
1 4Kc3 cc1 + dc2( 􏼁q + dc1 − cc2( 􏼁p( 􏼁 + 2 q

2
− p

2
􏼐 􏼑 − c

2
1 + c

2
2􏼐 􏼑 × p

2
+ 3q

2
􏼐 􏼑 − 4pqc1c2􏽨 􏽩􏽩

−
2]c

2
3

c
4
1

Kc
2
3 6cpq + d 5q

2
− p

2
􏼐 􏼑􏼐 􏼑 + 2(cp + dq) κc1c3 + 2Kq( 􏼁(cp + dq) − 4κc2c3(cq − dp)􏽨 􏽩. (83)

(eorem 2 introduces a new integrable problem in the
dynamics of a rigid body. Furthermore, it represents an
extension for the related previous results. It adds to the case
that was discovered by Yehia and Elmandouh in 2013, one
arbitrary parameter ] [6]. It modifies the case introduced by
Goriatchev in 1916 by inserting three parameters K, ], andρ
[55]. It generalizes the Chaplygin case that was found in 1903
by entering four arbitrary parameters ], ρ, λ, andK [56]. (e
comparisons with previous results are summarized in
Table 3.

4. Conclusion

In the current work, we had interest in studying the inte-
grability issue of the motion of a rigid body about a fixed
point under the action of potential and gyroscopic forces
having a common axis of symmetry. We have assumed this
problem has a complementary quartic integral in the ve-
locities. We have applied the method by Yehia. (e basic
equations have been formulated and introduced in a general
setting. But as it is outlined in the literature, in the case of the
existence of gyroscopic forces, the basic equations have not
been solved in a general setting, but it is usually solved for
certain values of the parameters leading to the metric of a
rigid body dynamics which are valuable and significant
problems. We have announced two new integrable problems
generalizing the Chaplygin case in a rigid body and its
subsequent works by different authors such as Goriatchev,
Yehia and Elmandouh, and Elmandouh. (e comparison of
new results with previous ones is summarized and collected
in Tables 2 and 3.

Appendix

A. Time Transformation

Consider Lagrangian in the form

L ≔
Λ
2

_x
2

+ _y
2

􏼐 􏼑 + l1 _x + l2 _y − V, (A.1)

where Λ, l1, l2, and V are the functions in x and y variables.
Lagrangian (A.1) has a Jacobi integral in the form

I1 �
Λ
2

_x
2

+ _y
2

􏼐 􏼑 + V � h, (A.2)

where h is the value of the Jacobi integral. Performing the
time transformation,

dt � Λdτ, (A.3)

to the Lagrangian (A.1), we obtain

L0 �
1
2

x′
2

+ y′
2

􏼒 􏼓 + l1x′ + l2y′ + Λ(h − V), (A.4)

where dash refers to the derivative with respect to the fic-
titious time τ. (e Lagrangian (A.4) has a Jacobi integral in
the form

I2 �
1
2

x′
2

+ y′
2

􏼒 􏼓 − Λ(h − V) � h′, (A.5)

where h′ is the value of the Jacobi integral for Lagrangian
(A.5). Doing the inverse of the time transformation (A.2) to
the Jacobi integral (A.5), we get

Table 3: Comparison the second new integrable case with previous results.

No. Authors Conditions of the parameters References
1 Yehia and Elmandouh [6] ] � 0 [6]
2 Goriatchev [55] K � ] � ρ � 0 [55]
3 Chaplygin [56] K � ] � λ � ρ � 0 [56]
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I3 �
Λ
2

_x
2

+ _y
2

􏼐 􏼑 + V �
h′
V

+ h. (A.6)

(e two integrals of the motion (A.3) and (A.6) are
identical if h′ � 0. (us, the two Lagrangian L and L0 are

equivalent on the zero level of the Jacobi integral for the
second one.

B. Coefficients of Equations (60) and (61)

F0(p) � −
1
2
a
4
1 f13fΩ1 + q3m

df

dp
+ 2fq3m − 4Tm + q3f

dm

dp
− 16fmΩ1􏼨 􏼩sin 4 ξ

+
a1a2a3

16
2ff0v

dq1

dp
+ q1f0f

dv

dp
− 16ff10Ω0 − 16Gv − 8q2f

dv

dp
+ 256fvΩ0 − 8ff9Ω1 − 16fv

dq2

dp
− 8q2v

df

dp
􏼨

+ q1vf
df0

dp
− 32pf0v + q1f0v

df

dp
􏼩,

F1(p) �
1
2
a3 − 4fu

dq1

dp
− 2q1u

df

dp
− 4vP0 − 2q1f

du

dp
+ a

2
1 16fvΩ1 + 64pm − 2Tv − q1f

dm

dp
− 2fm

dq1

dp
− 2fv

dq3

dp
􏼠􏼨

− q3f
dv

dp
− q1m

df

dp
− q3v

df

dp
− 2ff10Ω1􏼡 − 2a

2
2ff9Ω0􏼩,

F2(p) � −
a1a2a3

16
16vG − q1ff0

dv

dp
− 8q2f

dv

dp
− 2ff0v

dq1

dp
− q1vf0

df

dp
− q1vf

df0

dp
− 8q2v

df

dp
− 32pf0v + 16f10fΩ0􏼨

+ 256vΩ0 − 16vf
dq2

dp
+ 8ff9Ω1􏼩,

F3(p) � −
a1a2

16
− a

2
1q3f0v

df

dp
+ 2ff0v

dq3

dp
+ 32Gm + q3ff0

dv

dp
− 16ff0vΩ1 + 2Tv􏼨 􏼩,

F4(p) � −
1
2
a
2
1a3 2fm

dq1

dp
+ 64pm − q3v

df

dp
+ q1f

dm

dp
+ ff10Ω1 − 2fv

dq3

dp
− q3f

dv

dp
+ 16fvΩ1 + q1mf

df

dp
􏼨

+ 2Tf0v − 16q2u
df

dp
− 8ff12Ω1 + 8q2f

dm

dp
− 16fq2

du

dp
+ 16fm

dq2

dp
+ q3vf

df0

dp
+ 8q2m

df

dp
− 256fmΩ0􏼩

+ 16q2f
du

dp
+ 16ff11Ω0 − 512fuΩ0 + 32fu

dq2

dp
,

F5(p) � −
1
16

a
2
1 16q3f

du

dp
+ 8f11fΩ1 + 16q3u

df

dp
− 64P0m − 256fuΩ1 + 32fu

dq3

dp
􏼠 􏼡􏼨

+ a
2
3 8q1v

df

dp
+ 16fv

dq1

dp
+ 256pv + 8q1f

dv

dp
􏼠 􏼡 + a

2
1a

2
2 16ff12Ω0 − q2f0f

dv

dp
+ 2Gvf0 − 2ff0v

dq2

dp
􏼠

+ 32ff0vΩ0 − q2f0v
df

dp
− q2vf

df0

dp
􏼡 + 8a

4
1ff13Ω1􏼩,

F6(p) � −
a2a

3
1

16
− q3f0v

df

dp
+ 8q2m

df

dp
− 256fmΩ0 + 16ff13Ω0 + 8q2f

dm

dp
+ 16ff0vΩ1 + 16fm

dq2

dp
− 32Gm − q3f0f

dv

dp
􏼨

+ 2Tf0v + 8f12fΩ1 − q3vf
df0

dp
− 2ff0v

dq3

dp
􏼩,

F7(p) �
a1

2
2f8 + a

2
1a2f4􏼐 􏼑Ω1 + f3Ω0 + a2a

3
1 q2m −

1
16

q3f0v􏼒 􏼓􏼒 􏼓􏼚 􏼛,

F8(p) �
1
16

8a
4
1f5Ω1 + a

2
1a

2
2q2f0v + 16a

2
1a

2
2f4Ω0 − 8a

2
3q1v + 8a1f3Ω1􏽮 􏽯,

F9(p) � − a2a
3
1 q2m −

1
2
f4Ω1 −

1
16

q3f0v − f5Ω0􏼚 􏼛.

(B.1)
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