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*e present work aims at constructing an atlas of the balanced Earth satellite orbits with respect to the secular and long periodic
effects of Earth oblateness with the harmonics of the geopotential retained up to the 4th zonal harmonic. *e variations of the
elements are averaged over the fast and medium angles, thus retaining only the secular and long periodic terms. *e models
obtained cover the values of the semi-major axis from 1.1 to 2 Earth’s radii, although this is applicable only for 1.1 to 1.3 Earth’s
radii due to the radiation belts. *e atlas obtained is useful for different purposes, with those having the semi-major axis in this
range particularly for remote sensing and meteorology.

1. Introduction

*e problem of the motion of an artificial satellite of the
Earth was not given serious attention until 1957. At this
time, little was known about the magnitudes of the coef-
ficients of the tesseral and sectorial harmonics in the
Earth’s gravitational potential. It was pretty well known at
this time (1957–1960) that the contributions of the 3rd, 4th,
and 5th zonal harmonics were of order higher than the
contribution of the 2nd zonal harmonic, but the values of
the coefficients C30, C40, and C50 were not very well
established. No reliable information was available for the
tesseral or the sectorial coefficients except that the obser-
vations of orbiting satellites indicated that these coefficients
must be small, certainly no more than the first order with
respect to C20.

For low Earth orbits within an altitude less than 480 km,
if the satellite attitude is stabilized, or at least a mean
projected area could be estimated, the perturbative effects of
atmospheric drag should be included. Unfortunately, the
literature is still void of even a mention of this topic of
balancing this kind of very low Earth orbits. *e reason may
be the present increased interest in space communications

and broadcasting, which still make use of the geostationary
orbits that lie beyond the effects of atmospheric drag, though
they still suffer the effects of drift solar radiation pressure.

With the advance of the space age, it became clear that
most space applications require fixing, as strictly as pos-
sible, the areas covered by the satellite or the constellation
of satellites. In turn, fixing the coverage regions requires
fixed nodes and fixed apsidal lines. *is in turn leads to the
search for orbits satisfying these requirements. *e families
of orbits satisfying such conditions are called “frozen or-
bits” [1–5]. Clearly, the design of such orbits includes the
effects of the perturbing influences that affect the motion of
the satellite. As the present work is interested in low Earth
orbits, only the effect of Earth oblateness is taken into
concern. *ese have been extensively treated in the liter-
ature [6–10].

*is paper is aiming at constructing an atlas of the
balanced low Earth satellite orbits, which fall in the range
from 600 km to 2000 km above sea surface, in the sense that
the variations of the elements are averaged over the fast angle
to keep only long periodic and secular variations that affect
the orbit accumulatively with time. In this paper, a model is
given for the averaged effects (over the mean anomaly) of
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Earth oblateness.*en, the Lagrange planetary equations for
perturbations of the elements are investigated to get sets of
orbital values at which the variations of the elements can be
cancelled simultaneously.

2. Earth Potential

*e actual shape of the Earth is that of an eggplant.*e center
of mass does not lie on the spin axis, and neither the meridian
nor the latitudinal contours are circles. *e net result of this
irregular shape is to produce a variation in the gravitational
acceleration to that predicted using a point mass distribution.
*is variation reaches its maximum value at latitude 45 deg
and approaches zero at latitudes 0 and 90 deg.

*e motion of a particle around the Earth can be visu-
alized best by resolving it into individual motions along the
meridian and the latitudinal contours.*emotion around the
meridian can be thought of as consisting of different periodic
motions called “zonal harmonics.” Similarly, the motion
along a latitudinal contour can be visualized as consisting of
different periodic motions called “tesseral harmonics.” *e
zonal harmonics describe the deviations of a meridian from a
great circle, while the tesseral harmonics describe the devi-
ations of a latitudinal contour from a circle.

At points exterior to the Earth, the mass density is zero,
thus, at external points the gravitational potential satisfies

∇2 V � 0, (1)

where V is a scalar function representing the potential. Also,
the gravitational potential of the Earth must vanish as we
recede to infinitely great distances. With these conditions on
the above equation, the potential V at external points can be
represented in the following form [11]:

V �
− μ
r

􏽘
n≥0

􏽘

n

m�0

R

r
􏼒 􏼓

n

P
m
n (sin δ) Cnm cosmα + Snm sinmα( 􏼁.

(2)

*is expression of the potential is called “Venti poten-
tial,” and it was adopted by the IAU (International Astro-
nomical Union) in 1961. *e terms arising in the above
equation are Cnm and Snm are harmonic coefficients (they are
bounded as is always the case in physical problems), R is the
equatorial radius of the Earth, μ � GM is the Earth’s
gravitational constant, G is the universal constant of gravity,
M is the mass of the Earth, and (r, α, δ) are the geocentric
coordinates of the satellite (Figure 1, [12]) with α measured
east of Greenwich, and Pm

n (sin δ) represents the associated
Legendre polynomials.

*e terms with m� 0 are called “zonal harmonics.”
*e terms with 0<m< n are called “tesseral
harmonics.”
*e terms with m� n are called “sectorial harmonics.”

*e case of axial symmetry is expressed by taking m� 0,
while if equatorial symmetry is assumed, we consider only
even harmonics since P2n+1 (− x)� − P2n+1 (x). Also, the
coefficients C21 and S21 are vanishingly small. Further if the

origin is taken at the center of mass, the coefficients C10, C11,
and S11 will be equal to zero.

Considering axial symmetry, with origin at the center of
mass, we can write

V �
− μ
r

􏽘
n≥0

R

r
􏼒 􏼓

n

Pn(sin δ)Cn0

�
− μ
r

+ 􏽘
n≥2

Jn

Rn

rn+1Pn(sin δ),

(3)

where Jn � − Cn0.
Taking terms up to j4, we can write V in the following

form:

V � 􏽘
4

i�1
Vi, (4)

where

V0 � −
μ
r
,

V1 � 0,

V2 � J2
R2

r3
P2(sin δ) �

1
2
J2

R2

r3
3 sin2 δ − 1􏼐 􏼑,

V3 � J3
R3

r4
P3(sin δ) �

1
2
J3

R3

r4
5 sin3 δ − 3 sin δ􏼐 􏼑,

V4 � J4
R4

r5
P4(sin δ) �

1
8
J4

R4

r5
3 − 30 sin2 δ + 35 sin4 δ􏼐 􏼑.

(5)

It is a purely geometrical transformation to express the
potential function V(r, δ), given by the above equations, as a
function of the Keplerian orbital elements a, e, i, Ω, ω, and I
in their usual meanings (Figure 2, [12]), where a and e are the
semi-major axis and the eccentricity of the orbit, respec-
tively, i is the inclination of the orbit to the Earth’s equatorial
plane, Ω and ω describes the position of the orbit in space
where Ω is the longitude of the ascending node and ω is the
argument of perigee, and finally, l is the mean anomaly to
describe the position of the satellite with respect to the orbit.

*en, V (a, e, i, Ω, ω, I) is in a form suitable to use in
Lagrange’s planetary equations, and in canonical
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Figure 1: Geocentric coordinates of the satellite.
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perturbations methods through the relation. From the
spherical trigonometry of the celestial sphere, we have

sin δ � Si sin(f + ω), (6)

where f is the true anomaly,ω is the argument of perigee, and
Si� sin i, Ci� cos i.

Substituting for δ, in Pn (sin δ), we get

P2(sin δ) �
1
2

3Si
2 sin2(f + g) − 1􏽮 􏽯

�
1
4

1 − 3Ci
2

􏼐 􏼑 − 3Si
2 cos(2g + 2f)􏽮 􏽯,

P3(sin δ) �
1
2

5Si
3 sin3(g + f) − 3Si sin(f + g)􏽮 􏽯

�
1
8

15Si
3

− 12Si􏼐 􏼑sin(f + g) − 5Si
3 sin(3f + 3g)􏽮 􏽯,

P4(sin δ) �
1
8

3 − 30Si
2 sin2(g + f) + 35Si

4 sin4(g + f)􏽮 􏽯

�
1
64

9 − 90Ci
2

+ 105Ci
4

􏼐 􏼑􏽮

+ − 20 + 160Ci
2

− 140Ci
4

􏼐 􏼑cos(2f + 2g)

+ 35Si
4 cos(4f + 4g)􏽯.

(7)

*us, we get V2, V3, and V4 as functions of the orbital
elements.

We now proceed to evaluate the effects of Earth ob-
lateness, considering the geopotential up to the zonal har-
monic J4.

In the present solution, we consider only the secular and
long periodic terms, averaging over the mean anomaly l.

2.1. %e Disturbing Function. *e disturbing function R is
defined as follows:

R � − V2 + V3 + V4( 􏼁, (8)

where V2, V3, and V4 are the 2nd, 3rd, and 4th terms of the
geopotential, namely

V2 �
μj2R

2

4r3
1 − 3Ci

2
􏼐 􏼑 − 3Si

2 cos(2f + 2ω)􏽨 􏽩,

V3 �
μj3R

3

8r4
15Si

3
− 12Si􏼐 􏼑sin(f + ω) − 5Si

3 sin(3f + 3ω)􏽨 􏽩,

V4 �
μj4R

4

64r5
9 − 90Ci

2
+ 105Ci

4
􏼐 􏼑􏽨

+ − 20 + 160Ci
2

− 140Ci
4

􏼐 􏼑cos(2f + 2ω)

+ 35Si
4 cos(4f + 4ω),

(9)

where Ci � cos(i), Si � sin(i), and f is the true anomaly.
Since terms depending only on the fast variable l will not

affect the orbit in an accumulating way with time, we average
the perturbing function R over the mean anomaly with its
period 2π. *e average function is defined by

〈F(l)〉 �
1
2π

􏽚
2π

0
F(l)dl. (10)

As the perturbing function R is a function of the true
anomaly f not the mean anomaly l, we use the relation

dl �
1

�����
1 − e2

√
r

a
􏼒 􏼓

2
df, (11)

where both angles have the same period and the same end points
0 and 2π, and therefore the average function will be given by

〈F(f)〉 �
1

2π
�����
1 − e2

√ 􏽚
2π

0

r

a
􏼒 􏼓

2
F(f)df. (12)

Applying the required integrals, we get the averaged
disturbing function 〈R〉

〈R〉 � − 〈V2〉l +〈V3〉l +〈V4〉l􏼂 􏼃, (13)

where

〈V2〉l �
μj2R

2

4a3 1 − e
2

􏼐 􏼑
− (3/2)

1 − 3Ci
2

􏼐 􏼑,

〈V3〉l �
μj3R

3

8a4 e 1 − e
2

􏼐 􏼑
− (5/2)

15Si
3

− 12Si􏼐 􏼑sin(ω),

〈V4〉l �
μj4R

4

64a5 1 − e
2

􏼐 􏼑
− (7/2)

1 +
3e2

2
􏼠 􏼡 9 − 90Ci

2
+ 105Ci

4
􏼐 􏼑

+
3μj4R

4

256a5 e
2 1 − e

2
􏼐 􏼑

− (7/2)
− 20 + 160Ci

2
− 140Ci

4
􏼐 􏼑cos(2ω).

(14)

2.2. Lagrange Equations for the Averaged Variations of the
Elements. *e Lagrange planetary equations for the varia-
tions of the elements for a disturbing potential R are as
follows [13]:

Ω

ω

i

i

r

fv

Y

Z

Node line N

Ascending node

Satellite
Perigee

Earth’s north polar axis

Earth’s equatorial plane

J

I

X

h

e

γ

Figure 2: Keplerian orbital elements of the satellite.
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_a �
2

na

zR

zl
,

_e �
−

�����
1 − e2

√

na2e

zR

zω
+
1 − e2

na2e

zR

zl
,

_i �
− 1

na2Si
�����
1 − e2

√
zR

zh
+

cot(i)

na2
�����
1 − e2

√
zR

zω
,

_Ω �
1

na2Si
�����
1 − e2

√
zR

zi
,

_ω �

�����
1 − e2

√

na2e

zR

ze
− Ci _Ω,

_l � n −
2

na

zR

za
􏼠 􏼡

n

−
1 − e2

na2e

zR

ze
,

(15)

where n is the mean motion given by n �
����
μ/a3

􏽰
.

Substituting for the averaged disturbing function 〈R〉

due to Earth oblateness, the Lagrange equations become

_a � 0, (16)

_e �
−

�����
1 − e2

√

na2e

z〈R〉

zω
, (17)

_i �
− 1

na2Si
�����
1 − e2

√
z〈R〉

zΩ
+

cot(i)

na2
�����
1 − e2

√
z〈R〉

zω
, (18)

_Ω �
1

na2Si
�����
1 − e2

√
z〈R〉

zi
, (19)

_ω �

�����
1 − e2

√

na2e

z〈R〉

ze
− Ci _Ω, (20)

where the equation for l is neglected because we concentrate
on balancing the orbit position not the satellite motion in the
orbit.

2.3. Variations of the Elements due to Earth Oblateness.
Substituting for the required derivatives in equations (16) to
(20) yields

_e �
3 ��μ√

j3R
3

2a9/2 1 − e
2

􏼐 􏼑
− 2 5

4
Si

2
− 1􏼒 􏼓Si cos(ω)

−
15 ��μ√

j4R
4

32a11/2 e 1 − e
2

􏼐 􏼑
− 3

− 1 + 8Ci
2

− 7Ci
4

􏼐 􏼑sin(2ω).

(21)

Defining

η � 1 − e
2

􏼐 􏼑,

c1 �
3j3

2
,

F1i �
5
4

Si
2

− 1􏼒 􏼓Si,

c2 �
15j4

32
,

F2i � − 1 + 8Ci
2

− 7Ci
4

􏼐 􏼑,

(22)

We get

_e �

��μ√
R4

η3a11/2 c1η
a

R
F1iCos(ω) − c2eF2i sin(2ω)􏼒 􏼓,

_i �
cot(i)

n

3μj3R
3

2a6 e 1 − e
2

􏼐 􏼑
− 3 5

4
Si

2
− 1􏼒 􏼓Si cos(ω)􏼨

−
15μj4R

4

16a7 e
2 1 − e

2
􏼐 􏼑

− 4
− 1 + 8Ci

2
− 7Ci

4
􏼐 􏼑sin(2ω)􏼩,

(23)

or

_i � −
e cot(i)

η
_e,

_Ω �
− Ci

n

3μj2R
2

2a5 1 − e
2

􏼐 􏼑
− 2

􏼨

+
μj3R

3

8a6 e 1 − e
2

􏼐 􏼑
− 3

45Si −
12
Si

􏼒 􏼓sin(ω)

+
15μj4R

4

16a7 1 − e
2

􏼐 􏼑
− 4

1 +
3e2

2
􏼠 􏼡 3 − 7Ci

2
􏼐 􏼑􏼢

+ e
2

− 4 + 7Ci
2

􏼐 􏼑cos(2ω)􏼣􏼩.

(24)

Defining

c3 �
3j2
2

,

c4 �
3j3

8
,

c5 �
15j4

16
,

F3i � 15Si −
4
Si

,

F4i � 3 − 7Ci
2
,

F5i � − 4 + 7Ci
2
.

(25)

We get
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_Ω �
− Ci

��μ√
R4

η4a11/2 c3
a

R
􏼒 􏼓

2
η2 + c4

a

R
eηF3i sin(ω)􏼨

+ c5 1 +
3e2

2
􏼠 􏼡F4i + e

2
F5i cos(2ω)􏼢 􏼣􏼩,

(26)

_ω � − Ci _Ω −
3μj2R

2

4na5 1 − e
2

􏼐 􏼑
− 2

1 − 3Ci
2

􏼐 􏼑

−
3μj3R

3

2na6e
1 + 4e

2
􏼐 􏼑 1 − e

2
􏼐 􏼑

− 3 5
4

Si
2

− 1􏼒 􏼓Si sin(ω)

−
15μj4R

4

32na7 1 − e
2

􏼐 􏼑
− 4

1 +
3e2

4
􏼠 􏼡 3 − 30Ci

2
+ 35Ci

4
􏼐 􏼑􏼢

+ 1 +
5
2
e
2

􏼒 􏼓 − 1 + 8Ci
2

− 7Ci
4

􏼐 􏼑cos(2ω)􏼣.

(27)

Defining as in equation (28), we get equation (29):

c6 �
3j2

4
,

F6i � 1 − 3Ci
2

􏼐 􏼑,

F7i � 3 − 30Ci
2

+ 35Ci
4
,

(28)

_ω � −

��μ√
R4

η4a11/2 c6
a

R
􏼒 􏼓

2
η2F6i + c1

a

R
1 + 4e

2
􏼐 􏼑

η
e
F1i sin(ω)􏼢

+ c2 1 +
3e2

4
􏼠 􏼡F7i + 1 +

5
2
e
2

􏼒 􏼓F2i cos(2ω)􏼠 􏼡􏼣 − Ci _Ω.

(29)

Equations (22)–(29) give the average effects of Earth
oblateness including the zonal harmonics of the geopotential
up to J4 on the Keplerian elements of the satellite orbit.

3. Balanced Low Earth Satellite Orbits

In what follows, we try to find orbits that are balanced in the
sense that the averaged (over the fast variable l) variations of
the orbit elements are set equal to zero. In equation (23), we
put it equal to zero and get a relation between the argument
of perigee ω and the inclination i, while treating the ec-
centricity e and the semi-major axis a as parameters. *is
will give a range of values for ω and i at different values of e
and a, which are all give balanced orbits with respect to both
the eccentricity e and the inclination i.*e same is done with
equations (26) and (29), while putting _Ω� 0 and _ω� 0.

*e applicable ranges for this model of the semi-major
axis a are 1.1R≤ a≤ 1.3R, where the range 1.4R–2R is
avoided due to the predominance of the radiation belts at
these levels, to avoid the damages of the equipment that it
may produce, besides its fatal effects on human life (for
inhabited spacecrafts). *e values for the eccentricity e are
taken between 0.01 (almost circular orbit) and 0.5.

3.1. Orbits with Fixed Eccentricity and Inclination. By
equating the variation of e by zero, we get

_e �

��μ√
R4

η3a11/2 c1
a

R
ηF1i cos(ω) + c2eF2i sin(2ω)􏼒 􏼓 � 0. (30)

*is implies

c1
a

R
ηF1i cos(ω) + c2eF2i sin(2ω) � 0. (31)

So either cos(ω) � 0 or

sin(ω) �
a 1 − e2( 􏼁

eR
C1F(i), (32)

where

C1 �
8J3

5J4
,

F(i) �
1 − (5/4)sin2(i)( 􏼁sin(i)

1 − 8cos2(i) + 7cos4(i)
.

(33)

Equations (32) and (33) give the family of low orbits that
have both the eccentricity and the inclination fixed.

*e condition for the existence of such orbits is clearly
that

− 1≤ sin(ω)≤ 1, (34)

which is guaranteed by

− 1≤
a 1 − e2( 􏼁

eR
C1F(i)≤ 1. (35)

We put it as a condition on the eccentricity i only when

− eR

C1a 1 − e2( )
≤F(i)≤

eR

C1a 1 − e2( )
. (36)

3.2. Orbits with Fixed Node. *e families of orbits for which
dΩ/dt� 0 (i.e with fixed nodes) are obtained from

− Ci
��μ√

R4

η4a11/2 c3
a

R
􏼒 􏼓

2
η2 + c4

a

R
eηF3i sin(ω)􏼨

+ c5 1 +
3e2

2
􏼠 􏼡F4i + e

2
F5i cos(2ω)􏼢 􏼣􏼩 � 0.

(37)

*is implies

c3
a

R
􏼒 􏼓

2
η2 + c4

a

R
eηF3i sin(ω)

+ c5 1 +
3e2

2
􏼠 􏼡F4i + e

2
F5i 1 − 2sin2(ω)􏼐 􏼑􏼢 􏼣 � 0.

(38)
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Table 1: Real values of i (in degree) corresponding to the given values of F(i).

F(i) i1 180 − i1 i2 − 180 − i2
0.01 63.63 116.37 − 63.22 − 116.78
0.05 64.27 115.73 − 62.11 − 117.89
0.10 64.84 115.16 − 59.76 − 120.24
0.15 65.25 114.75 − 55.14 − 124.86
0.20 65.56 114.44 − 47.16 − 132.84

0.1 0.2 0.3 0.4 0.5

e

F (i) = 0.01

ω

π

3π/4

π/2

π/4

0

Figure 3: *e curve ω(e) at which _e � _i � 0 for F(i)� 0.01.
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*is can be arranged as a second order equation
for sin(ω), giving a family of orbits with fixed argument
of perigee for different values of ω as a function of
the inclination i, the semi-major axis a, and the eccen-
tricity e.

− 2c5e
2
F5isin

2
(ω) + c4

a

R
eηF3i sin(ω)

+ c3
a

R
􏼒 􏼓

2
η2 + c5 1 +

3e2

2
􏼠 􏼡F4i + e

2
F5i􏼢 􏼣 � 0.

(39)
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When solving for sin(ω), we get the family of orbits for
which the longitude of the node is balanced,

sin(ω) �
2c4zF3i ±

������������������������������������������
4c24z

2F2
3i + 16c5F5i 2c3z

2 + c5F4i 2 + 3e2( ) + 2c5e
2F5i(

􏽱

8c5eF5i

, (40)
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Figure 7: *e curve ω(e) at which _e � _i � 0 for F(i)� 0.01.
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where

z �
a

R
η. (41)

*e condition for having the orbit if real solution exists is
again that − 1≤ sin(ω)≤ 1, which gives

− 1≤
2c3z

2 + 2 + 3e2( 􏼁c5F4i + 2e2 c5 − 1( 􏼁F5i

c4ezF3i

≤ 1, F5i, F3i ≠ 0.

(42)

3.3.Orbitswith FixedPerigee. For the argument of perigee to
balance, we solve _ω � 0.We substitute from equation (26)
into equation (29) then expand cos(2ω) and collect terms
with respect to sin(ω). We get

_ω � A sin2(ω) + B sin(ω) + C. (43)

*us for _ω � 0, we get

sin(ω) �
− B ±

��������
B2 − 4AC

√

2A
, (44)
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where

A � − 2c5e
2
F5cos

2
(i) + 2c2 1 +

5
2
e
2

􏼒 􏼓F2, (45)

B � c4ezF3cos
2
(i) − c1z 4e +

1
e
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2
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Equations (44)–(47) give the relation between sin(ω) and
the inclination i, the semi-major axis a, and the eccentricity
e, which gives the family of orbits that balance the argument
of perigee ω, subject of course to the restriction that sin(ω) is
a real value between − 1 and 1.

4. Numerical Results

In this section, numerical results and graphs are obtained for
the case of seasat a� 7100 km by putting ω as a function of e
and i from equations (32) and (33). *e curves are plotted
within the possible range given by condition (36) to give curves
of balanced e and i.*e curves are against the eccentricity e in
the range [0.01, 0.5]. *e numerical values involved are
J2� 0.001082645, J3� − 0.000002546, J4� − 0.000001649, R�

6378.165km, α� 7100m, and μ� 398600.5 km3sec− 2.
*e condition (36) gives the upper and lower bounds of

the function F(i) as a function of e, and since the function
eR/(C1a(1 − e2)) is increasing with e and has no critical
points in the interval [0.01, 0.5], then the minimum value
occurs at e� 0.01 and the maximum at e� 0.5, which gives
− 0.24≤F(i)≤ 0.24. *e graphs are plotted for different
values of F(i), which corresponds to specific values of i found
by solving the equation resulting from setting F(i) equal to
the required values. After that we plot _Ω� 0 and _ω� 0 si-
multaneously for the same values of F(i) at each specific i-
value, to find the orbit values at which we have nearest values
for _Ω� 0 and _ω� 0. In the graphs of _Ω and _ω, the relation
(32) was kept to ensure that e and i are already balanced.

Five selected values of F(i) are chosen: F(i)� 0.01, 0.5,
0.10, 0.15, and 0.20. Negative values will give the same results
with negative sign since F(i) is odd with respect to i. Also for
each value, the solution of F(i)� x, with x equals one of the
above values we get four real values of i on the form: i1,
180 − i1, i2, and − 180 − i2, where i1 and i2 are near the critical
inclination one of them is positive and the other is negative.
Table 1 gives the values of i corresponding to the selected
values of F(i).

We note that as F(i) increases, i gets away from the
critical inclination, and the curve gets shorter indicating less
stability of ω as expected.

*e graphs are plotted for each value of F(i) first for the
balanced values of e and i, then for the corresponding four
values of i, four graphs are plotted for _Ω and _ω to find the
nearest values of zero variation for both elements.

Figures 3–12 show the possibility of balancing ω with e
and i, while Ω will have a variation of order 10− 6/sec or it
must be balanced alone at i� 90 deg (as shown in equation
(26)), according to the orbit kind. Figures 3, 5, 7, 9, and 11
show the possible values of ω(e) that balance e and i, while
Figures 4, 6, 8, 10, and 12 show the curves of _Ω and _ω at the
values of i at which _e � _i � 0.

5. Conclusion

Let balanced orbits be defined as those for which the orbital
elements are set equal to zero under the effect of secular and
long periodic perturbations. In this work, the effect of Earth
oblateness is the considered perturbing force because of

dealing with low Earth orbits. *e above analysis then shows
that such an orbit will be balanced within a reliable tolerance
only for few weeks since we are forced to accept the motion
of either the node or the perigee by about 10− 6 deg/sec. *e
reason is that under the influence of the Earth oblateness,
_Ω � 0 (exactly) for i � (π/2), while _ω � 0 only near the
critical inclination ic � 63.4 deg. Hence, the best procedure is
to design a satellite constellation for which the nodal shifts
due to the perturbative effects and Earth rotation are
modeled to yield continuous coverage. *e perigees are
either fixed or arranged to realize that the perigee (or the
apogee) be overhead the coverage region (regions) in due
times. *is may require near commensurability with the
admitted nodal periods.
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