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In this recent study, we shall investigate the wormhole models with a Hu–Sawicki model in the framework of f(R) gravity.
Spherically static symmetric space-time is considered to construct wormhole models with the anisotropic fluid distribution. +e
traceless matter is discussed by imposing a particular equation of state. To address the important conditions of the shape function
of the wormhole geometry, we have used the particular values of the involved parameters. Furthermore, different energy
conditions are discussed to check the nature of matter against two specific models. +e null energy condition is observed to be
violated for both of the models. It is mentioned that our inquired results are acceptable.

1. Introduction

In modern cosmology, considerable independent high-
precision observational data have confirmed with startling
evidence that our universe is in the accelerating phase [1–5];
this is due to several astronomical probes, such as Ia su-
pernova [6, 7], cosmic microwave background radiation
(CMBR) [8, 9], and large structure [10]. +is phenomenon
led to the breakdown of Einstein’s theory of relativity; it is
regarded as an outstanding critical riddle of contemporary
physics and becomes the focus of interest for researchers. In
this regard, to incorporate this issue, different proposals have
appeared which can be grouped into two classes. First, the
cosmological constant has been introduced in the field
equation [11–14]; second, the approach is to modify the
gravitational part of the action by including some extra
degree of freedom there. To deal with this problem, several
efforts from researchers provided a group of extended
theories of gravity [15–25].

After the formulation of general relativity, the f(R)

theory is regarded as one of the most promising candi-
dates for mysterious dark energy to exploring the
accelerated expansion aspect of the cosmos; for cosmo-
logical importance, the f(R) model is used by replacing

the Ricci scalar R with an arbitrary function of Ricci
scalar, i.e., f(R), in the Einstein–Hilbert Lagrangian
function. +is theory has been widely used in the
literature. Nojiri and Odintsov [26, 27] have explored the
accelerated expansion of the universe by introducing the
term f(R) � (1/R), which is essential at small curvature.
Feng [28] reconstructed the f(R) theory from Ricci dark
energy, and Felice and Tsujikawa [15] presented several
ways to distinguish the several forms of f(R) theory
from general relativity. Harko et al. [29] provided a more
generic form of f(R) extended gravity by plugging an
extra term of matter. Rahaman and his co-authors [30]
have tried to calculate the exact wormhole solutions in
f(R) gravity in the framework of noncommutative
geometry source. In another paper, Harko et al. [31] have
calculated some solutions for wormholes in extended
f(R). Pavlovic and Sossich [32] have carried out a
wormhole study by employing different models of f(R)

without considering the exotic matter. Bronnikov [33]
has explored the wormhole models in two different
theories (scalar tensor theory and f(R) gravity). Saiedi
and Nasr Esfahani [34] have discussed the null and weak
energy bounds in the background of wormhole f(R)

gravity. Hochberg et al. [35] have presented wormhole
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and calculated the appropriate field equations. Further-
more, Kuhfittig [36] discussed noncommutative geom-
etry to investigate the distinct forms of f(R) function by
taking different shape functions in f(R) theory.

A wormhole is a topological passage, which links two
discrete chunks of the same or diverse universes through a
shortcut way, which is called a channel or bridge. +e
discussion on wormhole geometry is a hot topic among
researchers in the different modified theories of gravity. In
1916, Flamm [37] expressed the notion of wormholes for the
first time. After that, in 1935, Einstein and Rosen [38] ex-
plored wormhole mathematics. +ey acquired wormhole
solutions, which are known as Lorentzian wormhole. In
classical general relativity, the existence of wormholes in-
volves the exotic matter, which requires a stress-energy
tensor that violated the null energy condition (NEC). Much
interest has been provoked in the existence and construction
of wormhole solutions in modified gravity theory. Capoz-
ziello et al. [39–41] examined the energy condition for
modified theories of gravity and developed a generic scheme
for such conditions. In the literature, many researchers
studied the actuality of wormhole solutions by using dif-
ferent kinds of exotic matter in the context of different
modified theories and also tested their stability [42–45].
Recently, Mustafa et al. [46] found the stable wormhole
solutions for the exponential gravity model in the f(R)

gravity. Samanta and Godani [47] analyze the traversable
wormhole solutions with exponential shape function in
modified gravity. Most recently, Farasat Shammir and
Ahmad [48] have calculated the new equation of motion
offering test particle in the equatorial plane around a
wormhole geometry in the framework of general relativistic
Poynting–Robertson effect. Falco et al. [49] have calculated
some feasible regions for the existence of traversable
wormhole in modified gravity. Numerous authors [50, 51]
have constructed wormholes by including different types of
exotic matter such as quantum scalar field models, non-
commutative geometry, and electromagnetic field.

+e plan of this recent study is as follows: In Section 2,
we shall calculate the basics of f(R) gravity with the
Hu–Sawicki model. +e next section is dedicated to dis-
cussing the energy conditions and traceless matter for
wormhole solutions. In the same section, we shall present
our acquired solution graphical analysis against the different
physical properties of shape function. In Section 4, we shall
choose two different kinds of specific shape functions; both
are based on special functions to discuss the physical nature
of matter through energy conditions. An outlook of this
work performed is presented in the last section.

2. f(R) Gravity

A modified action for f(R) gravity is

SA �
1
2κ

􏽚 d
4
xf(R)

���
− g

√
+ Sm g

μ]
, ξ( 􏼁, (1)

where f(R) and Sm(gμ], ξ) represents the function of the
Ricci scalar and the matter term of the action, respectively.
In this work, we assumed that κ � 1. On variation of the

above action, we have the following actual system of
equations:

T
m
μ] � fR(R)Rμ] −

1
2

f(R)gμ] + gμ]□ − ∇μ∇]􏼐 􏼑fR(R).

(2)

+e trace of energy momentum tensor is calculated as

T � fR(R)R + 3□fR(R) − 2f(R), (3)

where□,∇, andfR(R) are defined as the d’Alembert operator,
covariant derivative operator, and the derivative with respect to
R, respectively in the above two lines. By using equation (3) in
equation (2), the following expression can be obtained:

T
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1
2
Rgμ] � Gμ], (4)

where Teff
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tensor and 􏽥T

m
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T
c
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(5)

+e anisotropic fluid distribution is given as

Tμ] � ρ + Pt( 􏼁υμυ] − Ptgμ] + Pr − Pt( 􏼁ΞμΞ], (6)

where υμ mentions the 4-velocity vector with

υμ � e
− aδμ0 ,

Ξμ � e
− bδμ1 ,

υμυμ � − ΞμΞμ � 1.

(7)

+e space-time for a wormhole geometry is defined as

ds
2

� − e
2φf(r)dt

2
+

r + bs(r)

r
􏼠 􏼡

− 1

dr
2

+ r
2dΩ2, (8)

where φf and bs(r) represent the red-shift function and shape
function, respectively. +e expression dΩ2 � dθ2+ sin2θdϕ2

provides the remaining coordinate quantities. +e shape
function bs(r) must satisfy the following conditions: (i)
((bs(r) − bs(r)′r)/(bs(r)2))> 0, (ii) (bs(r)(r0) � r0), and (iii)
(bs(r)′(r0)< 1).+e last one condition is known as flaring-out
condition.

By using (6) and (8) in (4), the following expressions are
calculated for the energy density and pressure components:

bs
′(r)

r
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ρ
fR(R)

+
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fR(R)
, (9)

−
bs(r)

r
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(10)

2 Advances in Astronomy



−
bs(r)′r − bs(r)

2r
3 �

Pt

fR(R)
+

1
fR(R)

1 −
bs(r)

r
􏼠 􏼡

fR
′ (R)

r

−
ψ

fR(R)
,

(11)

where
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1
4

fR(R)R + □fR(R) + T( 􏼁, (12)

with
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(14)

+e Hu–Sawicki model [52], which fulfills the cosmo-
logical and local gravity conditions, was proposed by Hu and
Sawicki and is given as

f(R) � R −
αc(R/c)

2m

(R/c)
2m

+ 1
, (15)

where α, c, and m are the dimensionless positive parameter.
+is model has passed all the local tests, and it is a viable
f(R) gravity model.

By utilizing equations (12)–(15) in equations (9)–(11), we
have the following modified field equations:
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3. Wormhole Solutions

In this current section, we shall discuss the energy conditions
and develop a new technique to explore the wormhole
construction.

3.1. Energy Conditions. +e null, weak, strong, and domi-
nant energy conditions are considered main energy con-
ditions in the background of f(R) gravity. +ese energy
conditions are defined as

NEC⟺Tcξυμυ] ≥ 0,

WEC⟺TcξΞμΞ] ≥ 0,

SEC⟺ Tcξ −
T

2
gcξ􏼒 􏼓ΞμΞ] ≥ 0,

DEC⟺TcξΞμΞ] ≥ 0.

(20)

In the above relation, υμ mentions the null vector and Ξμ
represents the timelike vector. +e following energy con-
ditions with respect to principal pressure are calculated:

NEC⟺∀j, ρ + Pj ≥ 0,

WEC⟺ ρ≥ 0 and ∀j, ρ + Pj ≥ 0,

SEC⟺∀j, ρ + Pj ≥ 0, ρ + 􏽘
j

pj ≥ 0,

DEC⟺ ρ≥ 0 and ∀j, Pjε[− ρ, +ρ].

(21)

+e above conditions can be written as

NEC: ρ + Pr ≥ 0, ρ + Pt ≥ 0,

WEC: ρ≥ 0, ρ + Pr ≥ 0, ρ + Pt ≥ 0,

SEC: ρ + Pr ≥ 0, ρ + Pt ≥ 0, ρ + Pr + 2Pt ≥ 0,

DEC: ρ≥ 0, ρ − Pr

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ 0, ρ − Pt

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ 0.

(22)

+eses energy conditions are satisfied by the normal
matter because of its positive density and positive
pressure. Einstein’s field theory shows that wormholes
have required exotic matter. To explore the wormhole
construction, we shall check the behavior of the energy
conditions, specially NEC and WEC. +e NEC violation
is the important requirement for the existence of
wormhole construction.

3.2. Traceless Matter for the Hu–Sawicki Model. Now, we
shall discuss the traceless matter [53–55], for the
Hu–Sawicki model for f(R) gravity. A special form of
equation of state (EoS) for traceless matter is defined as

T � 0, ⟹ρ − Pr − 2Pt � 0. (23)

By using equations (16)–(18) in equation (23), we obtain a
nonlinear differential equation, which is calculated as

1
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4
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X
2m
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4
bs
′(r)( 􏼁

4
􏼓 � 0.

(24)

Equation (24) is a nonlinear differential equation, and we
solve it numerically with the following initial conditions:
bs(0.01) � 0.001, bs

′(0.01) � 0.0002, and b′
′
s(0.01) � 0.07.

3.3. Discussion. In this section, we shall discuss the physical
analysis of our acquired results. To improve the real impact
of the current study, we have tried to provide a graphical

analysis of the intrinsic properties of shape function and
energy conditions under particular values of involved pa-
rameters. In the Hu–Sawicki model, the parameter α has an
important role in our study. +e different values of pa-
rameter α between zero and one provide different results,
which are seen in Figures 1–5. However, the other parameter
c does not change the results. +erefore, we have chosen
only one value for c, i.e., c � 0.07 km for the current study.
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Figure 1: Behavior of bs(r) and bs
′(r). Here, α � 0.20 (black), α � 0.40 (red), α � 0.60 (blue), α � 0.80 (green), and α � 0.80 (orange).
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Figure 2: Development of bs(r) − r and (bs(r)/r). Here, α � 0.20 (black), α � 0.40 (red), α � 0.60 (blue), α � 0.80 (green), and α � 0.80
(orange).

1.0

0.5

0.0

α

0.010

0.005
0.000ρ 

+ 
P r

–0.005
0

5
r

10

(a)

ρ 
+ 
P t

1.0

0.5

0.0

α

0.04

0.02

0

5
r

10

(b)

Figure 3: Graphical analysis of (ρ + Pr) and (ρ + Pt).
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In this study, there is another parameter m involved. We
have taken a very small value of parameter m, i.e., m � 0.05.
+e left part of Figure 1 shows the graphical behavior of the
shape function, i.e., bs(r). It is observed to be positive and
increasing, which describes the realistic nature of wormhole
geometry under the Hu–Sawicki model. +e flaring-out
condition, i.e., the derivative of the shape function con-
cerning radial coordinate r at r0, can be revealed as less than
one, which can be confirmed from Figure 1. It is checked
from Figure 2 that the expression bs(r) − r gives the values of
r0, which shows the wormhole throat location for the dis-
tinct values of parameter α, which are approximately ob-
served at r0 ≡ 0.0015, r0 ≡ 0.0016, r0 ≡ 0.0017, r0 ≡ 0.0018,
and r0 ≡ 0.0019, for α � 0.20, α � 0.40, α � 0.60, α � 0.80,
and α � 1.00, respectively. Figure 2 provides the graphical
analysis of (bs(r)/r)⟶ 0 as r⟶∞, which is not ob-
served clearly. It shows that the wormhole geometry is not
asymptotically flat, and this conduct agrees with the already
prevailing cases described in the literature (see, for example,
[43–46]). In the reference of energy conditions, it is verified

from Figure 3 that the condition (ρ + Pr) is seen negative,
which shows the presence of exotic matter. From the same
figure, it is confirmed that the expression (ρ + Pr) remains
positive. From Figures 4-5, it is confirmed that the ex-
pressions (ρ − Pr), (ρ − Pt), and ρ remain positive.

4. Analysis of Energy Conditions for Two
Specific Shape Functions

In this section, we shall analyze the behavior of energy
condition to check the nature of matter for two specific
shape functions.

4.1. First Model. Here, we consider a specific model of
shape function, i.e., bs(r) � ((r0log(r + 1))/(log(r0 + 1)))

[56]. By plugging this special function-based specific model
of shape function into equations (16)–(18), we obtain the
following expressions for energy density and pressure
components:
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Figure 4: Graphical analysis of (ρ − Pr) and (ρ − Pt).
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where

ψ1 �
r0

cr
2
(r + 1)log r0 + 1( 􏼁

,
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2
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2
− 4m+1ψ2m
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(26)

4.2. Second Model. Now, we take another specific model of
shape function, i.e., bs(r) � (r/er− r0) [57]. By using bs(r) �

(r/er− r0) in equations (16)–(18), the expressions for energy
density and pressure components are calculated as follows:
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(27)

where
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(28)

4.3.Discussion. Here, we shall discuss about the behavior of
energy conditions for two different specific models of shape
function. For the first model, i.e., bs(r) � ((r0log(r + 1))/
(log(r0 + 1))), we have shown the graphical analysis of
energy conditions in Figures 6–8. To explore the wormhole
models, we check the behavior of the energy conditions,
specially NEC and WEC. +e NEC violation is the im-
portant requirement for the existence of wormhole solu-
tions. From Figure 6, the violation of NEC can be
confirmed, which shows the presence of exotic matter. +e
presence of exotic matter is responsible to open the
wormhole throat. Other energy conditions are seen satis-
fied. +e positive nature of energy density shows the su-
premacy of this study. +e validity of other remaining
energy conditions has no effect on the wormhole solutions.
In the second case, i.e., bs(r) � (r/er− r0), the violation of
NEC is also perceived for small radial coordinate, which
can be checked from Figure 9. +e graphical behavior of
(ρ − Pr) and (ρ − Pt) can be checked from Figure 10 for the
second model. +e behavior of energy density for the
second model can be depicted from Figure 11. Further-
more, the detailed summary for both models can be seen
from Table 1.

5. Outlook

In this recent work, we have employed the Hu–Sawicki
model in f(R) gravity to explore the wormhole con-
struction. In this regard, the anisotropic source of matter is
used with spherically symmetric static space-time. We have
tried to calculate the modified equations for energy density
and pressure components by using the Hu–Sawicki model.
By employing the Hu–Sawicki model, our obtained solu-
tions under the particular values of parameters show the
possible way to explore traversable asymptotically hyper-
bolic and flat wormhole solutions that respect NEC around
the throat. In the case of the other models, asymptotically flat
wormholes can also admire the WEC through the whole
space outside the throat. +e Hu–Sawicki model also sat-
isfied the cosmological and local gravity constraints. Fur-
thermore, we have plugged the idea of traceless matter to
calculate the shape function. +e following important
outcomes have been presented

(1) +e wormhole throat location for the distinct values
of parameter α are calculated at r0 ≡ 0.0015, r0 ≡
0.0016, r0 ≡ 0.0017, r0 ≡ 0.0018, and r0 ≡ 0.0019, for
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Figure 6: Graphical analysis of (ρ + Pr) and (ρ + Pt).
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Figure 7: Graphical analysis of (ρ − Pr) and (ρ − Pt).
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Figure 9: Graphical analysis of (ρ + Pr) and (ρ + Pt).
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α � 0.20, α � 0.40, α � 0.60, α � 0.80, and α � 1.00,
respectively.

(2) +e ratio of shape function and radial coordinate
approaches a very small number, i.e., (bs(r)/r)⟹
0.067, (bs(r)/r)⟹ 0.095, (bs(r)/r)⟹ 0.115, (bs

(r)/r)⟹ 0.135, and (bs(r)/r)⟹ 0.150 for α �

0.20, α � 0.40, α � 0.60, α � 0.80, and α � 1.00,
respectively.

(3) +e shape function, i.e., bs(r), with positive behavior
can be verified from Figure 1.

(4) +e flaring condition can be confirmed from Fig-
ure 1, which is observed at less than 1.

(5) +e condition (ρ + Pr) is noticed negative, which can
be verified from Figure 3.+e negative nature of (ρ +

Pr) shows the presence of exotic matter. +e ex-
pression (ρ − Pr) has been depicted positively.
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Figure 11: Behavior of ρ.

Table 1: Summary for first and second models of shape function.

Energy conditions
Models/conditions bs(r) � ((r0log(r + 1))/(log(r0 + 1))) bs(r) � (r/er− r0 )

(ρ + Pt) (ρ + Pt > 0) (ρ + Pt > 0)

(ρ + Pr) (ρ + Pr < 0) (ρ + Pr < 0)

(ρ − Pt) (ρ − Pt > 0) (ρ − Pt < 0)

(ρ − Pr) (ρ − Pr < 0) (ρ − Pr < 0)

(ρ) (ρ> 0) (ρ> 0)
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Figure 10: Graphical analysis of (ρ − Pr) and (ρ − Pt).
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(6) +e expressions (ρ + Pt) and (ρ − Pt) have remained
positive.

(7) +e energy density ρ has remained positive in all
cases.

(8) +e graphical behavior of energy conditions for both
models can be checked from Figures 6–11.

Furthermore, the NEC has been revealed to be violated
for two different specific shape functions. +e negative
nature of NEC shows the presence of exotic matter which is
necessary for wormhole construction. All our calculated
results can be seen from the summary, which is presented in
Table 1 for two different specific shapefunctions. It is very
interesting to comment here that our calculated results in
f(R) gravity with the Hu–Sawicki model for anisotropic
fluid sources are physically acceptable.
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