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In the present paper, we have introduced a new model of gravastar with an isotropic matter distribution in Rastall gravity by the
Mazur–Mottola (2004) mechanism. Mazur–Mottola approach is about the construction of gravastar which is predicted as an
alternative to black hole. By following this convention, we define gravastar in the form of three phases. ,e first one is an interior
phase which has negative density; the second part consists of thin shell comprising ultrarelativistic stiff fluid for which we have
discussed the length, energy, and entropy. By the graphical analysis of entropy, we have shown that our proposed thin shell
gravastar model is potentially stable. ,e third phase of gravastar is defined by the exterior Schwarzschild geometry. For the
interior of gravastar, we have found the analytical solutions free from any singularity and the event horizon in the framework of
Rastall gravity.

1. Introduction

For the very first time, in the 18th century, Laplace and
Michell gave the clues of existence of a celestial body having
extreme density and strongest gravitational effect enough
that even the light cannot be escaped. Later, celestial body in
outer space was termed as “black hole” by American
physicist Wheeler with the development of general relativity
in 1916. In the review of black hole, it has three layers: the
inner and outer event horizons and the singularity.,e event
horizon is the boundary of the black hole which lies between
the inside and outside of black hole where the gravitational
pull is so strong that nothing can escape even the light.
However, the singularity is known as the center of a black
hole, a single point which has huge mass of black hole in
concise nearly around zero volume. It is hypothesized by
astronomers that this singular point is hidden behind event
horizon where all laws of physics fail due to its infinite
density and gravity. A lot of work has been done on black
holes by the researchers [1–6]. With the various successive
study on black holes, the astronomers endure two main
problems of black holes, i.e., event horizon and singularity.
To avoid singularity, regular black hole is the better choice
than classical black holes, but the event horizon problem
remained unresolved [7–9].

It was required to formulate such an alternative system
that could tackle the abovementioned challenges; then, in
2001,Mazur andMottola [10, 11] suggested amarvelous idea
of a gravitational vacuum star termed as gravastar that looks
like a black hole, in other words, “a substitution of black
hole”. With the extension of Bose–Einstein condensation
concept at low temperature, they [10, 11] have designed a
hypothetical model of an isotropic interior de Sitter
spacetime as cold, dark, and compact objects in such a way
that it can be tackled without facing the problems of event
horizon and any singularity. However, the exterior of
gravastar is completely vacuum, which can be explained by
Schwarzschild geometry. ,e center of gravastar is known as
dark energy, and the boundary is the thin shell which isolates
its interior and exterior regions. ,ermodynamically, the
Mazur and Mottola idea is stable, and it has become one of
the most attractive debates in the present decade. ,e
gravastar configuration consists of three different parts
which can be distinguished with the values of equations of
state parameter, and the three regions of a gravastar are
labeled as follows: I, interior region: 0< r<R1 with EOS
p � −ρ; II, thin shell: R1 < r<R2 with EOS p � ρ; and III,
exterior region: r>R2 at p � ρ � 0, where p and ρ represent
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isotropic pressure and matter density and R1 and R2 rep-
resent the interior and exterior radii of the gravastar, re-
spectively. ,e thickness of thin shell can be calculated by
ϵ � R2 − R1 which is very small, i.e., 0< ϵ≪ 1 but finite. ,e
most interesting and impressive point in the construction of
gravastar is that it required exact solutions which are regular
in their entire domain. Many researchers have done more
work on the gravastar with great interest to obtain singu-
larity-free solution [12–19].

In 2011, Usmani et al. [20] provided an exact solution for
internally charged gravastar with conformal motion by
taking Reissner–Nordström as an exterior spacetime. On
vanishing the charge from gravitational mass equation in the
interior region, the total gravitational mass shifted into
electromagnetic mass under some specific conditions and
this aspect assures that interior de Sitter vacuum of a charged
gravastar must induce the gravitational mass. ,is model
encouraged the other researchers to do more work on
gravastar. So, in 2014, Bhar [21] generalized a study of
Usmani et al. [20] to higher dimensional
Reissner–Nordström spacetime. All the physical aspects of
this study matches to the results of Usmani et al. [20]. After
this, Bhar [22] provided another model on charged gravastar
with conformal motion in a modified theory, i.e., f(T)

gravity. All the solutions for an isotropic pressure, charged
density, and electric field have been found with the help of
linear function, i.e., f(T) � aT + b. Here, again the physical
features match with the results of Usmani et al. [20]. ,e
study of Usmani et al. [20] has been reviewed again in
another modified theory, i.e., f(R, T) gravity by Sharif et al.
[23].,e expressionf(R, T) � R + 2βT has been used in this
model, and all the exact, singularity-free solutions with
conformal Killing vector approach were found. By
substituting β � 0, all the results of Usmani et al. [20] can be
recovered.

Rahaman et al. [24] investigated amodel of gravastars for
three-dimensional anti-de Sitter spacetime with negative
cosmological constant. Later on, Rahaman et al. [25] ex-
tended their own work [24] with the addition of an electric
charge. With the influence of charge distribution, they [25]
found out all the exact solutions and physical features.
Ghosh et al. [26] have presented a solution of gravastar for
D-dimensions with a charge distribution, and actually, it was
the generalized work of Rahaman et al. [25].,e results were
stable and singularity-free gravastar. Later on, Ghosh et al.
[27] have explored the exact, stable, and nonsingular results
of gravastar without an electric charge for higher dimen-
sional de Sitter spacetimes with cosmological constant Λ.
Recently, the gravastar model for four dimensions with the
implementation of Karmarkar condition in GR has been
introduced by Ghosh et al. [28]. ,e shell results have been
obtained without thin shell approximation and put forward
the stable model which looks like black hole. Das et al. [29]
have investigated the exact solutions of gravastar in f(R, T)

gravity. In this model, pressure has been defined by negative
matter density in the interior region, and thin shell has been
supposed to be filled with ultrarelativistic fluid, taking the
exterior region as completely vacuum and defined by de
Sitter Schwarzschild spacetime. By following these

assumptions, exact, nonsingular, and nonevent horizon
solutions have been found which highlight the stability and
validity of gravastar. In f(G, T) theory of gravity, the
gravastar model has been constructed by Shamir et al. [30].
Collection of all exact solutions and physical features with
graphical representation made their model as stable, event
horizon free, and nonsingular, which can be regarded as an
alternative to black hole. ,e electromagnetic effects on
gravastar taking spherical symmetric spacetime in f(T)

theory of gravity have been examined by Debnath [31]. In
this study, two cases have been discussed: (i) T

�

� 0 and (ii)
fTT � 0. It was concluded that gravastar cannot be con-
structed for the T

�

� 0 case. But in case of fTT � 0, all an-
alytical solutions were obtained for three regions: I, interior;
II, thin shell; and III, exterior, and provided a stable model of
gravastar. Riessner–Nordström solutions have been
achieved in the exterior region rather than Schwarzschild
spacetime. Recently, Ghosh et al. [32] investigated the new
solutions of gravastar by taking Einstein field equations in
f(T ,T) gravity. By using modified action in terms of
torsion scalar T and trace of energy momentum tensor T,
the nonsingular solutions consist of pressure and density for
interior, thin shell, junction condition, and the physical
parameters have been obtained which indicate the stability
of gravastar. Currently, a new model of gravastar with
electromagnetic field in the framework of f(R, T) theory of
gravity by using the Mazur–Mottola [10, 11] methodology
has been provided by Majeed et al. [33]. ,ey [33] analyzed
the role of electric charge on the entire analytical solutions
which are stable, nonevent horizon and singularity free in
nature. Also, Yousaf and his collaborators [34–38] have
worked on the stability of gravastars in several modified
theories of gravity.

In cosmological point of view, general relativity (GR)
acts as a pillar to understand the stellar structures with
concept of cosmological constant which is responsible to
control accelerated expansion universe. Despite the great
discovery of GR, there has been an intense need of some
modifications because of having numerous problems related
to universe expansion. In addition, GR has a world famous
component, that is, covariant conservation of energy mo-
mentum tensor. Consequently, the total mass of a system
remains conserved in general theory of relativity, but it is not
proved experimentally. So, some modified theories have
been proposed by astronomers which are inattentive about
covariant conservation of energy momentum tensor. In
1972, Rastall [39] nominated a modified theory with some
modifications in law of conservation of energy momentum
tensor in GR. Rastall transforms the conservation law of
energy momentum tensor in GR (i.e., Tτ

τ;σ � 0) to the
nonconservation law (i.e., Tτ

τ;σ � ζR,σ) by introducing the
coupling parameter ζ. ,is parameter is taken to be the
measure of tendency of the geometry to couple with matter
field in a nonminimal way. Metaphysically, Rastall theory
gravity figures out the impacts of quantum fields in a curved
spacetime in a covariant manner. ,ese mentioned funda-
mental and cosmological aspects of Rastall theory motivate
us to explore the analytical solutions in the framework of this
theory.
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Recently, Rastall theory has been reviewed extensively by
many researchers [40–46]. Debnath [47] has explored the
solutions of gravastars in Rastall–Rainbow gravity. He used
the charge distribution as a function of Rastall’s parameter
and Rainbow function, and the exact and nonsingular so-
lutions have been obtained. In this study, the physical
properties depend on Rastall parameter and Rainbow
function. Salako et al. [44] have discussed the stability of
anisotropic compact stars in Rastall theory by using Krori
and Barua static spherically symmetric spacetime. Abbas and
Shahzad [48] have analyzed the solutions of an isotropic
compact stars by using conformal Killing vector and EOS
parameter ω which is limited as 0<ω< 1, in Rastall theory.
In this study, the variety of physical properties has been
discussed such as isotropic behavior of compact stars,
nonconservation equation, energy conditions, surface red-
shift, and stability of the model. In other work by Shahzad
and Abbas [49], they have investigated the solutions for
three different anisotropic compact stars, i.e.,
4U1820 − 30,HerX − 1, and SAXJ 1808.4 − 3658 with radii
10 km, 7.7 km, and 7.07 km, respectively.

Despite the attractive aspects of the Rastall theory, re-
cently, Visser [50] urged that Rastall theory is equivalent to
GR. In response to Visser paper [50], Darabi et al. [51]
proved that both theories are entirely different and the
Visser claim was wrong explicitly. ,e important point of
the Visser argument [50] was the definition of the energy
momentum tensor (EMT) given by Rastall was not correct,
and Rastall’s proposal is just the rearrangement of the matter
sector of the GR, whereas Darabi et al. [51] argued that the
definition of the EMT in Rastall’s proposal is in agreement
with the usual definition of EMT. To support their argument,
they provided a compatible example of f(R) theory of
gravity by using Visser’s procedure [50], and after some
calculations, they proved that f(R) theory is also equivalent
to the GR, which is incorrect.

In the present study, we have investigated some physical
aspects of gravastar in Rastall theory of gravity and found the
analytical solutions for different phases of gravastar struc-
ture. ,e paper is designed in the following pattern. Section
2 consists of review of Rastall theory with its Einstein field
equations and nonconservation law of energy momentum
tensor. In Section 3, the gravastar structure has been dis-
cussed by three different regions, i.e., (a) interior region, (b)
thin shell, and (c) exterior region as well as the junction
conditions. We examine the physical aspects, in particular,
proper length, energy, entropy, and EOS in Section 4. In the
last section, we conclude our results.

2. Field Equations and Their Solutions in
Rastall Theory

By modifying the conservation law of energy momentum
tensor in GR (i.e., Tτ

τ;σ � 0), Rastall tendered a noncon-
servation theory of gravity; according to this theory, the
nonconservation law is

T
τ
τ;σ � ζR,σ , (1)

where ζ is the Rastall parameter which shows the digression
from GR as well as the relation between matter field and
geometry. Following this modified theory, the developed
field equations can be expressed as

Gτσ + κζgτσR � κTτσ . (2)

From the above equation, κ, R, and Tτσ are Rastall
coupling constant, Ricci scalar, and energy momentum
tensor, respectively. ,e field equations for the present
theory can be redesigned as

Gτσ � κ Tτσ −
ζκgτσT

4κζ − 1
􏼠 􏼡. (3)

,e energy momentum tensor for an isotropic fluid is

Tτσ � (ρ + p)gτσ − pgτσ . (4)

Now, we consider a static spherically symmetric line
element in (3 + 1) dimensions for the interior spacetime as

ds
2

� e
μ(r)dt

2
− e

](r)dr
2

− r
2dθ2 − r

2sin2θdϕ2
, (5)

where μ(r) and ](r) be the metric functions. In the asso-
ciation of matter distribution (5) and energy momentum
tensor (4), the Einstein–Maxwell field equations in Rastall
gravity are

−1 + e
]

+ r]′ � r
2
e
]κ ρ −

κζ(ρ − 3p)

4κζ − 1
􏼠 􏼡,(6)

1 − e
]

+ rμ′ � r
2
e
]κ p +

κζ(ρ − 3p)

4κζ − 1
􏼠 􏼡,(7)

r
2

4
2μ″ + μ′2 − μ′]′􏼒 􏼓 +

r

2
μ′ − ]′( 􏼁 � r

2
e
]κ p +

κζ(ρ − 3p)

4κζ − 1
􏼠 􏼡.

(8)

According to Rastall’s modification (i.e., from equation
(1)), the nonconservation law of energy momentum tensor
can be written in the following form:

8πζ
32πζ − 1

d
dr

(ρ − 3p) −
dp

dr
−
]′
2

(ρ + p) � 0. (9)

3. Gravastar Construction

To construct a gravastar in Rastall theory, we discuss three
regions, which are described as follows.

3.1. Interior Region. In this section, we shall find the solu-
tions for the interior region of gravastar. For this purpose, we
first assume the following form of equation of state:

p � −ρ. (10)

With the help of equations (9) and (10), one can get

p � −ρ � −c0, (11)

Advances in Astronomy 3



where c0 is the constant matter density throughout the
interior region. By using equations (6) and (11), we can find
the metric potential as

e
− ]

� 1 +
r
2

3
κ

4κλc0

4κλ − 1
− c0􏼠 􏼡 +

c1

r
, (12)

where c1 shows the constant of integration. For regular
solution at center (r � 0), we set c1 equal to zero and obtain

e
− ]

� 1 +
r
2

3
κ

4κλc0

4κλ − 1
− c0􏼠 􏼡. (13)

,e relation between μ and ] with the help of equations
(6), (7), and (11) can be obtained as

e
μ

� c2e
− ]

, (14)

where c2 is the constant of integration. As mentioned above,
the matter density remains constant throughout the interior
region (see equation (11)); thus, we can find the active
gravitational mass in the following form:

M(C) � 􏽚
R1�C

0
4πr

2
c0dr �

4
3
πC

3
c0, (15)

which is the mass contained in the interior region of radius
R1 � C.

3.2.�in Shell. ,e shell is the middle region of interior and
exterior, which consists of ultrarelativistic perfect fluid with
high density, obeying the EOS p � ρ. By applying p � ρ, it is
more difficult to determine the exact solutions. In order to
avoid this difficulty, we take the thin shell approximation,
i.e., 0< e− ] ≡ h≪ 1, and try to investigate the analytical
results. With the implementation of this approximation, we
reconstruct Rastall’s field equations (6)–(8), by setting h as
zero in association with EOS (p � ρ), which can be achieved
in the following form:

1 − rh′ � r
2κ ρ +

2κζρ
4κζ − 1

􏼠 􏼡, (16)

−1 � r
2κ ρ −

2κζρ
4κζ − 1

􏼠 􏼡, (17)

rh′
2

+
μ′h′
4

r
2

� r
2κ ρ −

2κζρ
4κζ − 1

􏼠 􏼡. (18)

By solving the above field equations, one can get the
following results:

e
− ]

� ln c3r
1+α

􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, (19)

e
μ

� c4e
− 2r(1+r/1+α)

, (20)

where

α �
1 + 2κζ/4κζ − 1
1 − 2κζ/4κζ − 1

, (21)

and c3 and c4 are the constants of integration. In the con-
sequence of equation (9) and EOS p � ρ, we have

ρ � p � e
c4+c5( )β e

− 2r(1+r/1+α)β
􏼐 􏼑, (22)

where c5 is a constant of integration and
β � 32πζ − 1/1 − 48πζ.

3.3. Exterior Spacetime and Junction Conditions. ,e static
Schwarzschild geometry in the exterior region with EOS
(p � ρ � 0) can be expressed as

ds
2

� 1 −
2M

r
􏼒 􏼓dt

2
− 1 −

2M

r
􏼒 􏼓

− 1
dr

2
− r

2 dθ2 + sinθ2dϕ2􏼐 􏼑.

(23)
Here, M indicates the total mass of the gravastar. ,e

gravastar structure is divided into three zones, i.e., (i) in-
terior, (ii) shell, and (iii) exterior. ,e interior zone connects
with exterior at a junction interface, i.e., r � C. After the
review of Darmois-Israel [52, 53], the metric functions
should be continuous at the junction surface (i.e., r � C) for
the smooth matching between the gravastar zones (i) and
(iii). ,us, the stress-energy surface tensor at the junction
can be defined in the following form:

Sαβ � −
1
8π

καβ − δαβκcc􏼐 􏼑, (24)

where καβ � K+
αβ − K−

αβ and signs + and − indicate exterior
and interior regions, respectively. ,e second elemental
form linked with two sides of thin shell is given by

Kαβ
±

� −nσ
± z2xσ

zϕαzϕβ + Γσij
zxi

zϕα
zxj

zϕβ􏼠 􏼡|Ω. (25)

In the above equation, the intrinsic coordinates on shell
expressed by ϕα and n ±σ are symbolized for two-sided unit
normals to surface Ω which can be stated individually as

n
±
σ � ± g

ij zf

zxi

zf

zxj

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

− 1/2 zf

zx
σ (26)

with nλnλ � 1. By following the Lanczos approach [52], we
can find surface stress-energy tensor as
Sαβ � diag[ε, −ϑ, −ϑ, −ϑ] defining ε as surface energy density
and ϑ as the surface pressure. ,ese two parameters ε and ϑ
have the following form:

ε � −
1

4πC
[

��

f

􏽱

]
+

−
, (27)

ϑ � −
ε
2

+
1

16π
f′
��
f

􏽰􏼢 􏼣

+

−

. (28)

Equations (27) and (28) give the following results:

ε � −
1

4πC

������

1 −
2M

C

􏽲

−

�������������������

1 +
κ
3

4κζc0

4κζ − 1
− c0􏼠 􏼡C

2

􏽳

⎛⎝ ⎞⎠, (29)

ϑ �
1

8πC

1 − M/C
��������
1 − 2M/C

√ −
1 + 2/3κ 4κζc0/4κζ − 1 − c0( 􏼁C

2
�������������������������

1 + κ/3 4κζc0/4κζ − 1 − c0( 􏼁C
2

􏽱
⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎦.

(30)
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,e mass of thin shell is calculated as

msh � 4πC
2ε � C

�������������������

1 +
κ
3

4κζc0

4κζ − 1
− c0􏼠 􏼡C

2

􏽳

−

������

1 −
2M

C

􏽲

⎡⎢⎣ ⎤⎥⎦.

(31)

By manipulating equation (31), one can get the following
form of total mass present in the stellar structure:

M �
κ
6

c0 −
4κζc0

4κζ − 1
􏼠 􏼡C

2
−

m
2
s

2C
+ ms

�������������������

1 +
κ
3

4κζc0

4κζ − 1
− c0􏼠 􏼡C

2

􏽳

. (32)

4. Some Physical Properties

4.1. Proper Length and Energy within the Shell. ,e proper
thickness of the shell connects the interior region to the

exterior at r � C and r � C + ϵ. It is taken to be very small as
0< ϵ≪ 1 and can be determined as

l � 􏽚
C+ϵ

C

��
e
]

􏽰
dr � 􏽚

C+ϵ

C

1
���������
ln c3r

1+α
􏼐 􏼑

􏽱 �

��
π

√
rErfi

����������
Log r1+αc3( 􏼁

􏽱
/

�����
1 + α

√
􏼒 􏼓 r1+αc3( 􏼁

− 1/1+α

�����
1 + α

√
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

C+ϵ

C

. (33)

Now, we calculate the energy within the shell as

E � 􏽚
C+ϵ

C
4πr

2ρdr � 4π 􏽚
C+ϵ

C
r
2
e

c4+c5( )βe
− 2r(1+r/1+α)βdr,

�

2(1 + α)eβ c4+c5− 2r(1+α+r)/1+α( )π
��
β

􏽰
(1 + α − 2r)

4β3/2
+

(1 + α)3/2
���
2π

√
(1 + β + αβ)eβ c4+c5− 2r(1+α+r)/1+α( )eβ(1+α+2r)2β/2(1+α)Erf((1 + α + 2r)

��
β

􏽰
/

�������
2(1 + α)

􏽰
)

4β3/2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

C+ϵ

C

.

(34)

4.2. Entropy. By the analysis of Mazur and Mottola [11], the
interior region (i) of gravastar has zero entropy density,
which is stable for the single condensate area. On the
contrary, the entropy within the shell can be found by the
following formula:

S � 􏽚
C+ϵ

C
4πr

2
s(r)

��
e
]

􏽰
dr, (35)

where s(r) is the energy density, which can be represented as

s(r) �
α2k2

BT(r)

4πZ
2 � α

kB

Z
􏼠 􏼡

���
p

2π

􏽲

, (36)

where α is considered as a constant. In this present study, use
G � c � 1 and kB � Z � 1 and then

s(r) � α
���
p

2π

􏽲

. (37)

Finally, the usage of equations (19), (22), and (35) gives
result
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S �
4πξ

���
2π

√ 􏽚
C+ϵ

C
r
2

�����������������

e
c4+c5( )βe

− 2r(1+r/1+α)β

ln c3r
1+α

􏼐 􏼑

􏽶
􏽴

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦dr,

S �
4πξ

���
2π

√ 􏽚
C+ϵ

C

df(r)

dr
dr �

4πξ
���
2π

√ [f(r)]
C+ϵ
C �

4πξ
���
2π

√ [f(C + ϵ) − f(C)].

(38)

4.3. Equation of State. By using equations (29) and (30) in
the expression ϑ � ω(C)ε, the EoS parameter at r � C can be
obtained in the following form:

ω(C) �
1 − M/C/

��������
1 − 2M/C

√
− 1 + 2/3κ 4κζc0/4κζ − 1 − c0( 􏼁C

2/
�������������������������

1 + κ/3 4κζc0/4κζ − 1 − c0( 􏼁C
2

􏽱

􏼔 􏼕

2 −
��������
1 − 2M/C

√
+

�������������������������

1 + κ/3 4κζc0/4κζ − 1 − c0( 􏼁C
2

􏽱

􏼔 􏼕
. (39)

In the above equation, one can note that there are dif-
ferent terms as well as square root terms that increase the
sensitivity of EOS parameter, i.e., ω(C). For such a situation,
it demands some restrictions which are 2M/C< 1 and
κ/3(c0/1 − 4κζ)< 1 to maintain ω(C) as real. However, with
the implementation of binomial series up to the 1st order on
the square root terms in equation (39) subject to the

constraints M/C≪ 1 and κ/3(c0/1 − 4κζ)≪ 1, one can ob-
tain the approximation

ω(C) ≈
3/2

6M/κ c0/1 − 4κζ( 􏼁C
3

− 1􏽨 􏽩
. (40)

By following the above approximation, there are two
probabilities: the parameter ω(C) will be positive for
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Figure 1: Variation in metric potential within the interior region with respect to the radial coordinate r.

0.802

0.801

0.800

0.799

0.798

0.797

0.796

θv
(r

)

4000 4.002 4.004 4.006 4.008 4.010
r

ζ = 0.2

Figure 2: Variation in metric potential e](r) within the shell with respect to radial coordinate r.
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condition M/C3 > κ/6(c0/1 − 4κζ)C3 and ω(C) will be
negative for M/C3 > κ/6(c0/1 − 4κζ)C3. In view of above
discussion, some cases arise: (i) if ω(C) � −1, it gives the
cosmological constant and predicts dark energy; (ii)
ω(C)< − 1 informs us about the hypothetical phantom
energy; (iii) when ω(C)<−1/3, this situation indicates the
accelerated expansion of universe and the case ω(C)> − 1 is
for nonphantom.

5. Conclusion

In the present paper, we have analyzed the isotropic fluid
new exact solutions of gravastar by considering spherically
symmetric and static spacetime in the context of Mazur and
Mottola [1, 2] in the Rastall theory of gravity. ,e main
advantage of working on gravastar is that it seems as black
hole, but it resolves most of the problems related to black
hole. In the present work, we have studied the effects of
nonconservation of energy-momentum tensor on the so-
lutions of gravastar by the use of Rastall’s field equations. In
the present investigation, we get all the results free from
singularity and event horizon in the influence of Rastall’s
parameter throughout the gravitating system (i.e., interior
region, shell and shell properties, and exterior region). In the
light of Mazur and Mottola [1, 2] concept, the gravastar
layout consists of three regions: I, interior region
(0≤ r< r1 � C); II, shell (C � r1 < r< r2 � C + ϵ); III, ex-
terior (r> r2 � C + ϵ). ,e physical significance of these
regions is given as follows:

(i) Interior region (I): it is enclosed by a thin shell made
with ultrarelativistic stiff fluid and is defined by
negative isotropic pressure with positive energy
density, i.e., p � −ρ, and this pressure generates the
repulsive force over the thin shell. ,e central
density denoted as c0 has been retrieved with the
help of nonconservation law equation (9), which
gives us information about pressure and density
remaining constant throughout the interior region.
We obtained the results for pressure, density, and
the metric potentials by dealing with equations

(6)–(8). All these results for interior region of
gravastar are regular at origin r � 0. ,e physical
behavior for metric potential e] with respect to the
radial coordinate r is been shown in Figure 1. From
this physical interpretation, it can be shown that the
metric potential remains positive, regular at r � o,
finite and free from central singularity. ,e active
gravitational mass also has the same properties.

(ii) ,in shell (II): the shell of gravastar with EOS p � ρ
is assumed to be very thin formed with ultra-
relativistic matter distribution bonding with the
cold baryonic universe called stiff fluid with very
high density. To find the exact solutions in the shell
region with EOS, p � ρ for gravastar is very difficult,
so we have used the thin shell approximation as
0< e− ] ≡ h≪ 1 and get modified form of Rastall’s
field equations, i.e., equations (16)–(18). ,rough
these equations, we have found exact solutions of
metric potentials (i.e., eμ and e]) and matter density
within the shell. Figures 2 and 3 show the physical
behavior with positive metric potentials e](r) and
eμ(r), respectively. However, Figure 4 demonstrates
the increasing and positive profile of energy density
within the shell.,ese outcomes help us to deal with
shell properties such as proper length, energy, and
entropy obtained by using equations (19) and (22).
,e positive, linearly increasing and finite pattern
throughout the shell for shell properties (i.e., length,
energy, and entropy) is shown in Figures 5-7. All
these graphical representations reveal the physical
authenticity of our stellar structure (i.e., gravastar).
In cosmology, the EOS parameter ω is established
for isotropic fluids by the ratio of pressure p and
density ρ. ,is parameter gives different values for
different choice of parameters. For example, it has
value −1 in case of cosmological constant, and less
than −1 leads to the phantom energy.

(iii) Exterior region (III) and junction conditions: with
EOS p � ρ � 0, the exterior region is defined by
Schwarzschild spacetime which can be seen in
equation (23). At the junction interface, the interior
region joins with the exterior region with smooth
matching at r � C. In accordance with Dar-
mois–Israel conditions [1, 2], we have derived some
aspects like surface energy density, surface pressure,
mass of thin shell, and the mass of gravastar which
are given in equations (29)–(32).

In the end, we arrive at conclusion that we have found a
new exact solution which are regular and finite at origin.,is
is physically acceptable condition for gravastar in Rastall’s
theory of gravity. Moreover, we have obtained a nonsingular
and event horizon-free model but seems to be an alternative
to black hole in this present study. ,ese points fulfil the
requirements which are necessary for the existence of
gravastar. On the contrary, traditional black holes of
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Figure 7: Variation in entropy within the shell of with respect to
radial coordinate r.
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Einstein’s theory are nonregular and infinite at origin and
have event horizons at finite values of radius r. For example,
Schwarzschild black hole has event horizon at r � 2m, which
lies inside the photon sphere of radius r � 3m. ,e con-
straints resulting from interferometric LIGO detectors
GW150914 on the compactness of the merging objects are in
accordance with the large compactness that can be linked
with gravastars. On the basis of these investigations, one
cannot exclude the possibility of inspiral signal because of
gravastars. In view of this, it has been predicted by Chirenti
and Rezzolla [54] that the merged object would be a rotating
gravastar. We would like to mention that this work can be
extended in other nonconservative and matter-curvature
coupled modified theories of gravity [55].
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