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We illustrate the chaotic nature of the circular restricted three-body problem from the perspective of the bifurcation diagram with
respect to the mass ratio parameter. Moreover, it is shown that when the frequency ratio in different directions of the classical
problem is irrational, it has the quasiperiodic characteristics. In addition, a three-dimensional approximate solution to this
problem under two time scales is proposed by using the multiple time scales method.

1. Introduction

As early as the 19th century, plenty of mathematicians, such
as Dirichlet and Weierstrass, et al. [1], expected to obtain a
series solution of the three-body problem in the following
form:



∞

j�1
Aj cos 

k

i�1
jiωi( ⎛⎝ ⎞⎠t + Bj sin 

k

i�1
jiωi( ⎛⎝ ⎞⎠t⎡⎢⎢⎣ ⎤⎥⎥⎦. (1)

*e rate of change of the solution with respect to time t

in equation (1) appears as a combination of many incom-
mensurable frequencies, ωii � 1, 2, . . . , k, often called qua-
siperiodic solution.

Almost half a century ago, Farquhar and Kamel [2]
proposed an approximation to construct the periodic orbits
described above. A few years later, Richardson [3, 4] de-
veloped third-order analytic solutions to collinear libration
points (CLP) for a class of circular restricted three-body
problem (CRTBP) based on a method similar to
Lindstedt–Poincaré and successive approximation. *e
constructed solutions are the basis of determining halo
orbits around these points, and they can provide approxi-
mate initial values of halo orbits. Furthermore, the solutions

can also be developed to investigate spacecraft formation
flying. *e more accurate the approximate analytical solu-
tions, the less fuel in the system will be consumed. Ruijgrok
[5] solved a planar three-body problem for equal mass
particles under a particular class of three-body forces.
Zagouras and Markellos [6] studied a periodic spatial so-
lution to Hill’s problem, which is the limiting case of a
restricted three-body problem (R3BP). Papadakis et al. [7]
considered the periodic orbits of the three-body problem
generated by CLP and provided the second-order approx-
imate analytic expressions of such orbits. Gómez et al. [8]
computed quasihalo orbits in CRTBP semianalytically
through the Lindstedt–Poincaré technique. Ten years ago,
Lu and Zhao [9] proposed an improved and more precise
third-order analytic solution than Richardson’s classical
analytic solution. Gidea and Deppe [10] numerically studied
the influence of small perturbations on the dynamics of an
infinitesimal third body. *ey investigated the chaotic orbits
in an RTBP, which also indicated the complexity and dif-
ficulty of obtaining approximate analytic solutions to the
problem.

In recent years, Šuvakov and Dmitrašinovic [11]
presented some creative results for the periodic orbits of
the three-body problem. *irteen new, zero-angular-
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momentum, distinct equal mass, planar collisionless
periodic orbits are displayed in three new categories.
When the two primaries are both oblate spheres, Mittal
et al. [12] used the predictor-corrector algorithm to
construct periodic orbits. *ey showed the corresponding
periodic orbits under different energy constants, mass
ratios, and oblateness factors of the two primaries. Based
on photogravitational planar RTBP with oblateness,
Pathak et al. [13] studied the seventh-, ninth-, and
eleventh-order internal resonance periodic orbits of the
Sun-Earth system by using Runge–Kutta–Gill method.
For a generalized photogravitational RTBP model, the
two primaries are oblate spheroid and are under the
gravity of an asteroid belt. Abouelmagd et al. [14] found a
secular solution that can be reduced to a periodic one
near the triangular libration points when the mass ratio is
equal to the critical mass value. Similar results can also be
found in [15]. Selim et al. [16] analyzed the stable motion
solutions of long-period orbits and short-period orbits
when the primary is a triaxial rigid body and the Euler
angle of rotation satisfies certain conditions. Besides, for
two types of the perturbed RTBP, Gao et al. [17, 18]
utilized the Lindstedt–Poincaré perturbation method to
give an approximate analytical solution to the periodic
orbits near the CLP.

Considering that the dynamical equation of the third
body in CR3BP is a time-varying high-dimensional non-
linear system in the inertial frame, it can hardly be solved by
using analytical approaches. However, this case will be better
in the rotating coordinate system, for the aforementioned
governing equations are time-independent, and there is an
integrable motion. Using the method of multiple time scales,
Nayfeh [19, 20] studied the 3 :1 and 2 :1 small-amplitude
resonances near the triangular libration points in the plane
when the potential function was expanded to the second-
and third-order terms of a small parameter, respectively.

Based on the number of terms expanded by the potential
function of the problem, the existing time-scale solutions
mainly include the three-dimensional single time-scale solution
when the potential function expands to the third-order, the
three-dimensional (3D) double time-scale solution when the
potential function expands to the second-order, and the planar
approximate analytic solution. Accordingly, when the third
body is also considered to vibrate with a small amplitude in
space, the multiple time scales method [21] will be used to
construct the approximate 3D CR3BP solution in this paper.
*e 3D multiple time scales solution has the following form:

u � 
2

l�1
εlul(t, εt), (2)

where u � (x, y, z), ul � (x1, y1, z1), l � 1, 2, and ε is a small,
dimensionless parameter.

2. Dynamic Equations of Classical CRTBP

In this section, the dynamic equations of classical CRTBP in
three-dimensional space will be described.

In a rotating framework, it is well known that the
governing equations of the classical CRTBP can be char-
acterized by the following set of differential equations:

€x − 2 _y � x − Ux,

€y
+ 2 _x � y − Uy, €z � −UZ, (3)

where the potential function

U(x, y, z) � −
1 − μ

(x + μ)
2

+ y
2

+ z
2

 
(1/2)

−
μ

(x − 1 + μ)
2

+ y
2

+ z
2

 
(1/2)

.

(4)

For more details on the establishment of equation (3),
please refer to [22].

It is easy to find that μ in equation (4) is the only pa-
rameter in the classical CRTBP. In this paper, we define it as
the ratio of the mass of one primary to the mass sum of the
two primaries, so it is called the mass ratio parameter, and its
value range is between 0 and 1. Under the initial conditions
[−0.001, 0.2, 0.1, −0.3, 0.87, 0.01], we divide the range of μ
into 1000 equal parts, and then, respectively, return its
corresponding coordinates of three different planes (x-y, x-z,
y-z) for each value of μ, and the bifurcation diagram with
respect to the parameter μ based on ode45 algorithm shows
that any small change of μ will lead to the third body’s
apparent chaotic dynamic behavior (see Figure 1). We find
that any value of μ corresponds to an infinite number of
points rather than a single point, which means that the
probability of obtaining periodic solutions of the three-body
problem by numerical simulation is almost zero. Moreover,
even if there are some results that are seem to be periodic,
part of the existing conclusions based on numerical simu-
lation will no longer hold when the step size continues to
shrink.When the iteration accuracy is gradually improved, it
is difficult for the orbit of the three-body system with chaotic
characteristics to come back after iteration from a particular
initial point, and researchers do not even know what will
happen when the accuracy is less than 10−16. *erefore, we
expect that the periodic solution which is beneficial to the
actual mission can be realized by “construction.”

Next, we first deal with the complex potential function
U(x, y, z) by introducing Legendre polynomials Pn, which
satisfies Rodrigues formula:

Pn(x) �
1

2n
n!

dn

dx
n x

2
− 1 

n
, n � 0, 1, 2, 3, . . . . (5)

*en, we have [22]
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Dρ
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where D2 � A2 + B2 + C2 and ρ � x2 + y2 + z2. Substituting equations (4) and (6) into equation (3), it
yields

€x − 2 _y − 1 + 2c2( x �
z

zx

n≥ 3

cnρ
n
Pn

x

ρ
 ,

€y

+ 2 _x + c2 − 1( y �
z

zy

n≥ 3

cnρ
n
Pn

x

ρ
 , €z + c2z �

z

zz

n≥ 3

cnρ
n
Pn

x

ρ
 , (7)

where
cn � (1/c3

L)[( ± 1)nμ + (−1)n((1 − μ)cn+1
L /(1∓cL)n+1)], for

libration points L1 and L2 and cn � (1/c3
L)

[1 − μ + (μcn+1
L /(1 + cL)n+1)], for libration point L3,

cL � n
(2/3)
1 , where n1 represents the angular velocity of

relative motion between the two primaries.
*en, equation (7), up to the third approximation, can be

written in the following form:
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Figure 1: (a–c) Bifurcation diagrams of mass ratio parameters in µ-x-y, µ-x-z, and µ-y-z frames, respectively.
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3. Construction of Approximate 3D Multiple
Time Scales Solution

Consider the small amplitude of nonhomogeneous terms of
equation (8). *en,

€x − 2 _y − 1 + 2c2( x �
3
2
εc3 2x

2
− y
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− z

2
  + 2εc4 2x

2
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2
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εc4y 4x
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2
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 .

(9)

We write the solution of equation (9) as follows:

x � 
2

l�1
εl

xl T0, T1( ,

y � 
2

l�1
εl

yl T0, T1( ,

z � 
2

l�1
εl

zl T0, T1( ,

(10)

where T0 � t andT1 � εt.

*en, time derivatives become

d
dt

�
z

zT0

dT0

dt
+

z

zT1

dT1

dt
+ · · · � D0 + εD1 + · · · , (11)

d2

dt
2 � D0 + εD1 + · · ·( 

2
� D

2
0 + 2εD0D1 + · · · , (12)

where Dk � (z/zTk), k � 0, 1, . . ..
Substituting equations (10)–(12) into equation (9), we

find

D
2
0x1 − 2D0y1 − 1 + 2c2( x1 ε + D

2
0x2 + 2D0D1x1 − 2D0y2 − 2D1y1 − 1 + 2c2( x2 ε2 + 2 D0D1x2 − D1y2( ε3

�
3
2

c3 2x
2
1 − y

2
1 − z

2
1 ε3 + 2c4 2x

2
1 − 3y

2
1 − 3z

2
1 x1 + 3c3 2x1x2 − y1y2 − z1z2(  ε4 + Ο ε5 ,

(13a)

D
2
0y1 + 2D0x1 + c2 − 1( y1 ε + D

2
0y2 + 2D0D1y1 + 2D0x2 + 2D1x1 + c2 − 1( y2 ε2 + 2 D0D1y2 + D1x2( ε3

� −3c3x1y1ε
3

− 3 c3 x1y2 + x2y1(  +
1
2

c4 4x
2
1 − y

2
1 − z

2
1 y1 ε4 + Ο ε5 ,

(13b)

D
2
0z1 + c2z1 ε + D

2
0z2 + 2D0D1z1 + c2z2 ε2 + 2D0D1z2ε

3

� −3c3x1z1ε
3

− 3 c3 x1z2 + x2z1(  +
1
2
c4 4x

2
1 − y

2
1 − z

2
1 z1 ε4 +Ο ε5 .

(13c)

4 Advances in Astronomy



Now, from equations (13a)–(13c), equating the coeffi-
cients of ε, ε2, and ε3 to zero, it leads to the following three
sets of equations.

Order ε:

D
2
0x1 − 2D0y1 − 1 + 2c2( x1 � 0,

D
2
0y1 + 2D0x1 + c2 − 1( y1 � 0,

D
2
0z1 + c2z1 � 0.

(14)

Order ε2:

D
2
0x2 + 2D0D1x1 − 2D0y2 − 2D1y1 − 1 + 2c2( x2 � 0,

D
2
0y2 + 2D0D1y1 + 2D0x2 + 2D1x1 + c2 − 1( y2 � 0,

D
2
0z2 + 2D0D1z1 + c2z2 � 0.

(15)

Order ε3:

2D0D1x2 − 2D1y2 �
3
2

c3 2x
2
1 − y

2
1 − z

2
1 ,

2D0D1y2 + 2D1x2 � −3c3x1y1,

2D0D1z2 � −3c3x1z1.

(16)

Consider that the last equation of (14) is decoupled from
the first two equations of (14). We employ the following
transformations:

x1 � ω1,

_ω1 � ω2,

y1 � ω3,

_ω3 � ω4.

(17)

*en, the first two equations of (14) can be represented
by the following equivalent form:

_ω1 � ω2,

_ω2 � 1 + 2c2( ω1 + 2ω4,

_ω3 � ω4,

_ω4 � −2ω2 + 1 − c2( ω3.

(18)

*us, the coefficient matrix of equation (18) can be
denoted as

0 1 0 0

1 + 2c2 0 0 2

0 0 0 1

0 −2 1 − c2 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (19)

*erefore, the characteristic equation can be obtained as

λ
4

+ 2 − c2( λ
2

+ 1 + 2c2(  1 − c2(  � 0, (20)

where

λ1 �
1
2

−4 + 2c2 + 2 9c
2
2 − 8c2 

(1/2)
 

(1/2)

,

λ2 � −
1
2

−4 + 2c2 + 2 9c
2
2 − 8c2 

(1/2)
 

(1/2)

,

λ3 �
1
2

−4 + 2c2 − 2 9c
2
2 − 8c2 

(1/2)
 

(1/2)

,

λ4 � −
1
2

−4 + 2c2 − 2 9c
2
2 − 8c2 

(1/2)
 

(1/2)

.

(21)

It is noticed that λ1 and λ2 are two equal and opposite
real roots, and λ3 and λ4 are a pair of pure imaginary roots.
Hence, the general solution of equation (14) assumes the
following form:

x1 � I1e
λ1t

+ I2e
−λ2t

+ I3 cos(λt) + I4 sin(λt),

y1 � −k1I1e
λ1t

+ k1I2e
−λ2t

− k2I3 sin(λt) + k2I4 cos(λt),

z1 � J1 cos(ωt) + J2 sin(ωt),

(22)

where coefficients I1, . . . , I4, k1, k2, J1 and J2 are all constants
and λ is the mould of λ3 and λ4.

Since the motion of the third body may be unbounded
due to the influence of exponential terms, appropriate initial
conditions are selected such that I1 � I2 � 0, which implies
that

x1 � I3 cos(λt) + I4 sin(λt),

y1 � −k2I3 sin(λt) + k2I4 cos(λt),

z1 � J1 cos(ωt) + J2 sin(ωt),

(23)

i.e.,
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x1 � −Ax cos(λt + ϕ),

y1 � k2Ax sin(λt + ϕ),

z1 � Az sin(ωt + ψ),

(24)

where

Ax �

������

I
2
3 + I

2
4



,

AZ �

������

J
2
1 + J

2
2



,

k2 �
1 + 2c2 + λ2

2λ
�

2λ
λ2 − c2 + 1

,

cos ϕ � −
I3

Ax

,

sinϕ �
I4

Ax

,

cosψ � −
J2

AZ

,

sinψ �
J1

AZ

.

(25)

If the value of (λ/ω) in equation (24) is an irrational
number, according to the time history diagrams in Figure 2,
this linearization motion of the system appears to make the

periodic motion in the x and y components, respectively.
However, it is not periodic but Lissajous-type quasiperiodic
in the x-y plane, and this fact can be verified by the integral
curves with respect to x and y (see Figure 3) and its pro-
jections in the x-y plane, as well as the portraits in the frame
of x-y-z (see Figure 4). *e significance of Figures 2–4 is that
if the frequency of the third body in all directions is not
commensurable, it will exhibit a quasiperiodic motion.
*erefore, the value of (λ/ω) is a rational number that
performs a critical role in the motion law of the system. In
general, if the value of (λ/ω) is an irrational number, the
time history diagram can only serve as a reference but a
standard to judge if the systemmakes the periodic motion or
not. On the contrary, the motion law of the system can be
judged by phase portraits and time history diagrams.

In addition, note that the halo-type periodic orbits play
particular importance in the actual mission ACE, ISEE-3/
ICE, MAP, SOHO, Genesis, etc., that is, the in-plane and
out-of-plane motion makes those characteristic frequencies
equal within the sufficiently large motion region. *erefore,
without loss of generality, we consider here the case of λ � ω.
*en, equation (24) can be represented as

x1 � A1 T1( e
iλT0 + A1 T1( e

− iλT0 ,

y1 � ik2A1 T1( e
iλT0 − ik2A1 T1( e

− iλT0 ,

z1 � A2 T1( e
iλT0 + A2 T1( e

− iλT0 .

(26)

Substituting equation (26) into equation (15), it yields

D
2
0x2 − 2D0y2 − 1 + 2c2( x2 + 2iλD1A1e

iλT0 − 2iλD1A1e
− iλT0 − 2ik2D1A1e

iλT0 + 2ik2D1A1e
− iλT0 � 0,

D
2
0y2 + 2D0x2 + c2 − 1( y2 − 2λk2D1A1e

iλT0 − 2λk2D1A1e
− iλT0 + 2D1A1e

iλT0 + 2D1A1e
− iλT0 � 0,

D
2
0z2 + c2z2 + 2iλD1A2e

iλT0 − 2iλD1A2e
− iλT0 � 0.

(27)

Let the secular term be equal to zero, and we find that

D1A1 λ − k2(  � 0,

D1A1 k2 − 1(  � 0,

D1A2 � 0.

(28)

Hence,

A1 �
ρ1
2

,

A2 �
ρ2
2

,

(29)

where ρ1 and ρ2 are constants.
Substituting equation (29) into equation (26), and set

constant k2 � δ, we obtain

x1 � ρ1 cos(λt),

y1 � −δρ1 sin(λt),

z1 � ρ2 cos(λt).

(30)

*en, equation (27) can be expressed as

D
2
0x2 − 2D0y2 − 1 + 2c2( x2 � 0,

D
2
0y2 + 2D0x2 + c2 − 1( y2 � 0,

D
2
0z2 + c2z2 � 0.

(31)

Similarly, solutions to equation (31) can be denoted as

x2 � B1 T1( e
iλT0 + B1 T1( e

− iλT0 ,

y2 � iδB1 T1( e
iλT0 − iδB1 T1( e

− iλT0 ,

z2 � B2 T1( e
iλT0 + B2 T1( e

− iλT0 .

(32)

6 Advances in Astronomy



Substituting equations (26) and (32) into equation (16),
it yields

2i(λ − δ)D1B1e
iλT0 + 2i(δ − λ)D1B1e

− iλT0 �
3
4
c3 2 + δ2 ρ21 − ρ22 cos 2λT0(  + 2 − δ2 ρ21 − ρ22 ,

2(1 − λδ)D1B1e
iλT0 + 2(1 − λδ)D1B1e

− iλT0 � −3c3iδA
2
1e

i2λT0 + 3c3iδA
2
1e

− i2λT0 ,

2iλD1B2e
iλT0 − 2iλD1B2e

− iλT0 � −3c3A1A2e
i2λT0 − 3c3A1A2e

− i2λT0 − 3c3 A1A2 + A1A2( .

(33)
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Figure 2: Time history diagrams with respect to (a) x and (b) y, respectively, when μ � 0.0123.
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Figure 3: Quasiperiodic orbit of Lissajous type in x-y-t space for μ � 0.0123.

Advances in Astronomy 7



B1 T1(  �
1
2
α1 T1( e

iβ1 T1( ),

B2 T1(  �
1
2
α2 T1( e

iβ2 T1( ).

(34)

*us,

D1B1 �
1
2
α1′e

iβ1 +
1
2
α1e

iβ1 iβ1′( ,

D1B1 �
1
2
α1′e

− iβ1 +
1
2
α1e

− iβ1 −iβ1′( ,

D1B2 �
1
2
α2′e

iβ2 +
1
2
α1e

iβ2 iβ2′( ,

D1B2 �
1
2
α2′e

− iβ2 +
1
2
α2e

iβ2 −iβ2′( .

(35)

Substituting equations (35) and (30) into equation (33),
we get

2(λ − δ) α1′ sin λT0 + β1(  + α1β1′ cos λT0 + β1(   �
3
4
c3 2 + δ2 ρ21 − ρ22 cos 2λT0(  + 2 − δ2 ρ21 − ρ22 ,

2(1 − λδ) α1′ cos λT0 + β1(  − α1β1′ sin λT0 + β1(   �
3
2
c3δρ

2
1 sin 2λT0( ,

−2λ α2′ sin λT0 + β2(  + α2β2′ cos λT0 + β2(   � −
3
2
c3δρ1ρ2 cos 2λT0(  + 1 .

(36)
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Figure 4: Quasiperiodic orbit of Lissajous type in the (a) x-y plane and (b) x-y-z space, respectively, when μ � 0.0123.
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*en, it can be followed from equation (36) that

α1′ T1(  �
3

8(δ − λ)
c3 2 + δ2 ρ21 − ρ22 cos(2λt) + 2 − δ2 ρ21 − ρ22 sin λt + β1 T1( (  +

3
4(1 − λδ)

c3δρ
2
1 sin(2λt)cos λt + β1 T1( ( ,

α1β1′ T1(  �
3

8(δ − λ)
c3 2 + δ2 ρ21 − ρ22 cos(2λt) + 2 − δ2 ρ21 − ρ22 cos λt + β1 T1( (  −

3
4(1 − λδ)

c3δρ
2
1 sin(2λt)sin λt + β1 T1( ( .

(37)

Substituting equation (34) into equation (32), we arrive
at

x1 � α1 T1( cos λt + β1 T1( ( ,

y1 � −δα1 T1( sin λt + β1 T1( ( ,

z1 � α2 T1( cos λt + β2 T1( ( .

(38)

Combining equations (10), (30), and (38), an approxi-
mate 3D multiple time scales solution to equation (9) can be
represented as

x � ερ1 cos(λt) + ε2 cos λt + β1(εt)( ,

y � −εδρ1 sin(λt) − ε2δα1(εt)sin λt + β1(εt)( ,

z � ερ2 cos(λt) + ε2α2(εt)cos λt + β2(εt)( .

(39)

where α1 and β1 satisfy equation (37) and α2 and β2 satisfy
the third equation of (36).

4. Conclusions

In this paper, we first show the chaotic characteristics of the
classical CRTBP through the bifurcation diagram con-
cerning the mass parameter μ, which indicates that it is
challenging to find the periodic orbit by adjusting the initial
conditions of the problem.*e astronomer Poincaré has also
shown that the probability of the event is zero. Secondly, we
also show that even though sometimes the third body may
exhibit corresponding periodic motions in different direc-
tions in space, the incommensurability of their frequencies
will cause the third body to have quasiperiodic
characteristics.

When the third body moves with a small amplitude, we
construct a kind of approximate 3D multiscale solution by
decomposing the conventional time contained in the so-
lution of the CRTBP into the coupling effect of multiple time
scales. *e shortcoming of this type of solution is that, like
other known approximate solutions (such as those based on
the Lindstedt–Poincaré method), the result of error analysis
is not satisfactory because of the chaotic nature of the
problem. In theory, we need more infinite terms in solution
series and time scales to make it approach the exact solution
of the problem, but this is worthless, and the analytical
calculation under the current technological level is almost
impossible to achieve. *erefore, we only need the series
approximation of two or three terms, so that the multiple
time scales solution can be used as an initial guess or ap-
proximation of the low-energy transfer orbital mission (such

as Genesis discovery mission), and then generate spacecraft
orbit through some differential correction procedures. In
addition, the classic ISEE-3 mission actually used a similarly
constructed approximate solution as the initial solution for
orbit design.
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