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This paper investigates the geometry of compact stellar objects through the Noether symmetry approach in the energy-mo-
mentum squared gravity. This newly developed theory overcomes the problems of big bang singularity and provides the viable
cosmological consequences in the early time universe. Moreover, its implications occur in high curvature regime where the
deviations of energy-momentum squared gravity from general relativity is confirmed. We consider the minimal coupling model of
this modified theory and formulate symmetry generators as well as corresponding conserved quantities. We use conservation
relation and apply some suitable initial conditions to evaluate the metric potentials. Finally, we explore some interesting features
of the compact objects for appropriate values of the model parameters through numeric analysis. It is found that compact stellar
objects in this particular framework depend on the model parameters as well as conserved quantities. We conclude that Noether
symmetries generate solutions that are consistent with the astrophysical observational data and hence confirm the viability of

this procedure.

1. Introduction

Noether symmetry approach is recognized as the most ef-
ficient method to investigate the analytic solutions that help
to find the conserved parameters of the field equations
corresponding to symmetry generators. The main motiva-
tion comes from various conservation laws (energy, mo-
mentum, angular momentum, etc.) which are outcomes of
some kind of symmetry being present in a system. The
conservation laws are the key factors in the study of various
physical processes and familiar Noether theorem, which
implies that every differentiable symmetry of the action leads
to the law of conservation. This theorem is significant be-
cause it provides a correlation between conserved quantities
and symmetries of a physical system [1]. A lot of fascinating
work has been done in this background [2-5].

Modified gravitational theories are considered as the
most favorable and propitious techniques to uncover the
cosmic mysteries. Such theories can be formulated by adding
the functions of curvature invariants in the geometric part of

the Einstein-Hilbert action. The natural modification is
obtained by replacing the Ricci scalar (R) with its generic
function in the Einstein-Hilbert action so-called f(R)
theory of gravity. There has been a crucial literature [6-8]
available to understand the viable characteristics of this
gravity. This theory has further been generalized by intro-
ducing some couplings between curvature invariant and the
matter part. These couplings describe different cosmic eras
and the rotation curves of galaxies. Such interactions also
yield nonconserved stress-energy tensor indicating the ex-
istence of an additional force. These coupling models are the
key aspects to understand the cosmic accelerated expansion
and dark matter/dark energy interactions [9]. The non-
minimal coupling between the curvature invariant and
matter Lagrangian (L,,) has been established in [10] known
as f(R,L,) gravity. Harko et al. [11] formulated such
coupling in f (R) theory referred to as f(R,T) gravity (T
represents the trace of stress-energy tensor). A more generic
theory in which matter is nonminimally coupled to ge-
ometry was proposed in [12], referred to as f (R, T, RWTW)
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theory, where R, is the Ricci tensor and T, demonstrates
the stress-energy tensor. One such modifications gave rise to
f (R, T?) theory, where ¢ defines the scalar field [13].

The presence of singularities can be considered a major
problem in general relativity (GR) because of its prediction
at high energy level, where GR is no longer valid due to the
expected quantum impacts. However, there is no specific
formalism for quantum gravity. In this regard, energy-
momentum squared gravity (EMSG) is considered as the
most favorable and prosperous technique which resolves the
singularity of the big bang in nonquantum description. This
modification of GR is formulated by adding the analytic
function T',,T*" in the generic action which is also referred
as f (R, T?) gravity where T,,T* is denoted by T [14]. It
provides the contribution of squared terms (p?, p?, and pp
where p and p are the matter variables) in the field equations
that are used to explore the various fascinating cosmological
consequences. This theory has a regular bounce with min-
imum scale factor (a,,;,) and finite maximum energy density
(Pmay) at early times. Consequently, it can solve the sin-
gularity of the big bang with a classical prescription. The
cosmological constant does not play a crucial role in the
background of the standard cosmological model. The re-
pulsive nature of the cosmological constant supports to
resolve singularity only after the matter-dominated era in
the EMSG. It is worthwhile to mention here that this theory
overcomes the spacetime singularity but does not change the
cosmological evolution.

Several researchers have carried out further studies on
this theory. Board and Barrow [15] investigated the range of
exact solutions for isotropic spacetime, presence of singu-
larities, cosmic accelerated expansion, and evolution with a
particular model of this theory. Nari and Roshan [16]
studied physical viability and stability of compact stars in
this framework. Morares and Sahoo [17] studied nonexotic
matter wormholes while Akarsu [18] explored possible
constraints from neutron stars in the same frame. Baha-
monde et al. [19] investigated the minimal and nonminimal
coupling models of EMSG and observed that these models
describe the current cosmic accelerated expansion. There has
been a recent literature [20-22] that indicates various cos-
mological applications of this modified theory. It is evident
from the above set of literature that EMSG requires more
focus, and hence motivations to analyze such theory are very
high. There are many open issues that can be studied and this
would add as well to improve our current knowledge about
different modified theories of gravity.

Noether symmetries have various important applica-
tions in modified gravitational theories. Capozziello et al.
[23] found static and nonstatic spherical solutions through
Noether symmetry technique in f (R) theory. Roshan and
Shojai [24] investigated cosmological models of f(R,G)
theory (G is the Gauss-Bonnet invariant) by adopting
Noether symmetry technique. Hussain et al. [25] studied the
Noether gauge symmetry approach in f (R) theory. Kucu-
kakca [26] analyzed this approach in scalar-tensor tele-
parallel theory to explore some physically viable
cosmological models. Bahamonde [27] investigated the
wormhole geometry through the Noether symmetry
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approach in the same gravity. Sharif and Fatima [28] studied
Noether symmetries of FRW spacetime for both dust as well
as vacuum cases in f (G) theory. They also formulated exact
cosmological models of this gravity and investigated the
current cosmic accelerated expansion in terms of scale
factor. Shamir and Ahmad [29, 30] used this technique to
explore different cosmological models with isotropic and
anisotropic matter configurations in the background of
f(G,T) theory. Sharif and his collaborators [31-37] ana-
lyzed accelerated expansion and evolution of the universe by
using this approach. There has been a recent literature
[38-42] that indicates various cosmological applications of
this approach in various modified theories of gravity.

The attributes and outcomes of self-gravitating objects
have great interest for the researchers because of their
fascinating features and relativistic geometries in astro-
physics as well as cosmology. The final outcome of this
phenomenon is the gravitational collapse which is respon-
sible for the formation of new celestial objects named as
compact stars. Such compact objects are assumed to be very
dense due to extensive masses and short radii. These dense
objects may be well described by GR and modified theories
[43-45]. Abbas [46] examined the equilibrium state of
compact objects and also analyzed their physical attributes
in modified Gauss-Bonnet gravity. Zubair and Abbas [47]
analyzed the geometry of compact stars with anisotropic
matter configuration in f (R) theory. Recently, Shamir and
Naz [39] studied the geometry of compact objects through
the Noether symmetry approach in f(G) gravity. The im-
pact of modified theories is well-known to analyze the ge-
ometry of compact stars and matter configuration at large
densities [48-52].

Since EMSG is established to overcome the singularities,
it is significant to analyze the inner region of massive objects
where energy factor is quite strong to see the deviations of
EMSG from GR. In this paper, we formulate Noether
symmetry generators and corresponding conserved quan-
tities for a minimal coupling model of EMSG, i.e,
f(RT?) = aR" + B(T*)™, n,m#0,1, and o, f#0 [19]. We
then discuss some salient features of compact objects such as
effective matter variables, energy conditions, compactness
parameter, gravitational redshift, stability against equilib-
rium forces, and sound speed for particular values of the
model parameters. The paper is organized as follows: in
Section 2, we formulate the field equations of static spherical
system in the background of EMSG. Section 3 gives a brief
description of Noether symmetry technique. In Section 4, we
find the expression of metric potentials by using conserved
quantities with suitable initial conditions. Section 5 is de-
voted to analyze some physical characteristics of compact
star to explore the viability of the model through graphs. We
summarize and discuss the results in the last section.

2. Basic Formalism of Energy-Momentum
Squared Gravity

In this section, we formulate the field equations for EMSG in
the presence of perfect fluid. The action for this theory is
determined as follows [14]:
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21’

jf(R, T)y=gd'x + JLmﬁd“x, (1)
where x? and g represent the coupling constant and de-
terminant of the line element, respectively. We consider
coupling constant as a unity for the sake of simplicity. The
action indicates that this theory has extra degrees of free-
dom. Therefore, due to additional force and matter-domi-
nated era, it is expected that some useful consequences
would be obtained to study the current cosmic issues in this
gravity. The variation of the action corresponding to the
metric tensor leads to the following field equations:

1
RmfR + g,waR - Vyvva - zgwf = TW - ®;4va2’ (2)

where  O=V, V¥,  f=f(R T?),  fp = (0f/0T?),

fr = (2f/3R), and
oL,

& _ #
4 anggEWT TT,, + ZTgva-

1
®;w = _2Lm(T/4v - Egva) -

(3)

It is noted that for f (R, T?) = f (R), the field equations
of this gravity reduce to f (R) theory while GR is recovered
when f (R, T?) =R.

We assume matter distribution as a perfect fluid:

T;nv = (pm + pm)U[AUV + gwpm’ (4)
peif = RS
fr
eff _ 1 .. e
P —fR{pm+2(f Rfg)-e (2

These equations are highly nonlinear as well as complicated
due to the presence of multivariate function and its derivatives.
We consider the Noether symmetry approach to obtain the
analytic solutions of f (R, T?) field equations. The conservation
law does not hold in this theory, but we obtain conserved
quantities in the background of the Noether symmetry ap-
proach. These are helpful to obtain physically viable solutions
and hence analyze the geometry of compact objects.

3. Pointlike Lagrangian and Noether Symmetry

Noether symmetry provides a fascinating procedure to
develop new cosmological models and related structures in
modified gravitational theories. Here, we formulate the
pointlike Lagrangian for static spherical spacetime in the
background of EMSG. We determine the corresponding
equations by using Noether symmetry technique. This
method provides a unique nature of the vector field within
the tangent space associated with it. Hence, the vector field
behaves as a symmetry generator and gives conserved
quantities which are then useful to examine exact solutions
of the modified field equations.

A2
.z
.

where p,,, p,, and U, .demonstrat.e the energy dens%ty,
pressure, and four-velocity, respectively. The Lagrangian
corresponding to matter distribution (4) is defined as
L,, =p,,» and manipulating equation (3), we obtain

®W = _(Spfn +an+4pmpm)Uva' (5)
Rearranging equation (2), we have
1 c m eff
Gy = (To +Tiiy) = T (6)

SR

where &, =R, — (1/2)Rg,, is the Einstein tensor, T}, is
the additional effects of EMSG named as correction terms,
and T;i,f determines the effective stress-energy tensor
expressed as

e 1 m 1
T#t;f = E {Tyv - g;waR + v,uv‘va - ®;4va2 + Egyv (f - RfR)}
(7)

In order to study the characteristics of compact stars, we
consider static spherical spacetime as follows [53]:

ds* = —e"Vdr? + " dr? + r2d6 + r’sin® 0 d¢’. (8)

The respective field equations turn out to be

{pm _% (f = RfR) + (305 + o+ 4Ppr) f12 + e’s{fé’ —<% - g)fé} }

)

(9)

The canonical form of action (1) gives
s= [ 2o RTNSR(T) ) (10)
Using Lagrange multiplier approach, we have

S-= J \/—_g{f ~(R-B7, —(TZ —TZ)% v p, O, 9)}dr,

(11)
where
N M9, 2
T =3p], + i
7= fe (12)
72 = sz,
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We see thatif R—R=0and T> - T° = 0, then the above equation (12) in (11) and eliminating the boundary terms
action reduces to action (1). Substituting the values from  with the help of integration by parts, we have

2
g(/l,S,R,TZ,A’,S’,R,,(TZ),) _ rZe(/\+9/2)<f+pm _RfR_l_? +fT2(3an+an _TZ))

(13)
- 29 2
+r2e 2 {(T - ?)fR + AR frg + /V(Tz)lfRTz }
The Euler-Lagrange equations are given as follows: where g’ represents the generalized coordinates of n-di-
mensional space. By using Lagrangian (13), equation (14)
E)Sf _ i B;.‘Z =0, (14) turns out to be
oq dr aqi'
2 2 2
f=Rfg+ P+ fr2 (305 + P + 120D, + 4pP, = T2) + 2P,
1[(29 2" 2 4R’
+5 {<79+iz——2)fR +<9'R’ -2R" ——)fRR
e T r r
4(T2)/ ,
9/ T2/_2T2 n_ 2—2RI
+ ( ( ) ( ) , Srr S rrr
~4R'(T?)' frgre = 2(T)' frer} = 0,
2, 2 2
f - RfR Pt fT2(3pm TPmt lzpmpm,g + 4ppm,9 -T )
1 [(2¢" 21" 2 4R’ ()
€ '
+ 2pm79 + ? {(1’2 - T - rz)fR — (A R’ + r)fRR
4 T2 l
— <AI(T2), + (r ) >fRT2 } = 0>
2 i / g/
s 2 s 2 o ATo2) 29 VM9 2
e KR—F)J[RR—(3Pm+Pm—T )fRTZ} +</\" et T T T frr =0
2 / ! 1q!
s 2 s s Y20 200 VM9 2
e <I(R—r2)fRTz —(3pm +p,, - T )szTz} +</\" +7+7_7_T+? frrz =0.
The corresponding Hamiltonian, H = ¢ (0Z/3¢’ ) - &, The generators of Lagrangian (13) are considered as
turns out to be follows:
v =gl il (17)
H= —e(A’SIZ)rZ{e‘()(f—RfR+(3pfn+pfn—T2)sz +pm+%) o oq"
r
where o = o (A, 9, R, T?) and C=009RTY(i=1,2,3,4)
_2fr_ AR frp =V (T°) f 2} are unknown coefficients of the vector field Y. The La-
2 RR RT (- . s L
r grangian must fulfill the condition of invariance for the

(16) vector field over the tangent space to assure the existence of
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Noether symmetries. In this regard, Y acts as a symmetry
generator that constructs the conserved quantities. The
condition of invariance can be expressed as follows:

YW + (D)L = Dy, (18)

where y represents the boundary term, Y! is the first order
prolongation, and D demonstrates the total rate of change.
This can also be expressed as follows:

Y[l] =Y + {i,i“
oq
(19)
D = 2 + qi,i’
or oq

where { =D{' - ¢’ Dy. The first integral of motion cor-
responds to Noether symmetry generator Y which is de-

This is the most significant part of Noether symmetries
which is also known as a conserved quantity. It is interesting
to mention here that the first integral plays a remarkable role
to obtain physically viable solutions.

The first integrals of motion are the main factors to
determine the characteristics of massive objects in modified
gravitational theories. By considering equation (18) and
comparing the coefficients, we have a set of partial differ-
ential equations named as determining equations. In this
case, we obtain the following system of equations:

0)=0,09=0,0r=0,072 =0, (21)

Ag=0,Ap=0,Ap =0, (22)

3 4 3 4
ofre Tt (,SfRTZ =0, C,)LfRR + c,/\fRTZ =0,

termined as follows: (23)
0F
I=-H+{—-vy. (20)
oq
”ZC,lrfRR + ZrC,ZRfR - 694/21//,12 =0, (24)
rzc,lrfRTz + 2r(,2'1‘2fR - es_m‘//,TZ =0, (25)
er,Z)LfR + rzci'fRR + ”ijlrfRTz - eS—A/zw)A =0, (26)
A= 9+ 205 fr+2rC fag +2r0 frpe -y =0, (27)
2070 fpag + 2070 frpre + 207 O frre + A = 94 28 + 20 = 20,7 frg = 0, (28)
2070 frrre + 200 frpepe + 20 O frp + A = 9+ 204 + 2000 = 20,7 fppe = 0, (29)
2
e“‘c’/zrz{f ~Rf g+ P+ fr23p5, +po = T? +§
'+
X 240, + 8 fpOPPm, + 2P, + P,
2 (30)

-+

“+

“+

(sz26pmpm,9 + ZPPmls + pm,s - (4fRRR —-2r
Fre30h + P = T2 = O fop3p5, + pp, — T

L 2f
2
frR—2r7" + ﬁw’r} -y, =0



Noether symmetry method minimizes the complexity of
the system and helps to determine the exact solutions.
However, it is complicated to derive a nontrivial solution
without taking any specific EMSG model. The analysis of
compact stars through Noether symmetry technique in the
curvature-matter coupling model would provide interesting
consequences. We investigate the presence of symmetry
generators with corresponding conserved quantities and
investigate structure of compact objects for f (R, T?) gravity
model. The minimal model is defined as follows:

F(RT?) = aR" + B(T2)"

This model determines a higher complexity of the phase
space characteristics with three main eras of the universe (ra-
diation-dominated, matter-dominated, and de Sitter) and so-
lutions exhibit accelerated expansions. We consider m =2 = n
for the sake of convenience.

It is worthwhile to explore perfect fluid as it explains
exact matter of various celestial objects like stars, galaxies,
etc. The cosmic matter configuration can also be examined
by dust fluid only when negligible amount of radiations is
present. The interaction of radiations with dust particles
supports to develop compact objects. In the following
equation, we examine features of compact stars and derive
exact solutions of the EMSG model for dust matter distri-
bution, ie., T}, = p,,U,U,. The simultaneous solutions of
equations (21)-(30) yield

(31)

{=cl,
F=cl+2c2,
(3 = Rc2,

0 =c3r,

(4 =0= v,

P = {(Roc/S(Rclrz +3Rc2r” + Re3r® — 4cl — 8¢2 — 463)
x(cl +¢c2 + c3))(”2)[3r(c1 +c2+ c3)}<1/2){ﬁr(c1 +c2+c3)} "
(32)
where ci represents the arbitrary constants. The generators of

the Noether symmetry and corresponding conserved
quantities become

Y —3.’_3
L7or 09
d d
Yz—%'f'Rﬁ,
d (33)
Y, =ra,
3 rar

I, = 2R(xe(’\79/2)(4r + a'rz),
I, = Zae(k_‘w)(rzR' + 2rR),

I; = —ae™ 9/2)(2(1'R' ~R*+4Rr™?
(34)

2 -2
+er* — 4eRr )
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4. Metric Potentials and Boundary Conditions

The conserved quantities obtained through the Noether
symmetry approach play a significant role to investigate
various physical characteristics of compact objects. This
approach has successfully been executed in axial and
spherically symmetric spacetimes [54, 55]. The solutions at
the boundary of compact objects are determined by smooth
matching of internal and external geometries. The metric
potentials of both interior and exterior spacetimes are joined
at the surface boundary through the relationship

D =0, (35)

We use the above mentioned conserved quantities to
obtain the metric potentials that are helpful to analyze the
realistic features of compact objects. Using equation (35) in
(33) and (34), it follows

I, = 2R(xeA(4r + a'rz),

I, = Zoce)”(rzR' + 2rR),

I, = —r3(xe)‘(2a'R' ~R*+4Rr et - 4e_ARr_2).
(36)

These equations cannot be solved analytically due to
their complicated and highly nonlinear nature. Hence, we
adopt a numerical method with suitable initial conditions to
examine the viable behavior of the metric elements.

In order to check the existence of singularities, we ex-
amine the viable behavior of line elements. For a physically
realistic and stable cosmological model, the metric potentials
must be nonsingular, positive as well as regular inside the
geometry of compact objects. The graphical behavior of the
metric elements obtained by first, second, and third con-
served quantities (I;,I,,I;) are presented in Figures 1-3,
respectively, which shows that the metric elements fulfill all
the required conditions. We would like to mention here that
for physically viable compact stars, the following conditions
must be satisfied:

(i) The effective energy density should be positive in-
side the stellar object as well as at the surface
boundary (PF>0,0<r<R).

(ii) The effective pressure should be positive inside the
stellar object ( peff > 0) and should be zero ( peff =0)
at the surface boundary (r = %).

(iii) The gradient of effective matter variables should be
negative for 0<r<%, ie, {(dpf/dr),_,=0,
(d?pft/dr?),_, <0, (dp/dr),_, =0, and
(d?p*ff/dr?),_, < 0}. This condition shows that the
effective matter variables must be decreasing at the
boundary of the surface.

(iv) The sound speed must be less than the speed of the
light.

These physical characteristics are important to deter-
mine the geometry of compact objects.
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F1GURE 1: Plots of metric potentials corresponding to 7.
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F1GURE 5: Plots of energy bounds.

In the following, we discuss physical attributes of
compact objects for the metric potentials obtained only by
the first conserved quantity (I,) because the effective matter
variables become undefined for the metric potentials ob-
tained by the second conserved quantity (I,) while the third
conserved quantity (I;) is quite complicated as we could not
find the appropriate value of the metric elements.

5. Physical Characteristics of Compact Objects

Here, we study physical features of the compact stars through
graphical analysis of the effective matter variables, energy
bounds, compactness parameters, gravitational redshifts, and
stability analysis against equilibrium forces and speed of sound.

5.1. Evolution of the Effective Matter Variables. The effective
matter variables inside the compact object should be
maximum at the center. For this purpose, we analyze the
behavior of compact objects for the range 0<r <10. We
plot the graphs for small radii to have the smooth nature
of compact objects. Figure 4 shows that the behavior of
effective matter variables is positive and represents the
decreasing nature at the boundary of the stellar structure.
This assures high compactness of the compact star at the
center. In fact, we observe that (dpeff/dr) =0,
(d?pf/dr?) <0, and (dpf/dr) = 0, (d?pf/dr?) <0 at r =
0 which determines the compact behavior of the star.
Here, we note that stellar geometries depend upon the first
integrals of motion.
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FiGure 6: Evolution of the mass function with respect to the radial coordinate.
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FiGure 7: Plots of the compactness parameter and surface redshift with respect to the radial coordinate.

5.2. Energy Conditions. The energy conditions play a crucial
role to investigate the physical existence of cosmological
geometries as well as viable matter distribution. For a
physically realistic geometry of compact objects, these
conditions must be satisfied. These conditions are consid-
ered as quite helpful to examine the nature of matter
(normal/exotic) inside the geometry of compact stars. These
bounds can be categorized into null (NEC), weak (WEC),
strong (SEC), and dominant (DEC) energy conditions. In
curvature-matter coupled gravity, these bounds are
expressed as follows [56]:

NEC: p + pf — A >0,

WEC: p™ - 420,p% + p — A0, o)

SEC: pT 4+ pf — A20,p™ +3p — A0,
DEC: p -~ A>0,p" + p* -~ A0,

where A = (1/4¢®) (\'” + 21" + 471 — 1'9') determines an
acceleration term that exists due to the additional impacts of
curvature-matter coupled gravity. For the physically viable
geometry, the energy density must be finite as well as positive
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everywhere and also have maximum value at the core of the
star. Figure 5 indicates that all required energy bounds fulfill
at every point inside the stellar structure and hence, it
confirms the viability as well as consistency of our chosen
EMSG model.

5.3. Compactness and Surface Redshift. The ratio between
mass and radius of a stellar object is known as compactness
factor. It can be seen clearly from the profile of the mass
function given in Figure 6 that the mass of the star is directly
proportional to the radius, and M (r) — 0 as r — 0,

which shows that the mass function is regular at the center of
the star. The compactness factor u is defined as follows:

M(r)
p

: (38)

The gravitational redshift (Z,) acts as a crucial parameter
to interpret the smooth relationship between particles in the
celestial object. In the framework of compactness parameter,
the gravitational redshift is expressed in the following form:

1
Zy=—F——e—
S A1-2u
The graphical evolution of the compactness factor and
surface redshift is given in Figure 7. These plots manifest that
the behavior of u(r) and (Z,) is increasing as required.

-1 (39)

5.4. The Modified TOV Equation. The conservation equation
is determined as follows:
ff
VETS = 0. (40)
We investigate the equilibrium state of the compact stars

through the modified TOV equation with dust matter
configuration as follows:

dp

et +/\_,(peff +Peff) =0.
dr 2

(41)

This equation determines the combination of two forces,
ie., hydrostatic force 5 and gravitational force &, that
define the equilibrium state of the stellar structure. In the
light of equation (41), these forces can be divided as &, =
A'72) (peff + peff) and F 4 = (dpeff/dr). The null impact of
these forces (F g4+ F 2= 0) ensures the presence of
physically realistic geometry of compact objects [57, 58]. The
graphical interpretation of # & and & , for distinct values of
o and B is given in Figure 8, which shows that these forces
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counter-balance each other’s effect and confirm the equi-
librium state of our stellar system.

5.5. Stability Analysis. The stability of compact objects has
great importance for a physically viable and consistent
model. In order to check the stability of our considered
model, we take into account Herrera’s cracking method [59].
According to this technique, the square of sound speed (v?)
must satisfy the condition (0<v?<1). The sound speed is
determined as follows:
eff
V= iﬁ . (42)

Figure 9 shows the graphical behavior of sound speed
indicating that v? satisfies the required condition. This in-
dicates the stability of our solution in this background.

6. Concluding Remarks

Noether symmetries are much helpful to find solutions of the
dynamical system. These can also provide some viable
conditions so that cosmological models can be selected
according to current observations [60]. The Lagrange
multipliers are used to minimize the dynamical system that
ultimately helps to evaluate analytical solutions. In this
paper, we have investigated the physical attributes of
compact objects via Noether symmetry technique. For this
purpose, we have taken static spherical spacetime with
perfect fluid configuration in the context of EMSG. We have
formulated the Lagrangian of this gravity and evaluated the
symmetry generators with corresponding conserved quan-
tities to analyze the solutions of modified equations of
motion. The analytic solutions of Noether equations have
been studied for the minimal coupling model of this theory
by assuming dust fluid just for the sake of simplicity. The
presence of conserved quantities is the key aspect in dis-
cussing the geometry of compact objects. The main findings
of this analysis can be summarized as follows:

(i) For a physically realistic and stable model, e* and ¢’
must be positive, finite, and nonsingular every-
where inside the stellar structure. The graphical
representation (Figures 1-3) of both the metric
potentials shows the viability and stability of these
quantities.

(ii) The effective matter variables must be maximum at
the center of compact objects. We are unable to
achieve the clear graphs for the complete range
(0 <r<10) of radii. Therefore, we have plotted the
graphs for the small radius to present the smooth
behavior of compact objects. Figure 4 indicates that
the effective matter variables have maximum value
at the core of compact object and then decreases
towards the surface boundary which shows phys-
ically viable behavior.

(iii) We have shown (Figure 5) that all energy condi-
tions are well satisfied for our considered model
exhibiting the physically viable matter.

Advances in Astronomy

(iv) We have found (Figure 6) the direct proportionality
of the mass function to the radius, M (r) — 0 as
r — 0, suggesting that the mass function is regular
at the center of the star.

(v) The graphical analysis of the compactness param-
eter and gravitational redshift function is found to
be increasing as required (Figure 7).

(vi) Itis found through TOV equation that gravitational
F 4 and hydrostatic forces F¢ are in equilibrium
for our proposed model (Figure 8) This ensures the
stability of our system.

(vii) Finally, we have examined the causality condition
through the speed of sound for the compact star.
We have obtained (Figure 9) that our gravity model
is consistent with this condition.

We have found that compact stars in this modified
gravity via Noether symmetry technique depend on the first
integrals of motion as well as model parameters « and 3. We
have shown that all physical characteristics of compact
objects obey the physically viable pattern with small range of
radii. We can conclude that Noether symmetry technique in
the framework of energy-momentum squared gravity pro-
vides a physically realistic and stable model. It is worthwhile
to mention here that this is the first investigation of compact
objects through Noether symmetry technique in the energy-
momentum squared gravity [61].
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