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In the present work, we investigate the existence of compact star model in the background of f (%, T) gravity theory, where %
represents the Ricci scalar and T refers to the energy-momentum tensor trace. Here, we use Karmarkar condition for the interior
stellar setup so that a complete and precise model following the embedding class-I strategy can be obtained. For this purpose, we
assume anisotropic matter contents along with static and spherically symmetric geometry of compact star. As Karmarkar
embedding condition yields a relationship of metric potentials, therefore we assume a suitable form for one of the metric
components as e? = ar? + b"~ '+ + 1, where a and b represent constants and # is a free parameter, and evaluate the other. We
approximate the values of physical parameters like a, A, and B by utilizing the known values of mass and radius for the compact
star Vela X-1. The validity of the acquired model is then explored for different values of coupling parameter A graphically. It is

found that the resulting solution is physically interesting and well-behaved.

1. Introduction

General relativity (GR) is regarded as the most promising
theory which has extremely good compatibility with the
cosmic observations. In the background of GR, the exam-
ination of structural properties and the dynamic nature of
high-density compact objects like neutron stars has gained
significant interest in recent decades. Pulsars and other high
magnetic-field spinning stars are some of the high-density
compact objects that are regarded as a major discovery in
astrophysics. Because of the lack of detailed description of
such objects, it is considered that the matter of these
compact objects can include composite subatomic particles.
Consequently, the basic problem of astrophysics is to de-
termine the configuration and formation of the fluid dis-
tribution in the internal setup of spherical objects. The first
two precise solutions of Einstein field equations depicting a
stable spherically symmetric configuration are found by
Schwarzschild [1, 2] which further inspired many re-
searchers to find the exact solutions of Einstein field
equations using perfect matter [3-10]. Earlier, the

spherically symmetric distribution of matter was thought to
be made of isotropic fluid where p, = p,. In 1992, Jeans [11]
proposed the presence of anisotropy factor which highlights
a deeper understanding of the distribution of matter under
intense and peculiar conditions occurring within stellar
objects. Ruderman [12] suggested that, at a very high density,
the stars may show the anisotropic behavior where nuclear
interaction is relativistic. There are several causes of an-
isotropy within a stellar structure like the existence of a
superfluid, solid core, a combination of various liquids,
phase fluctuations, magnetic field, and density [13-15].
Bowers and Liang [16] investigated the characteristics of a
fluid distribution (which is relativistic anisotropic) inside
static spherically symmetric configuration. The possible
effects of anisotropy on the stability of compact objects were
investigated by Dev and Gleiser [17-19]. They showed that
the difference in pressures influences the physical properties
of configuration, mass, and areas of excessive pressure.
Herrera and Santos [20] explained the impact of localized
anisotropy in self-gravitating objects. Moreover, this work
has been extended for all feasible isotropic, anisotropic, and
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charged anisotropic solutions by adopting a general pro-
cedure for the spherically symmetric metric [21, 22].

Although GR is a successful theory, it faces certain
obstacles after the cosmologists unfolded the scenario of
dark universe. It is argued that observational data of many
experiments [23-25] is evident that the universe is
expanding in its current state. This expansion was actually
discovered by the two sovereign projects, namely, Supernova
Cosmology Project and High-Z Supernova Search Team in
1998. This observation about the cosmological expansion of
the universe has been perceived as exceptionally crucial
mystery in modern physics. It is claimed that the major cause
behind this expansion is the presence of some ambiguous
dominant energy named as dark energy (DE). To study this
expansion and the concept of DE, there are two ways to
modify action of GR by modifying either the matter La-
grangian or the gravitational sector. Modifications of
gravitational part result in alternate gravity theories like
f (R) theory, where Z is the Ricci scalar, f (T, 1), where T
and 7 are, respectively, energy-momentum tensor trace and
torsion scalar, Gauss-Bonnet theory, Cartan gravity,
Brans-Dicke framework, Rosen bimetric and M-theory, etc.
In this respect, an interesting and significant extension of GR
has been presented by Harko et al. [26], which involves a
non-minimal coupling of curvature and matter field. This
theory has been used in studying various cosmic aspects like
thermodynamical laws, cosmological reconstruction, energy
conditions, etc. [27-30]. Shabani and Farhoudi [31] elabo-
rated the “weak field limit” by using a dynamical procedure.
They analyzed the cosmological solutions of f (2, T) theory
by taking into account some parameters like Hubble pa-
rameter and EoS parameter. Noureen and Zubair [32]
studied the instability of spherically symmetric star in
f (R, T) gravity in the presence of anisotropic fluid
distribution.

Different approaches have been developed to formulate
the analytical solutions of GR equations. One of them is to
use the embedding of a four-dimensional curved spacetime
into a higher-dimensional flat spacetime. Such type of
embedding has proved to be a successful technique in the
acquisition of several new exact models in cosmology and
astrophysics [33]. Embedding approach, in fact, generates
an extra differential equation establishing an interrelation
between metric potentials which is known as Karmarkar
condition [34]. Any valid assumption for one of the metric
potentials can generate the whole solution [35, 36] and is
regarded as class-I solution. Here, it is worthwhile to
mention that the Schwarzschild solutions for interior and
exterior geometry are of class-I and class-II, respectively
[37]. In literature, numerous stellar models have been
utilized to obtain different new classes of cosmologically
viable embedding class-I solutions by assuming valid ex-
pressions of metric function. In this respect, various au-
thors applied Karmarkar condition to model compact stars
in the framework of GR as well as its different modified
versions. Maurya and his collaborators [38-45] studied
compact stars evolving under different backgrounds and
developed the compact object models using Karmarkar
condition. They constructed well-behaved anisotropic
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solutions representing realistic compact stars like Her X-1,
RX] 1856-37, LMC X-4, EXO 1785-248, 4PSR J1903 + 327,
and 4U 1820-30. However, for anisotropic matter, nu-
merous cosmic models for different compact objects
[35, 36, 41, 42, 46-54] are considered by assuming phys-
ically rational expressions of line elements to test dis-
tinctive newly defined models of realistic results in class-I
embedding.

Many researchers worked on stellar modeling under
Karmarkar condition [50, 51, 55]. Malaver [56] considered
different forms of metric potentials to model compact star by
using equation of state. Jasim et al. [57] studied a model for
anisotropic fluid sphere under general relativity. Singh et al.
[53] studied a new static model for anisotropic fluid dis-
tribution using Karmarkar condition in GR. Abbas et al. [58]
have explored the modeling of quintessence compact stars
satisfying Karmarkar condition. Naidu et al. [59] have
checked the physical properties of radiating and collapsing
stars using embedded class spacetime. Singh et al. [52] have
also found the models of compact stars using non-flat
embedded class-I spacetime. Zubair and Abbas [60] studied
the interior models of some specific compact stars in the
background of f(%,T) gravity theory using Krori and
Barua solution [61]. Zubair et al. [62] also discussed the
possible formation of compact stars using spherically
symmetric metric in f (%, T) gravity theory. Moraes [63]
investigated the “stellar equilibrium configurations” of
compact stars in f (%, T) gravity theory using hydrostatic
equilibrium equation and also verified the physical prop-
erties of the stars. Recently, Zubair and his collaborator [64]
discussed the existence of spherical compact stellar models
in f(R,T) theory using anisotropic matter. Some other
remarkable work has been done on compact stars under
modified gravity theories [65-70].

Being inspired from this literature, we shall extend these
works in f (R, T) theory. In this paper, we shall work on the
modeling of compact star in the context of f (%, T) mod-
ified theory. To pursue this, we shall assume static and
spherically symmetric geometry with anisotropic distribu-
tion of matter. In Section 2, we shall define the basics of
f (R, T) gravity theory and present its field equations. In
Section 3, we shall define the famous Karmarkar condition
and present the corresponding embedding class-I solutions.
Section 4 shall provide the matching of interior and exterior
geometries via junction conditions and the determined
values of unknown parameters. In Section 5, we shall
provide the graphical analysis of the obtained model for
compact star Vela X-1 against different A. Here, we shall also
check the physical stability of the achieved model. The last
section shall provide a summary of major conclusions
drawn.

2. Basics of f (%, T) Modified Framework and
Field Equations

In this section, we shall briefly define the basics of f (%, T)
theory and its field equations. The general action of the
f (R, T) modified gravity theories is described as [26]
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where «? = (87G/c?) and herein we shall set G = c = 1 for
further calculations. Also, the symbols L,, and /=g rep-
resent the Lagrangian matter and determinant of metric
tensor, respectively. By taking the variation of action (1) with
respect to the metric tensor (g,,,), we get the following form
of field equations:

Ry~ VYo f 0 (RT) - Bf(%, T -0of, (%,T)]gw

= 87Ty, = f1 (AT (Tyy + Oy),
(2)

where %, represents the Ricci tensor and V,, stands for
covariant derivative while f, (%, T) and f1 (2, T) denote
the derivatives with respect to Ricci scalar # and energy-
momentum tensor trace T, respectively. Here, the intro-
duced terms O, and T, are linked with the stress-energy
tensor and are defined as

oL,
Ty = gyelom - Zag‘””
oT ©)
_ ol
©yy =g 855"

Itis argued that, in the framework of f (%, T) theory, the
tensor T, does not remain conserved as compared to other
modified gravity theories [71, 72] and hence gives rise to the
following conservation equation:

e P (r(2Arg’ (r) + A9’ (1) (4 = 1@ (1) + Arg (1) + (81 + 4)¢' (1)) + 421 + 1)(e* - 1))

3
R, T
VT, = @T(—fwr) (A D[(Tyy +0y,)7¥ In(f1 (%)
+V'0,, - %v‘ﬁr].
(4)

For the present work, let us assume anisotropic fluid
distribution which is defined as

—I]—Wp = (P + pt)Su/S(p PGy t (pr - Pt)ﬂww (5)

where 9, and 7, both represent the four-velocity vectors.
Also, p denotes the matter density while p, and p, stand for
radial and tangential pressures, respectively. For simplicity
purposes, here we consider a simple and viable form of
generic function f(%,T) given by f(%,T)=
f(R)+ f(T), where f(%)=R and f(T)=AT. Conse-
quently, its final form can be written as

f(R,T)=R+AT. (6)

Further, we consider the spherically symmetric space-
time representing the internal structure of static celestial
object and which is given by line element:

ds? = —e?Pdt? + & Vdr? + r2d6 + risin® 6d¢*,  (7)
where e?”) and e?(") both represent the metric potentials.

Using equation (2) along with the metric defined in equation
(7), we get the following form of field equations:

i 8
P A0+ D)2+ 1) ’ ®
e (r(9! (N (M= (1) + hrg! (1) + 4+ 4) — 2Arg' (1)) — 4(2h + (7 ~ 1)) (9)
r= A0+ 120+ 1) ’
- e”“”(Z()L +1)re’ (1) +¢' (1) (2= A+ Drg' () + A+ Dre (r)? =224 + )¢’ (1)) (10)
bt = 4A+1) A+ Dr )
A e (r(2rg’ (1) + 9" (1) (g’ () - r¢ (r) = 2) = 2¢' (1)) + 4(e* - 1)) (11)

4(A+ 1)r?



where A represents anisotropic function and is defined as

Ath‘Pr-

3. Karmarkar Condition and Embedding Class-I
Compact Star Model

In this section, we shall define the well-famed Karmarkar
condition and the corresponding embedding class-I solu-
tionsin f (R, T) theory. Eiesland provided [73] the necessary
and sufficient condition for Riemannian space of class-I in
the following form:

‘%1414'%2323 = ‘%1212‘%3434 + '%1224‘%1334' (12)

By using the above equation for spherically symmetric
line element, it is easy to find a differential equation in terms
of ¢ and ¢ as follows:

(¢'-¢)p'e +2(1-¢")g’ +9" =0 (13)
The integration of equation (13) yields

e‘P:[A+BJ\/Mdr]2, (14)

where A and B are introduced as integration constants.
With the help of the above equation, one can write the
anisotropy function as follows:
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9 2 ¢ ][ () ]
_4(A+1)e¢(”[r e““”—l” Py (15)

By imposing isotropy condition, i.e., A =0, it gives us
three possibilities to find solutions:

()e?=Cande? =1
(2) Schwarzschild interior solution
(3) Kohler-Chao cosmological solution

It is interesting to mention here that the first two so-
lutions do not give any new and physical interesting result
but the third one is a cosmological solution (as the pressure
disappears at r — ©0).

Now, we shall find a compact star model filled with
anisotropic fluid by taking Karmarkar condition into ac-
count. For this purpose, we assume the following form for
one of the metric potentials e?") [74]:

= 1V 1, (16)

where a and b represent arbitrary constants while 7 is a free
parameter. It is interesting to mention here that this choice
of gravitational potential g,, depicts finite, regular, and
increasing behavior. Consequently, we get the following
expression for the other metric potential:

e’ = (ZB ((n—6)(abr? +b"r") = ab(n—2)r’] (r)Vab "r> " + 1) | A)Z (17)
B b(l’l— 6)(lfl+2)\/a+bn*1rn72 >

where

1 -6 10-3 0 o
S TR IO ) (1)
22(n-2) 4-2n

](r):2F1<

Hence, the embedding class-I solution can be written as

ds? = — (23 ((n—6)(abr® +b"r") —ab(n - 2)r*] (r)Vab" "2 n+ 1) A

b(n-6)(n+2)Var+brir?

Now, by using the values of both metric potentials e? and

e? in equations (8)—-(11), we get the following expressions of

2
) dt? +(ar2 +0 1)dr2 +7r2d0 + r’sin” 6d¢°.

(19)

matter density and radial and tangential pressures,
respectively:
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[ 4abB (21 + 1) (n = 2)r*] (r)h (r)(abr® + b'r") = (n - 6)b"c (r)r"x

b2 (4a’6°B(2A + 1)r° + 2a°b°r*k (r) + 2abr* (26" '+ (A (21 + 1) (n + 2)d (1)
p= >
2ADEATDE@MIDN B 121 4 adn o+ 4)) + 357 (1 +2) (AL + D (r) + BY) + 6B(2A + DB
L +b"m (r)r") d
_ b—nr—n—Z n n 373 6 212 4 n _n
P = T DT Dete g ™) [((n = 6)b"c (r)r"(4a°’ B(2A + 1)r° + 2a°b%r* (Ab (24 + 1) (n + 2)d (r) + 6B(24 + 1)b"r
~ BB+ 1+ 1)+ 2abr0(r) + B's"p(r)) = 4abB (24 + 1) (n = Dr* Ne(r) ] (1) x(abr” + 1"’ )|
-n-2
_ r _ _ nin 292p 4. 2 n n
P T D@ Do e e [(-b(n = 6)c(r)r"(2a°6*Br* (n - 4)) + 2ab(n + 2)r’s (r) + b"r"t ()
=2aB(2A + 1) (n = 2)r’b> "] (r)(abr’ + b"r" ) (2abr’ + nb"r") )|
" Pu(rv(r)
20+ De(r)e(r)g(r)
(20)
where

4.

c(r) = \ab" " "+ 1,

dlr] = Va+b"'r"?,

e[r] = (abr2 +b'" + b)z,
ulr] = 2a°6%r* + "' (4ar® - n+ 2) + 26",
lr] = AL+ D)(n+2)d (r) + 2B(4A +3An +n + 1),
s[r] = —Ab(2A + 1)d (r) + B(1 - 21)b"r" + bB(A + 2),
hlr] = b"'r"(2ar® + n+ 1) + ab’r*(ar® + 3) + 6™, .
k[r] = Ab(2A + 1) (n +2)d (r) + 6B (21 + 1)b"r" + 2bB(A(n + 8) + 3),
glr] = (6 - n)(2abBr? + Ab(n + 2)d (r) + 2Bb"r") + 2abB(n - 2)r’c(r)] (r),
mlr] =b* (n+2)(2AQCA+ 1) (n+ 1)d(r) + B\(n+4)) + 4B(2A + DV™"r™" + 26" 1 (r)r",
vir] =(n- 6)b"c(r)r”(—b3(—2ar2 +n+ 2) +Ab(n+2)d(r) + 2anrn) —2abB(n-2) x r2](r)(abr2 N bnrn)’
olr] = Ab(24 + 1) (n+2)d (r) (2b"r" + b) + 3(6 QL+ DB = 4™ M+ n+ Dr" =" (A +2)(n + 2)),
plrl=24b Q20+ D) (n+ 2d () (b'r" +b) + B(4(2A + Db = 4™ W+t D" +0° (0 + 2 (A(n = 4) - 4)),
tlrl=b(n+2)(BAn+n+2)— AN+ Dnd(r)) — 4Bb" (An — 1)r".

Evaluation of Constants Using Junction or The matching conditions play a significant role in studying
Matching Conditions stellar objects by combining the internal and external ge-

ometries on the surface of the compact object (r = R). These

Here, we shall determine the values of arbitrary constants conditions ensure that crucial characteristics of stellar de-
present in the obtained model using junction conditions. ~ velopment are examined smoothly. We have to match



smoothly Schwarzschild metric which is taken as outer
spacetime (+) with the inner spacetime (—) to attain the
comprehensive set of parameters in terms of mass “M” and
radius “R” of the star. The well-known Schwarzschild metric
which is taken as exterior solution, for the present work, can
be written as

ds* = —¢df* + 'dr? + r2dQ?, (22)

where { = (1-2M/R),{"" = (1-2M/R)"', and dQ* = d¢’
+sin® D2,

The contributions introduced by the f(%,T) model
from the geometric and material sectors can significantly
change the external spacetime encircling the compact object
interior and even can avoid an appropriate connection by
introducing unusual behaviors on the surface. In addition,
vacuum approaches in the cases of modified gravity theories
may or may not correlate with those of general relativity.
Matching conditions also play their vital role in finding the
mass ‘M’ and radius ‘R’ of the stellar model. In this regard,
Senovilla [75] investigated the familiar Israel-Darmois
[76, 77] matching conditions for f (%) gravity theory,
taking into account the distribution of isotropic and an-
isotropic compact materials, and claimed that, in the domain

2M 1
(1__> 2 n—1pn 4
R aR*+b" 'R"+1

(1 —2M>—(A !
- =l A+
R b(n—6)(n+2)Va+ b~ R—?

Here, the first two equations are linked with the external
curvature continuity while the third equation is associated
with the size of compact object. Due to the lack of free
material substance, the continuity of the outer curvature is

2MB'R" - b"R™ + 2bM
bR*(2M - R)
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of f (&) theory, these junction conditions are not fulfilled at
all. In the framework of f (2, T) gravity theory, the presence
of geometric and material modifications makes the situation
more complex. In f (%, T) scenario, the matter contribution
is from the trace of energy-momentum tensor T but the
matter contribution is quite distinct from that of general
relativity in which Ricci scalar &# gives us the geometrical
contribution which is coupled by the parameter A.

It is worthy to point here that a radial coordinate
condition, i.e., r > r, must be implemented for avoiding the
possible finding of black hole configuration. The junction
conditions for the continuity of metric components g,, and
g,, are defined as

- +
9 = >
-+
9rr = Yrr (23)
99 _ 99u
or or’

By plugging all the corresponding values in equation
(23), we obtain the following relations:

2
[2B[(n - 6)(abR* + b"R") — ab(n— 2)R*] (R)Vab'"R>" + 1 ]]) ,

(24)

guaranteed, meaning that the boundary part is entirely
regular and smooth. Otherwise, the presence of this material
would lead to discontinuity. Using all these relations, we find
the values of involved parameters as follows:

(25)

! [ZabB(n ~2)RYJ(R)\ab" "R* "+ 1 +(n- 6)<b(n +2) x 1 —% \a+ bR

A:
b(n-6)(n+2)Va+b"'R"?

— 2abBR* - 2Bb”R”)]

(26)

220+ 1)1 = 2M/R)Va +b" 'R *(a’b’R" + abR® (26"R" + b) + b"R" (b"R" + b))

T4 (A + DR+ 2abR (4L + DU'R" 1 b(A +2)) + 'R (4 (L + DU'R" + b (4 — nd +4))

(27)
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where b is a free parameter while for parameters M and R,
we shall use the observed values of a well-known realistic
compact star.

5. Physical Properties

In the following subsections, the physical requirements of
the anisotropic stellar model will be examined graphically.
For this, we take the compact star Vela X-1 into account
whose mass and radius are already defined [78] and, con-
sequently, the values of parameter A, B, and a will be cal-
culated from equations (25)-(27). These values are
summarized in the form of Table 1.

5.1. Regularity of Metric Potentials, p, p,, p,, and A. The
graphical representation of metric potentials is provided in
Figure 1 which shows that both metric components are
physically acceptable; i.e., they admit regular, positive, and
increasing behavior throughout surface of star for all chosen
A values. It is argued that both radial and transverse pressure
components must be equal to satisfy the regularity at the
center, i.e., ¥ = 0, which leads to

_ VaB(A+2)-a(2AL + A)

Po=Po=""pgo o+

and hence affirms the regularity at » = 0. Also, the central
density can be described as

_ 6aA) +3aA + 3+/aBA

29
2A0 +3A0+ A (29)

which indicates that the density behaves positively at the
center.

Figure 2 shows the decreasing but positive behavior of p
towards the outer surface of star and which has maximum
value at the center, for small and large values of A.

Further, the behavior of both pressures (radial and
tangential) is shown in Figure 3 which indicates that both
pressure components exhibit positive decreasing behavior
from the center to the outer surface of the star. From
Figure 4, the behavior of anisotropy parameter can be ob-
served which indicates that this function vanishes at the
center. It is seen that the anisotropy parameter has positive
(non-vanishing) increasing behavior from the center to-
wards the outer surface of star when small values of A are
taken into account, while, for larger values of A, it shows
negative behavior which is non-realistic. It is worthy to
mention here that the non-negative condition of anisotropy
parameter is completely fulfilled for A = 0.25,0.35,0.45 for
0 <r<9.69. Further, the graphical illustration of gradients is
shown in Figures 5 and 6. It is seen that the gradients of p, p,,

A

2B (ab(n—2)r*~ab'="r2 7 + 1 ,,F, ((1/2), (n— 6/2(n - 2)); (10 — 3n/4 — 2n); —ab'~"r* ") + (6 — n) (abr* + b"r")) !

and p, are decreasing function of r and exhibit negative
behavior and, consequently, the conditions
dp/dr <0,dp,/dr <0, and dp,/dr <0 are satisfied for all
chosen values of A.

5.2. Energy Conditions. Some special restrictions known as
energy conditions must be verified for physically valid
matter fields. In the context of f(%,T) gravity theory,
Chakraborty [79] verified the authenticity of the energy
conditions by investigating these constraints in a general
way for perfect fluid spheres. In order to examine the via-
bility of proposed model, we shall explore these conditions,
namely, null energy condition (NEC), weak energy condi-
tion (WEC), and strong energy condition (SEC), graphically
which are defined as

NEC=:p(r)+ p,(r)=0, p(r)+p,(r)=0,

WEC=:p(r)+ p,(r)=>0, p(r)+p,(r)=0, p(r)=0,
SEC=p(r)+ p,(r)=0, p+p,(r)+2p,(r)=0,
DEC=:p(r)20, p(r)—p,(r)=0, p(r) - p,(r)=0.

(30)

The graphical behavior of these energy conditions by
taking different small and large values of A is provided in
Figure 7 which indicates that these energy conditions are
satisfied throughout the star surface for all chosen values of A.

5.3. Mass Function, Red-Shift, and Compactness Parameter.
Compact stellar structure’s mass to radius relation is defined
as

m = J47Tpr2dr. (31)

For the obtained stellar system, the graphical interpre-
tation of mass function can be seen in the left plot of Figure 8
which shows that it has regularity at the center and exhibits
monotonically increasing function versus for A = 0.25, 4, 10.
Now, we define the compactness parameter of the stellar
function as follows:

u(r) = : (32)

The graph of compactness parameter is provided in the
right plot of Figure 8 which indicates that it exhibits positive
and increasing behavior versus r for small as well as large
choices of A. The red-shift function of self-gravitating system
is defined as

- 1.

b(n- 6)(n+2)Va+b1yn2

(33)
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TaBLE 1: The determined values of constants a, A, and B using data of compact star Vela X-1. Here, we choose A = 0.25,4, 10 and n= 7.

A a(km~2) b(km~2) A B(km™1) R(km) M/M,
A =025 0.006947 0.04 2.050756 0.04229 9.69 1.97
A=4 0.006947 0.04 3.21250 0.08066 9.69 1.97
A=10 0.006947 0.04 3.49503 0.0899995 9.69 1.97
order to make sure of proper physical conduct, the usual
10+ . conservation law (identity of Bianchi) can be revised; that is,
b
e
ViT,, = 0. (34)
L, 08 1
E In the context of f (%, T) gravity, we acquire the TOV
‘fé o6 F - equation for anisotropic fluid sphere by using the above
5 equation and which is defined as
{:.) i
= 04 (1) dp,  2(pe=py) _
)y P 2Ry (35
5 (prrp) - .
0.2 where
. . . . . .
0 2 4 6 8 —u ()
r Fg = T (pr + P)’
--=1=0.25 dp
— =4 _ r
s F,= =1, (36)
FIGURE 1: Behavior of ¢? and e? against r for Vela X-1 under the 2(p, - p,)
values of parameters from Table 1 for A = 0.25,4, and 10. F,= M’
r

0.020 ~ T T T T

0.015 T~ 1

P 0.010 ==

0.005

-——1=025
=4
=10

FIGURE 2: Behavior of p under one small and two large values of A
for Vela X-1.

The graphical behavior of surface red-shift function is
shown in Figure 9 which indicates that it is a monotonically
decreasing function of » and hence meets all physical re-
quirements for a realistic compact.

5.4. Tolman-Oppenheimer-Volkoff (TOV) Equation or
Equilibrium Condition. The non-conservative property of
(R, T) gravity gives rise to a confusion that our existing
stellar model is in hydrostatic equilibrium or not. Thus, in

where F,F,, and F) represent, respectively, the force
contributions coming from gravitation, anisotropy, and
hydrostatic force. For a stable anisotropic configuration, the
sum of all the forces must be equal to zero (as can be seen
from equation (35)). Their graphical behavior of these forces
depicts that anisotropic and hydrostatic forces have a
combined positive effect, while the gravitational force has a
repellent and dominant behavior. Hence, all three forces
collectively counterbalance each other’s effect and leave the
stellar configuration in equilibrium state. The graphical
behavior of these forces is provided in Figure 10.

5.5. Stability Condition Analysis via Causality Conditions.
Here, we shall explore radial and transverse velocities of
sound and the stability condition of the proposed stellar
system graphically. For a stable stellar model of anisotropic
configuration, the velocities should be less than 1; i.e., v2 <1

and v2 <1 [80]. These velocities are defined as

dp

2 _ r

Vr = dr’

(37)

dp

2 _ 4P

v, = I

Their plots are shown in Figure 11 which indicate that
they satisfy the causality condition. Moreover, there is an-
other method to check the stability of a compact object,
known as Herrera cracking condition [6], which suggests
that both potentially stable and unstable systems can be
determined by taking into account some variations in the
distribution of sound propagation. The difference of both
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FIGURE 3: Graphical behavior of p, and p, against r for small and large values of A and for values of Vela X-1 defined in Table 1.
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FIGURE 4: Left panel shows the graphical behavior of A against r for three small values: A = 0.25,0.35, 0.45 while right panel provides the
behavior for three large values: A = 2,4,6 for known values of Vela X-1 defined in Table 1.
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FIGURE 5: Graphical behavior of dp/dr against r for Vela X-1 under the values of known parameters for A = 0.25, 4, 10.
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FIGURE 9: Graphical analysis of red-shift function z(r) for three
small and large A values using star Vela X-1 data.
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FiGgure 10: Graphical behavior of three forces, namely, F,, F;, and
F,, against r for Vela X-1 under the values of parameters from
Table 1 with A = 0.25, 4, and 10.

velocities (v —v2) should be —1<v? —v2<0. The plot of
Herrera cracking condition is shown in Figure 12 which
indicates that the obtained stellar system satisfies this
condition for small choices of A but v/ — v? is greater than 0
for larger A choices.

5.6. Stability Analysis via Adiabatic Index. The adiabatic
index examination is crucial for the configuration of a
compact body with spherically symmetric configuration
because it defines the intensity of the state equation at a
defined density [81, 82]. Several researchers [60, 83] have
provided the most exquisite way to examine the stability of
symmetrical compact object in the face of insignificant radial
adiabatic disruption by following the pioneering work of
Chandrasekhar [84]. Heintzmann and Hillebrandt [85]
proposed that a spherically symmetric model will be stable
throughout if the condition I' > (4/3) holds, where T' is the
adiabatic index and is defined as

P+pr 2
r =—7",. 38
o, (38)
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F1GURE 11: Graphical analysis of vf and vf forA = 0.25, 4, and 10 for
Vela X-1.
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Frcure 12: Graphical analysis of v} — v? and v> — v? for A = 0.25, 4,
and 10 for Vela X-1.

The graphical description of adiabatic index is shown in
Figure 13 which shows that the stability under adiabatic
index is acquired for the present model. Thus, it can be
concluded that the model is stable everywhere inside the
stellar object because T is greater than (4/3) for all chosen A
values.

5.7. Equation of State Parameter. In this subsection, we shall
define and check the behavior of radial and transverse
equation of state (EoS) parameters. The radial and tangential
EoS parameters are defined by the following expressions:

w0 =P
P
(39)
wt = &’
P
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FIGURE 14: Left and right panel of the figure show the behavior of w, and w;, respectively, for three different values of A and data of Vela X-1

star.
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TaBLE 2: The determined numerical values of central density, surface density, and central pressure for different values of 1. Here, we choose

A =0.25,4, 10.

A po(glem?) pr (glcm®) Po (dyne/cm?) (po’po)
A=0.25 2.34247 x 10'° 1.31044 x 10'° 4.24437 x 10%° 0.199
=4 6.24271 x 10" 3.38795 x 10" 1.40897 x 103 0.34634
A=10 2.85768 x 10%° 1.54579 x 10 6.58514 x 10% 0.2560

where p, and p, denote the radial and tangential pressures
while p denotes density of the anisotropic fluid. The
graphical analysis of these parameters is provided in Fig-
ure 14 which shows that both components have mono-
tonically decreasing behavior with respect to r. The radial
and transverse components are less than 1 for the smaller
choices of A. The transverse component satisfies the con-
dition for the range 0 < <7.594 only when larger choices of
A are taken into account.

6. Concluding Remarks

In this paper, we have discussed the modeling of static,
spherically symmetric stellar object filled with anisotropic
matter distribution in the framework of f (%, T) theory. For
obtaining closed solution to the f (%, T) dynamical equa-
tions, we have considered the simple linear form of generic
function f (%, T) and utilized the well-known Karmarkar
and Pandey-Sharma conditions for having embedding class-
I spacetime. We have found a relationship between metric
potentials e and e’ and then by assuming an interesting
form of metric component e?, we have evaluated the
resulting form of e which leads to a special class of an-
isotropic spherical compact object. In order to check the
physical validity of computed stellar solutions, one need to
fix the values of involved constant parameters. For this
reason, we have utilized the junction conditions across the
boundary by taking Schwarzschild geometry as outer
spacetime and found the values of unknown parameters
which are summarized in Table 1. Here, we have applied the
observed mass and radius of realistic compact star, namely,
Vela X-1. For checking different physical characteristics of
the constructed model, we have taken some large as well as
small values of A like A = 0.25,4, and 10. The numerical
values of central density, surface density, and central
pressure are shown in Table 2. The graphically examined
essential physical properties of the proposed stellar object
can be summarized as follows:

(i) The behavior of metric potentials e? and e? indi-
cated that these are monotonically increasing
function of r and well-behaved for all values of A.
Both components fulfill the requirement of a re-
alistic stellar configuration.

(ii) The graphical analysis of p and pressure compo-
nents depicted that these all are monotonically
decreasing (with maximum value at the center)
and positive versus r for different values of A.
Further, the graphical illustration of anisotropic
function A showed that it is increasing radially
outwards to the star surface while zero at the

center, only for small choices of A. For large A
values, anisotropic function exhibited negative
behavior versus radial coordinate. It is argued that
the positive A refers to p, > p,, which indicates the
outward-directed anisotropic force while negative
A refers to inward-directed anisotropic force. The
outward-directed anisotropic force balances the
gravitational force and hence corresponds to a
stable realistic star configuration. Thus, in the
present study, we can conclude that, for small A
choices, the anisotropic pressure is repulsive and
hence supports the structure of compact object
while for large A values, it may not be stable.
Further, the graphical behavior of density and
pressures gradients is shown in Figures 5 and 6
which indicates that all these gradients are negative
and decreasing in nature.

(iii) The graphical illustration of energy conditions

indicated that these bounds are satisfied for chosen
values of A.

(iv) The behavior of mass function, compactness pa-

rameter, and red-shift function has been examined
graphically. The graphical behavior of mass and
compactness parameter indicated that these
functions are regular, positive in nature, and
gradually increasing function of » while red-shift
function showed positive but decreasing behavior.
It is worthy to point out here that, in our case, red-
shift satisfies the Bohmer and Harko condition;i.e.,
Z, <5 for anisotropic matter.

(v) It has been shown that the dominating gravita-

tional force is balanced by the combined effect of
the other two forces (anisotropic and hydrostatic
force) which gives us a stable configuration. Hence,
our model has  satisfied the  Tol-
man-Oppenheimer-Volkoff equilibrium condi-
tion as shown graphically.

(vi) We have also examined the stability through

causality condition which indicated that both ra-
dial and transverse velocities are in accordance
with their respective conditions to be in equilib-
rium. Further, we have checked the validity of
Herrera’s cracking condition graphically which
also confirmed the stability of our proposed stellar
model.

(vii) Moreover, the stability of the stellar model has also

been analyzed by the well-known adiabatic index.
It can be from the graphical behavior that this
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satisfied the condition, i.e., I'> (4/3), throughout
the stellar evolution.

(viii) Lastly, we have explored the behavior of equation
of state parameters. It has been seen that both
radial and tangential parameters are less than 1 and
showed decreasing behavior for all values of A
using the data of compact star Vela X-1.

From all the above discussion, it can be concluded that
our defined model is stable, physically realistic, and
interesting.
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