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In the present article, we have investigated a new family of nonsingular solutions of static relativistic compact sphere which
incorporates the characteristics of anisotropic fluid and electromagnetic field in the context of minimally coupled f(R) theory of
gravity. +e strange matter MIT bag model equation of state (EoS) has been considered along with the usual forms of the
Karori–Barua (KB) metric potentials. For this purpose, we derived the Einstein–Maxwell field equations in the assistance of
strange matter EoS and KB type ansatz by employing the two viable and cosmologically well-consistent models of f(R) � R + cR2

and f(R) � R + cR(R + αR2). +ereafter, we have checked the physical acceptability of the proposed results such as pressure,
energy density, energy conditions, TOV equation, stability conditions, mass function, compactness, and surface redshift by using
graphical representation. Moreover, we have investigated that the energy density and radial pressure are nonsingular at the core or
free from central singularity and always regular at every interior point of the compact sphere. +e numerical values of such
parameters along with the surface density, charge to radius ratio, and bag constant are computed for three well-known compact
stars such as (CS1)SAXJ1808.4 − 3658 ((􏽥x � 7.07 km), (CS2)VelaX − 1 (􏽥x � 9.56 km), and (CS3)4U1820 − 30 (􏽥x � 10 km) and
are presented in Tables 1–6. Conclusively, we have noticed that our presented charged compact stellar object in the background of
two well-known f(R) models obeys all the necessary conditions for the stable equilibrium position and which is also perfectly fit
to compose the strange quark star object.

1. Introduction

Several few decades ago, an intellectual thinking came in
mind of research collaborators why our Universe is much
rapidly growing towards large expansion. +ey tried to find
out reasons behind this accelerating growth of Universe.
+en, in 1990s, it was found that our Universe is expanding
due to two hidden key factors of the nature, in which one of
them is the theorized form of the matter known as dark
matter and the other is unknown dark energy. Later on, the
right picture of these factors was revealed by the interna-
tional research collaboration team in 1998 by observing
supernovae type-Ia [1–9], which was later proved by sur-
veying of the cosmic microwave background (CMB) radi-
ation [10, 11], huge scale structure [12–17], and Wilkinson
Microwave Anisotropy Probe (WMAP) [18]. +e above

phenomenological factors of accelerating cosmic Universe
can be well interpreted in higher order modified gravity
theories rather than the concept of general relativity (GR)
theory because these gravity theories could easily identify the
right cosmological scenario of this mysterious Universe at
the higher order curvature scale. For their assessment,
several theoretical researchers and astrophysicists have
contributed a quite exceptional work in different mathe-
matical advances. To obtain these required mathematical
setups, we can simply modify the Einstein–Hilbert action of
GR corresponding to alternative theories of gravity such as
f(R) [19–22], f(R, T) [23], f(R,T, Rμ]T

μ]) [24–26], and
f(G) [27] gravity theories.

Exploring the physical stable configuration of relativistic
stellar bodies, e.g., black hole, strange quark stars, pulsars,
neutron stars, and white dwarfs in modified gravity theories,
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would be a good task to grasp this issue at the theoretical and
the astrophysical gauge for the researchers. In the massive
stellar bodies, the analysis of huge gravitational attraction
clearly defines the basic differences between GR and its
alterations. +e formation of huge dense star in an alter-
native f(R) theory of gravity has included several fruitful
characteristics to star models [28–36]. Psaltis [37] investi-
gated that the huge gravitational field can be reviewed as
modified theories of gravity. Briscese et al. [38] have pro-
posed the stable position of objects in f(R) gravity as a test
of the theory’s consistency. +ey reported that some para-
digms of f(R) gravity cannot maintain the stable position of
star and are treated unreliable. From the analysis of Tsuji-
kawa et al. [39], the unreliability regarding the stable po-
sition of these stellar bodies can be eluded due to scalar
tensor theory. Despite of these outcomes, various concrete
solutions have been made in the modeling of neutron stars
by employing the f(R) theory of gravity [40–48].

In the current investigation, we tried to find out new
verity of nonsingular solutions of charged anisotropic rel-
ativistic compact stellar models in minimally coupled f(R)

gravity that were priory propounded by Alcock et al. [49]
and Haensel et al. [50]. In regard to the existence of these
objects, many attempts have been performed with different
mechanisms during the last decade. Very recently, Shamir
and Fayyaz [51] studied different properties of anisotropic
compact celestial objects for Tolman–Kuchowicz spacetime
by considering two viable classes of f(R) models. +e same
author and his collaborators [52] determined the physical
aspects of compact stellar bodies for KB line-element in
modified f(R, ϕ) context. Yousaf et al. [53] investigated the
impacts of different viable f(R) paradigms on the existence
of anisotropic stellar compact objects and found that these
paradigms are well behaved at the astrophysical and the
theoretical scales. +e physical features of anisotropic
spherically symmetric strange stars with quintessence field
were discussed by Abbas et al. [54] for the specific pattern of
the f(R) � R + λR2 model. Zubair and Abbas [55] found
various realistic solutions of anisotropic interior compact
celestial systems in the framework of f(R) gravity. Sussman
and Jaime [56] explored the viable characteristics of the
f(R)∝

��
R

√
model for nonstatic LTB spacetime in the

presence of traceless anisotropic pressure tensor. Shabani
and Ziaie [57] revealed the influence of the particular
f(R, T) model on the stability of an emerging Einstein
Universe by employing the dynamical and numerical ap-
proaches. Garattini and Mandanici [58] proposed some
equilibrium stable formations of different compact stellar
systems and analyzed that additional higher order curvature
terms emerging from rainbows gravity are likely to support
different models of stellar systems. Several results of the
anisotropic cosmic evolution in the background of different
particular choices of f(R, T) models were suggested by
Sahoo et al. [59, 60]. From the literature survey, several
phenomenal findings regarding these compact objects have
been investigated in different alternative gravity theories
with distinct approaches [61–69].

In spite of these consequences, several realistic features
of anisotropic compact stellar systems have been examined

in GR during the couple of few decades. Some notable exact
solutions for the Einstein field equations with anisotropic
source distributions in different backgrounds have been
determined by Bayin [70], Cosenza et al. [71], andHarko and
Mak [72, 73]. Mak and Harko [74] found a class of exact
solutions of gravitational field equations for the physical
existence of a compact object made of a strange quark
matter. Kalam et al. [75, 76] proposed different analytical
solutions of anisotropic compact stellar objects with KB
spacetime. Hossein et al. [77] analyzed the physical aspects
of the anisotropic celestial system in the presence of a
cosmological constant.+e analytical results of Einstein field
equations describing the static anisotropic matter distri-
butions of compact objects were examined by Bhar et al.
[78, 79]. Very recently, the new family of exact solutions of
the embedding class 1 method for relativistic anisotropic
stellar bodies was explored by Singh et al. [80]. +e same
author and his collaborators [81] established new exact
solutions of Tolman VII for anisotropic spherically sym-
metric compact star candidates in the presence of exotic
matter nonlinear EoS. Various physical aspects of relativistic
anisotropic compact celestial objects with the dark matter
density profile were evaluated by Sarkar et al. [82]. More-
over, the physical realistic solutions of the DE profile for
anisotropic relativistic compact stellar bodies were deter-
mined by Errehymy and Daoud [83].

+e motivation for introducing an electromagnetic
source in a matter distribution can be well justified in light of
some theoretical manifests based on new techniques
allowing for the appearance of a greater charge in relativistic
compact celestial bodies. Particularly, there is a chance of an
immense electromagnetic field in compact stellar bodies
with a strange quark matter. A concerning problem emerges
from the fact that, if star can hold a nonzero amount of
charge, the contraction of such star can lead to a
Reissner–Nordström black hole. A quite novel study pre-
sented by Rosseland [84] affirmed that the independent
electrons of the extremely ionized gas that creates the star
can be expelled due to its immense thermal velocities. In fact,
a stellar body can hold a large value of electric charge
maintaining stability [85, 86]. Rahaman et al. [87] studied
several realistic properties of charged anisotropic compact
objects with strange matter EoS. +e embedding class 1
solutions of spherically symmetric compact stellar objects
with charge distribution were investigated by Maurya et al.
[88]. +irukkanesh and Maharaj [89] concluded that the
stability of a relativistic stellar object boost up with the
infusion of an electric charge. Esculpi and Aloma [90] re-
ported that the charge and anisotropy increases the stability
of the object under certain bounds. Eiroa and Simeone [91]
found that the electromagnetic field enhances the region of
consistency for both shells and bubbles around a black hole.

+e strange matter EoS based on the MIT bag model has
a crucial role in the modeling of very massive dense strange
quark stars. It has been foreseen that a neutron star is an end
state of the gravitationally collapsed object which after
consuming all its thermonuclear fuel comes into stabilized
position by degenerating pressure. After a short period of the
detection of the particle “neutron” by Chadwick, the
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occurrence of neutron stars was forecasted. Subsequently,
the notion got observational assistance with the detection of
pulsars [92]. With the progress in our thinking of particle
interaction at greater energy, theoretical composition of
neutron stars has quite enhanced during the last few decades
[93]. +e speculation that the quark matter can be the most
probable state of hadrons [94, 95] has focused to the debates
of a complete new class of celestial objects composed of
deconfined u, d, and s quarks, generally says that strange
quark stars.

According to above certain particulars, we have
attempted to discuss the interior charged sphere distribution
in the assistance of strange matter EoS within the f(R)

context. +e realistic features of the physical parameters for
the obtained solutions have been comprehensively studied,
and its numerical estimation is also obtained. +e ar-
rangement of this manuscript as follows: in Section 2, the
Einstein–Maxwell field equations for static anisotropic
charged sphere case are formulated, and its corresponding
solutions with central and surface values are also obtained.
Section 3 deals with the unknown arbitrary constants that
have been derived from the smooth matching conditions of
the interior metric and exterior Reissner–Nordström solu-
tion. +e estimated values of the physical parameters for our
strange star candidates and their physical significance in-
cluding energy conditions, TOV equation, anisotropy, and
stability conditions are thoroughly discussed in Sections 4
and 5, respectively. In subsequent section, we have examined
various physical profiles such as effective gravitational mass,
compactification factor, and surface redshift for our pre-
sented star candidate. Finally, Section 7 comprises the final
remarks for our present strange star candidate.

2. Charged Interior Anisotropic
Matter Configuration

We considered the static spherically symmetric strange star
configuration which is bounded by interiorly charged an-
isotropic source distribution within the framework of so-
called f(R) gravity theory. +e general formulation of
Einstein–Hilbert (EH) action in GR is expressed by

SEH �
1
2κ

􏽚 d
4
x

���
− g

√
R. (1)

+e above action in metric f(R) formalism with min-
imally coupled Maxwell source has the following form:

Smod+M �
1
2

􏽚 d
4
x

���
− g

√ f

κ
−

F
2π

􏼠 􏼡, (2)

where F � (1/4)Fτ]F
τ] determines the role of Maxwell

invariant, f � f(R) corresponds to the generic function of
Ricci scalar R, and κ represents the coupling constant.
+erefore, the set of f(R) field equations can be acquired by
the variation of equation (2) w.r.t metric tensor:

gχψ□ − ∇χ∇ψ + Rχψ􏼐 􏼑F(R) −
1
2

f(R)gχψ � κ Tχψ + Eχψ􏼐 􏼑.

(3)

Here, Eχψ is an electromagnetic tensor, Tχψ indicates an
energy-momentum tensor, F(R) � (df/dR) is the derivative
function of Ricci scalar R, □ corresponds to the D’Alembert
operator, and ∇χ stands for the covariant derivative. +e
above equation can be rearranged in the form of Einstein
tensor which yield as

Gχψ �
1
F

κHχψ􏼐 􏼑, (4)

where Hχψ � Eχψ + Tχψ + TD
χψ with

T
D
χψ �

1
κ
∇χ∇ψ − gχψ□􏼐 􏼑F(R) +

gχψ

2
(f − RF(R))􏼔 􏼕. (5)

+e role of TD
χψ as an effective energy-momentum tensor

arrives from the theory parameter, which literally describes
that the nature of dark energy correlates with early and late
time accelerating expansions of the cosmic Universe in the
gravitational system. In other words, this TD

χψ factor ex-
presses the fourth order differential geometry to identify the
huge curvature at the astrophysical and cosmological
backgrounds. Now, we presume the interior static strange
star distribution defined by the KB [96] line-element and is
given by

ds
2

� − e
ζdt

2
+ e

ξdr
2

+ r
2 dθ2 + sin2 θdϕ2􏼐 􏼑, (6)

where ζ � ζ(r) and ξ � ξ(r) are the two metric variables that
depend on r function and positively assumed. It is equivalent
to the KB type solutions where ζ � 􏽥Yr2 + 􏽥Z and ξ � 􏽥Xr2.
+us, 􏽥X, 􏽥Y, and 􏽥Z are the arbitrary constants and would be
investigated later through matching conditions. +e Ein-
stein–Maxwell field equations can be arranged with the help
of equations (3) and (6) by employing c � G � 1 and read by

ξ′
r

−
1
r
2􏼠 􏼡e

− ξ
+
1
r
2 � μ +

E
2

8π
􏼠 􏼡

8π
F

+
1
F

f − RF

2
+ e

− ξ 2
r

−
ξ′
2

􏼠 􏼡F′ + F″􏼠 􏼡􏼢 􏼣, (7)

ζ′
r

+
1
r
2􏼠 􏼡e

− ξ
−
1
r
2 � Pr −

E
2

8π
􏼠 􏼡

8π
F

−
1
F

f − RF

2
+ F′e− ξ ζ′

2
+
2
r

􏼠 􏼡􏼢 􏼣, (8)
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1
4

2
ζ′ − ξ′

r
− ξ′ζ′ + ζ′2 + 2ζ″􏼢 􏼣e

− ξ

� Pt +
E
2

8π
􏼠 􏼡

8π
F

−
1
F

f − RF

2
+ e

− ξ 1
r

+
ζ′
2

−
ξ′
2

􏼠 􏼡F′ + F″􏼠 􏼡􏼢 􏼣,

(9)

E(r) �
q(r)

r
2 , (10)

where q(r) � 4π 􏽒
r

0 ρr2e(ξ/2)dr signifies the total charge
inside the matter spheroid of radius r. +e following specific
MIT bag model EoS [49, 94, 95, 97, 98] determines the
strangematter distribution in the interior celestial object and
is read as

Pr �
1
3

μ − 4Bg􏼐 􏼑. (11)

Here, Bg is defined as the bag constant. +e difference
between the bag constant and mass density of the perturbed
and nonperturbed QCD vacuum was investigated by Mak

and Harko [74], and the units of bag constant Mevfm− 3 is
derived by Chodos et al. [98].

2.1. Solution of Modified Field Equations. +ere are five
independent equations together with above EoS given in five
unknowns, namely, energy density μ(r), pressures (Pr and
Pt), electric field E(r), and proper charge density ρ(r). +e
solution sets of these unknown parameters are determined
from equations (7)–(11); by implementing the KB type
ansatz ζ � 􏽥Yr2 + 􏽥Z and ξ � 􏽥Xr2, it becomes

μ �
3e

− 􏽥Xr2

16π
F( 􏽥X + 􏽥Y) +

1
2

( 􏽥X + 􏽥Y)rF′ − F″􏼈 􏼉􏼔 􏼕 + Bg,

Pr �
e

− 􏽥Xr2

16π
F( 􏽥X + 􏽥Y) +

1
2

( 􏽥X + 􏽥Y)rF′ − F″􏼈 􏼉􏼔 􏼕 − Bg,

Pt �
1
8π

7􏽥Y

2
−
3 􏽥X

2
− r

2 􏽥X􏽥Y + r
2 􏽥Y

2
+
1
r
2􏼠 􏼡e

− 􏽥Xr2
−
1
r
2􏼨 􏼩F + (f − RF) + e

− 􏽥Xr2 7r􏽥Y

4
−
5r 􏽥X

4
+
3
r

􏼠 􏼡F′ +
5F″
4

􏼠 􏼡􏼨 􏼩􏼢 􏼣 + Bg,

E
2

�
1
2

􏽥X − 3􏽥Y −
2
r
2􏼠 􏼡e

− 􏽥Xr2
+
1
r
2􏼢 􏼣F +

1
2

− (f − RF) + e
− 􏽥Xr2 r 􏽥X

2
−
3r􏽥Y

2
−
4
r

􏼠 􏼡F′ −
F″
2

􏼠 􏼡􏼢 􏼣 − 8πBg,

(12)

while the charge density is evaluated as

ρ �
e

− 3􏽥Xr2/2( 􏼁

16πr
3 ��

φ
√ 4F − 2 + 2e

􏽥Xr2
+ 2r

2
(2 􏽥X − 3􏽥Y) − r

4 􏽥X( 􏽥X − 3􏽥Y)􏼚 􏼛 − 2re
􏽥Xr2

􏼚 − 2F′􏼔

+r 4(f − RF) + 64πBg + r(f − RF)′􏼐 􏼑􏼛 − r􏼚 28 + r
2
(− 23 􏽥X + 21􏽥Y) + 2r

4 􏽥X( 􏽥X − 3􏼐

×􏽥Y))F′ + r 3 4 + r
2
(􏽥Y − 􏽥X)􏼐 􏼑F″ + rF

‴
􏼒 􏼓􏼛􏼕,

(13)

where
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φ �
e

− 􏽥Xr2

r
2 2F − 2 + 2e

􏽥Xr2
+ r

2
( 􏽥X − 3􏽥Y)􏼚 􏼛 + r − 8F′ + r − 2e

􏽥Xr2
(f − RF) + 16πBg􏼐 􏼑􏼒􏼚􏼔

+rF′( 􏽥X − 3􏽥Y) − F″􏼁􏼉􏼃.

(14)

+e total charge within a compact sphere of radius r

becomes

q � r
2

���������������������������������������������������������������������

Fe
− 􏽥Xr2

2
􏽥X − 3􏽥Y −

2
r
2􏼠 􏼡 +

F

r
2 −

1
2

(f − RF) − e
− 􏽥Xr2 r 􏽥X

2
−
3r􏽥Y

2
−
4
r

􏼠 􏼡F′ −
F″
2

􏼠 􏼡􏼢 􏼣 − 8πBg

􏽶
􏽴

. (15)

2.2. Constraints on Physical Parameters. To examine the
regular value (from central singularity free) at the core of the
strange stars models for the physical acceptability of energy
density (μ) and pressure (Pr). +ese physical parameters are
analyzed in the form of analytical expressions and are given
by

μ(0) �
3

16π
( 􏽥X + 􏽥Y)F −

F″
2

􏼢 􏼣 + Bg, (16)

Pr(0) �
1

16π
( 􏽥X + 􏽥Y)F −

F″
2

􏼢 􏼣 − Bg. (17)

+e above solutions (μ(0) and Pr(0)) are free of central
singularity and finite (regular) at the core of the different
strange star candidates. +ere is also nonnegative behavior
and maximum position at the center of the compact sphere.
+e numerical values of the said parameters are provided in
Tables 1–6 for three different strange stars ((CS1)

SAXJ1808.4 − 3658 (􏽥x � 7.07 km), (CS2) VelaX − 1
(􏽥x � 9.56 km), and (CS3) 4U1820 − 30 (􏽥x � 10 km)) with
two cosmologically prominent viable f(R) models. More-
over, at the core of compact sphere, the electric field (E)

must disappear for the requirement of regularity condition.
+e regularity of the electric field turned out to be

0 � E
2
(0) �

3F

2
( 􏽥X − 􏽥Y) −

1
2

(f − RF) +
9F″
2

􏼠 􏼡 − 8πBg.

(18)

From the above result, we obtain the value of the bag
constant Bg.

Bg �
3F

16π
( 􏽥X − 􏽥Y) −

1
16π

(f − RF) +
9F″
2

􏼠 􏼡. (19)

We used the value of the bag constant (Bg) in equation
(16) and then obtained the parameter 􏽥X in terms of the
central density and modified f(R) terms which is expressed
by

􏽥X �
1
F

8πμ(0)

3
+

(f − RF)

6
+ F″􏼢 􏼣. (20)

+enumerical values of Bg are provided in Tables 1–6 for
three distinct strange star candidates through two different
viable f(R) models for the values of free parameter c.

3. Matching Conditions

We explore the three unknown arbitrary constants in terms
of M, R, andQ by imposing the smoothmatching conditions
between the interior spacetime and exterior
Reissner–Nordström solution at the bounding three-surface
r � 􏽥x (where 􏽥x> 2M) of the fluid sphere. Both interior and
exterior metrics at the bounding hypersurface must be
continuous. Hence, the exterior line-element of the spherical
star was well depicted by the Reissner–Nordström solution
[99, 100] and is expressed by

ds
2

� − 1 −
2M

r
+

Q
2

r
2􏼠 􏼡dt

2
+ 1 −

2M

r
+

Q2

r2
􏼠 􏼡

− 1

dr
2

+ r
2 dθ2 + sin2 θdϕ2
􏼐 􏼑,

(21)

where Q, M, and r � 􏽥x are the total charge surrounded
within a bounding three-surface, the total mass of the
gravitational system, and the radius at the bounding hy-
persurface (i.e., where exterior and interior spacetimes are
smoothly matched). +e continuity of the gravitational
potentials grr, gtt, and (zgtt/zr) across the junction interface
r � 􏽥x between the exterior and interior geometries of the
sphere provides the following expressions:

1 −
2M

􏽥x
+

Q
2

􏽥x
2􏼠 􏼡 � e

􏽥Y􏽥x2
+􏽥Z

, (22)

1 −
2M

􏽥x
+

Q2

􏽥x2􏼠 􏼡

− 1

� e
􏽥X􏽥x2

, (23)

M

􏽥x
2 −

Q
2

􏽥x
3􏼠 􏼡 � 􏽥Y􏽥xe

􏽥Y􏽥x
2
+􏽥Z

. (24)

+e resulting expressions (22)–(24) yield the following
outcomes for the arbitrary unknown constant parameters:
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Table 1: Computed values of the physical parameters, namely, matter density, radial pressure, total charge, bag constant, and their unknown
arbitrary constants ( 􏽥X, 􏽥Y, and 􏽥Z) for the CS1 candidate with the viable model f(R) � R + cR2, in which we assume c is the free constant
parameter of the proposed model.

c 􏽥X(km− 2) 􏽥Y(km− 2) 􏽥Z(km− 2) (Q2/􏽥x2) Bg(km− 2) μ(0)(1015)(gm/cm3) μ(􏽥x)(1015)(gm/cm3) Pr(0)(1035)(dyne/cm2)

0.1 0.01702 0.01282 − 1.4915 0.0258 0.0002543 2.7414811 1.3671234 4.1084432
0.2 0.01708 0.01291 − 1.4989 0.0246 0.0002559 2.7556953 1.3713454 4.1252010
0.3 0.01714 0.01300 − 1.5064 0.0234 0.0002571 2.7693707 1.3750069 4.1443929

Table 2: Values of the unknown constant parameters, bag constant, and physical parameters are calculated for the CS1 object by using the
well-known model f(R) � R + cR(R + αR2), in which α is the fixed constant number and c is the free parameter of the suggested model
(where α � 0.5).

c 􏽥X (km− 2) 􏽥Y (km− 2) 􏽥Z (km− 2) (Q2/􏽥x2) Bg (km− 2) μ(0)(1015) (gm/cm3) μ(􏽥x)(1015) (gm/cm3) Pr(0)(1035) (dyne/cm2)

0.1 0.017027 0.012824 − 1.49211 0.0257 0.0002546 2.7427695 1.3675466 4.1074605
0.2 0.017083 0.012916 − 1.49955 0.0245 0.0002558 2.7562841 1.3713648 4.1285794
0.3 0.017139 0.013009 − 1.50702 0.0233 0.0002566 2.7693403 1.3746579 4.1547818

Table 3: Estimated values of the bag constant, physical parameters, and their unknown constants for the (CS2) candidate through the
proposed model f(R) � R + cR2.

c 􏽥X (km− 2) 􏽥Y (km− 2) 􏽥Z (km− 2) (Q2/􏽥x2) Bg (km− 2) μ(0)(1015) (gm/cm3) μ(􏽥x)(1014) (gm/cm3) Pr(0)(1035) (dyne/cm2)

0.1 0.00834 0.00610 − 1.3201 0.0128 0.0001350 1.3427257 7.2354488 1.8435704
0.2 0.00835 0.00612 − 1.3228 0.0123 0.0001356 1.3459457 7.2498261 1.8435321
0.3 0.00837 0.00614 − 1.3261 0.0117 0.0001368 1.3507778 7.2710506 1.8386382

Table 4: Numerical values of the physical parameters, bag constant, and unknown arbitrary constants calculated from the CS2 candidate by
implementing a viable model f(R) � R + cR(R + αR2) for different values of free parameter c and α � 0.5.

c 􏽥X (km− 2) 􏽥Y (km− 2) 􏽥Z (km− 2) (Q2/􏽥x2) Bg (km− 2) μ(0)(1015) (gm/cm3) μ(􏽥x)(1014) (gm/cm3) Pr(0)(1035) (dyne/cm2)

0.1 0.008339 0.006102 − 1.31995 0.01283 0.0001347 1.3424020 7.2322780 1.8474434
0.2 0.008353 0.006123 − 1.32297 0.01228 0.0001356 1.3464280 7.2505875 1.8449772
0.3 0.008365 0.006143 − 1.32594 0.01174 0.0001363 1.3499435 7.2660481 1.8442099

Table 5: Values of the unknown constants, bag constant, and physical parameters computed from the (CS3) object by using the well-known
model f(R) � R + cR2 for different choices of free parameter c.

c 􏽥X (km− 2) 􏽥Y (km− 2) 􏽥Z (km− 2) (Q2/􏽥x2) Bg (km− 2) μ(0)(1015) (gm/cm3) μ(􏽥x)(1014) (gm/cm3) Pr(0)(1035) (dyne/cm2)

0.1 0.00958 0.00742 − 1.7017 0.0471 0.00012959 1.5412454 6.9890067 2.5256667
0.2 0.00960 0.00745 − 1.7060 0.0465 0.00012961 1.5452920 6.9941908 2.5374675
0.3 0.00962 0.00748 − 1.7103 0.0459 0.00012958 1.5492713 6.9986608 2.5498737

Table 6: Values of the bag constant, unknown arbitrary constants, and physical parameters are computed from the CS3 candidate through
the proposed viable model f(R) � R + cR(R + αR2).

c 􏽥X (km− 2) 􏽥Y (km− 2) 􏽥Z (km− 2) (Q2/􏽥x2) Bg (km− 2) μ(0)(1015) (gm/cm3) μ(􏽥x)(1014) (gm/cm3) Pr(0)(1035) (dyne/cm2)

0.1 0.009587 0.007427 − 1.70143 0.04714 0.0001296 1.5423844 6.9897874 2.5289177
0.2 0.009604 0.007456 − 1.70595 0.04651 0.0001295 1.5459478 6.9936871 2.5412079
0.3 0.009621 0.007486 − 1.71069 0.04585 0.0001293 1.5494569 6.9965141 2.5549496
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Consequently, we found the solutions of these unknown
parameters 􏽥X, 􏽥Y, and 􏽥Z in the form of total charge Q, mass

M, and radius 􏽥x for our proposed different strange stars
which are quite suitable to describe the graphical evolution.
+e approximated numerical values of these unknown pa-
rameters for three different strange star candidates
(CS1)SAXJ1808.4 − 3658 (􏽥x � 7.07 km), (CS2)VelaX − 1
(􏽥x � 9.56 km), and (CS3)4U1820 − 30 (􏽥x � 10 km) with
two distinct viable f(R) models are given in Tables 1–6.
Here, it would be very necessary to examine the analytical
expression of the charge Q of the strange star. So, we
employed the above equations on the system constraint and
is given by

1
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2
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Alternatively, we obtained the numerically solved esti-
mated value of the above result to the ratio of charge and
radius (Q/􏽥x) for the given compactness (M/􏽥x) of star. In
spite of this condition, there is another estimation that
should be validated between the charge radius ratio and the
compactness as ((Q2/􏽥x2)< (2M/􏽥x)). +e maximum allow-
able limit of the charge to radius ratio (Q2/􏽥x2) is given in
Tables 1–6 for different celestial objects with two well-known
f(R) models for different choices of free parameter c. +ese
numerical estimated values signify that our presented ce-
lestial objects are very capable to be strange stars instead of
neutron stars.

4. Analysis of Physically Estimated Values

Since we have examined the physical bounds of the compact
stars along with their corresponding unknown parameters
that are well-consistent to our standard observational data,
we noticed from this investigation that the compactification
of the star is greater than that of a neutron star. +is analysis
would be very fruitful to obtain an estimation of the physical
reliable results, namely, matter density, pressure, charge to
radius ratio, and the bag constant. We studied compact star
candidates of distinct compactness and computed the rel-
evant unknown constant parameters. +e numerical values
are given in Tables 1–7. For instance, we observed the es-
timated values of CS1 candidate of mass 1.435M⊙ and radius
􏽥x � 7.07 km in the background of the viable model f(R) �

R + cR2 for the value of c � 0.1, and the numerical values of
the unknowns are gained as 􏽥X � 0.01702, 􏽥Y � 0.01282, and
Bg � 0.0002543 in units of (1/km2) and Q2/R2 � 0.0258.

Substituting the values of c and G into the corresponding
expressions, afterwards, the values of the physical param-
eters and the bag constant are μ(0) � 2.7414811
×1015(g/cm3), μ(􏽥x) � 1.3671234 × 1015(g/cm3), Pr(0) �

4.1084432(dyne/cm2), and Bg � 192.157(MeV/fm3), re-
spectively. Note that for the next increasing values of c, the
corresponding values of the unknowns, energy density,
pressure, and bag constant increase, but the value of charge
to radius ratio decreases (Table 1). At similar fashion, one
can also check the values of these physical parameters
against another well-known viable model
f(R) � R + cR(R + αR2). From the constraint of equation
(26), the minimum value of the charge to radius ratio is
0.0128 against the minimum compactness � 0.273 of the
given star data. Hence, for the star of mass 1.77M⊙, the
relevant maximal radius is 􏽥x � 9.56 km. For the feasible
reliable investigation of the physical parameters at the in-
terior of the celestial object, we have considered the CS1
object and drawn different evolutions of the matter density,
pressures (radial and tangential), electric field, energy
conditions, equilibrium equation, and stability parameters.

Moreover, in this scenario, the value of Bg escalates with
the increment of the compactness (i.e., Bg is the density
reliant). An ultradense object wants maximum Bg. +e
corresponding attentions were determined in [101], where a
density-reliant Bg has been considered to paradigm mag-
netized strange quark structures. To continue this descrip-
tion, the leading motivation of Farhi and Jaffe [95] presented
that for the stable strange matter configuration and esti-
mated that the Bg must encompass nearly 60MeV/fm− 3. In
comparison of these results, our outcomes indicate that with
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the incorporation of electromagnetic charge and anisotropy,
Bg returns in a greater value. In regard of the study by Farhi
and Jaffe [95], the investigation was identified for a β-stable
strange quark matter fulfilling the baryon number conser-
vation principle where the uncharged state was considered.
+e framework of stability was constituted by three factors
such as Bg, the mass of the quark particles, and the QCD
coupling constant. What comes off if the uncharge state is
not implemented is not clear from the study. For a likely
immense strange quark matter, there might be a gathering of
an absolute positive charge in the interior of the object.
Perhaps, in the inclusion of electric charge, to resist the
directed outward force produced due to the electromagnetic
field, the bag pressure escalates. +e point, although, is a
problem of more analysis.+us, when one wants to employ a
mathematical consistent and physically reliable exact result
to paradigm strange objects, the Bg does not carry a con-
stant.+erefore, it becomes a free parameter that depends on
the compactification of the object.

5. Physical Aspects of the CS1 Object

5.1. Evolution of Matter Density, Pressure, and Electric Field.
In this conjecture, we described suitable aspects of the
various physical parameters, namely, energy density, radial
and transverse pressures, electric field, and derivative
function of the energy density and radial pressure for the
proposed CS1 candidate in the background of two popular
and cosmologically viable classes of f(R) models. +ese
types of feasible models are f(R) � R + cR2 [102] and
f(R) � R + cR(R + αR2) [42], in which one of them is
recognized as quadratic curvature formulation of the generic
function of Ricci scalar R and the other is the modified form
of the prior model in terms of cubic corrections. Several
reasonable outcomes of these models have been devoted in
the literature [53, 103–106] for the physical evaluation of the
collapsing star and the stable equilibrium condition of the
star at the theoretical as well as the astrophysical
backgrounds.

It would be very necessary to discuss on the role of model
parameters because they should be quite consistent and right
for the stable formation of the interior celestial object.
Besides other unknown parameters, these are considered as
initial parameters and govern the physical aspects and their

graphical evolution of the stable object. Hence, in our first
suggested paradigm f(R) � R + cR2, the value of c is
considered as 0.1–0.3 at equal intervals of units, and this
similar approach was used for the model f(R) � R + cR

(R + αR2), in which α � 0.5.
To obtain the stable configuration of the compact star,

there are several feasible features available from which first
we analyze matter density and radial and transverse
pressures for their physical credibility and graphical evo-
lution. +ese said parameters must be free of central sin-
gularity or regular at the core of the interior compact stellar
object as well as nonnegative throughout the whole dis-
tribution. Also, the nature should be maximum around the
center where 􏽥x � 0 and minimum at the boundary surface
of the sphere where r � 􏽥x. +e derivatives of the matter
density and radial pressure are monotonically decreasing
functions of r, i.e., their evolution satisfies the bound
0< r< 􏽥x.

+e evolution of the energy density with their respective
f(R) models for the interior compact object is studied and
shown in Figure 1. It is seen from Figure 1 that each plot of
the energy density shows nonnegative nature within the
entire region of the star, and it suggests maximum behavior
at the center and minimum towards the boundary surface of
the sphere. Apart from this description, one important point
to discuss is that the numerical value of the central density is
up most in competition of the surface density of the compact
star candidates (Tables 1–6), which is actually the property of
massive strange quark stellar objects [107–110]. Figures 2
and 3 show the evolutionary nature of the radial and
transverse pressures through graphical analysis by using two
well-known f(R) models. One can easily understand from
Figures 2 and 3 that the radial and tangential pressures with
their respective f(R) models represent positive evolution in
the entire distribution of the star and indicate the utmost
regular behavior at the core of the star but low most at the
boundary surface where r � 􏽥x. In particular, we note that the
radial pressure sharply dies out at the boundary sphere [111],
but transverse pressure does not disappears promptly at the
surface of the sphere which displays the spheroidal nature of
the strange celestial star [112–114]. Figure 4 shows the
distribution of the derivative function of energy density and
radial pressure by employing the numerical values of dif-
ferent unknown parameters. It can be eminently seen from
Figure 4 that both combined plots with their respective f(R)

models indicate monotonically decreasing nature within the
entire region of the sphere, i.e., they possess negative be-
havior at the interior of the star. Moreover, we plot the
evolution of the electric field for the proposed CS1 object
with two viable f(R) models (Figure 5). +e evolutionary
behavior of the electric field in each respective plot suggests
positive nature and increases with the increase of r of the
celestial star.

5.2. Equation of State. We shed light over the results of EoS
parameters for the presented interior CS1 candidate with
two prominent and cosmologically viable f(R) models.
Various consequences of the EoS parameters have been

Table 7: +e observational data of the radii, masses, and com-
pactifications for the three well-known compact objects ((CS1)
SAXJ1808.4 − 3658, (CS2) VelaX − 1, and (CS3) 4U1820 − 30). We
proposed our study with CS1 candidate to describe the physical
importance as well as their graphical representation.

Compact stars 􏽥x(km) M(M⊙)
Mass
(km)

(M/􏽥x) (2M/􏽥x)

SAXJ1808.4 − 3658 7.07 1.435 2.1166 0.299 0.598
<(8/9)

VelaX − 1 9.56 1.77 2.6108 0.273 0.546
<(8/9)

4U1820 − 30 10 2.25 3.3188 0.331 0.662
<(8/9)
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observed in different mechanisms [115–117]. +us, the re-
quired analytical expressions of EoS parameters for our
proposed object are given as

Here β � ( 􏽥X + t􏽥Y)(2F + rF′) − F″. Figure 6 shows the
examination of the physical evolution of EoS parameters,
namely, ωr and ωt for our presented stellar object in the
background of two well-known f(R) models. It can be
clearly seen from Figure 6 that each combined plot with a
magnified image ofωr andωt shows positive behavior within
the entire configuration of the system and gradually de-
creases from the center towards the boundary surface of the
star. We also note that the nature of ωr and ωt remains in the

range between 0 and (1/3), i.e., 0<ωi < (1/3), which clearly
signifies the nonexotic behavior [118] of the principal matter
configuration.

5.3. Energy Conditions. Here, we confirmed various energy
conditions for charged anisotropic relativistic strange
matter distribution in the framework of metric f(R)

gravity. +ese energy conditions earned a much significant
role for any physically realistic choice of interior matter
configuration because these must be positive at any interior
point of the entire region of the star. +erefore, we satisfied
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Figure 1: Variation of energy density w.r.t. radial coordinate r of CS1 object for f(R) � R + cR2 (a) and f(R) � R + cR(R + αR2) (b), by
employing α � 0.5 in this whole study.
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Figure 2: Physical variation of the radial pressure with radial distance r of the CS1 object for two well-known models f(R) � R + cR2 (a)
and f(R) � R + cR(R + αR2) (b).
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various energy conditions, namely, null energy conditions
(NEC), weak energy conditions (WEC), and strong energy
conditions (SEC). +e following inequalities fulfill si-
multaneously for all interior points of the strange star
distribution.

NEC :
E
2

8π
+ μ≥ 0, (27)

WECr:Pr + μ≥ 0,

WECt:
E
2

4π
+ Pt + μ≥ 0,

(28)

SEC :
E
2

4π
+ Pr + 2Pt + μ≥ 0. (29)

We determined the combined nature of above in-
equalities (28)–(30) for our presented strange star candidate
with two viable classes of f(R) models in Figure 7. It is
obviously seen from Figure 7 that both plots of the combined
energy conditions with their respective f(R) models show
positive nature within the whole distribution of the star.
+us, the representation tells us that all the energy condi-
tions are satisfied and well tested for our proposed strange
star object, which actually indicates towards the physically
realistic configuration of the system.
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Figure 3: Evolution of transverse pressure (Pt) versus radial coordinate r of the CS1 object with viable models f(R) � R + cR2 (a) and
f(R) � R + cR(R + αR2) (b).
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Figure 6: Variation of EoS parameters (ωr and ωt) versus r of the CS1 candidate with viable models f(R) � R + cR2 (a) and f(R) �

R + cR(R + αR2) (b).
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Figure 5: Evolution of electric field (E2) as a function of r for CS1 candidate for feasible models f(R) � R + cR2 (a) and f(R) �
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5.4. Equilibrium Condition. In this analysis, we focused on
the modified hydrostatic equilibrium condition for the in-
vestigation of physical viability of our presented strange
celestial object. In the modified equilibrium condition, any
anisotropic-charged relativistic matter composition is in the
stable state under the combined effect of several forces,
which are dark force, electric force, anisotropic force, hy-
drostatic force, and gravitational force. +e stable state of
any matter composition can be studied by proving the
generalized Tolman–Oppenheimer–Volkoff (TOV) equa-
tion [119,120,121]. +us, the modified TOV equation has
turned out to be the following form.

− Pr + μ( 􏼁
ζ′
2

−
dPr

dr
+ Pt − Pr( 􏼁

2
r

+
e

(ξ/2)ρ
r
2 q − D � 0, (31)

+e result of equation (31) defines the stable position for
the anisotropic-charged matter sphere under the combined
effective behavior of five forces such as dark force (Fd) due
to f(R) dark source term, electric force (Fe), anisotropic
force (Fa), hydrostatic force (Fh), and gravitational force

(Fg). So, the above result can also provide the following
stable formation:

Fg + Fh + Fa + Fe + Fd � 0, (32)

where

Fg � − Pr + μ( 􏼁􏽥Yr,

Fh � −
dPr

dr
,

Fa � Pt − Pr( 􏼁
2
r
,

Fe � ρe
􏽥Xr2/2( 􏼁

E,

Fd � − D.

(33)

Here, D represents the dark source term determines
from the fourth order f(R) geometry and is given by
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1
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e
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1
2
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Figure 7: +e combined behavior of different energy conditions shown against r for CS1 candidate for two well-known models f(R) �

R + cR2 (a) and f(R) � R + cR(R + αR2) (b).
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We plot the combined action of five different forces
predicted by equation (32) for the presented CS1 object with
two different choices of viable f(R) models as shown in
Figure 8. One can easily note from Figure 8 that each plot of
the equilibrium condition with their respective f(R) models
suggests that the hydrostatic, anisotropic, electric, and dark
forces act in outward direction or have a repulsive role in
nature and gravitational force acts in inward direction or
have an attractive role in nature. As a result, we can say that

our present strange star candidate is in better equilibrium
situation and a physically more reliable candidate.

5.5. Anisotropy Estimation. We examined the anisotropic
stress for our obtained solutions of the stellar system in the
background of two specific f(R) models. +e anisotropy of
the present strange star object can be defined as

Δ � Pt − Pr �
1
8π

3􏽥Y − 2 􏽥X − 􏽥X􏽥Yr
2

+ 􏽥Y
2
r
2

+
1
r
2􏼠 􏼡e

− 􏽥Xr2
−
1
r
2􏼨 􏼩F + (f − RF)􏼈 + e

− 􏽥Xr2 3􏽥Yr

2
−
3 􏽥Xr

2
+
3
r

􏼠 􏼡F′ +
3F″
2

􏼠 􏼡􏼩􏼣 + 2Bg.􏼢

(35)

Equation (35) describes the effect of anisotropic force
(2(Pt − Pr)/r) on the charged spherical system that gen-
erates due to the anisotropic stress of the source. If the
pressure anisotropy acts in outward direction or will be
repulsive in nature, then Δ> 0, i.e., Pr <Pt, whereas if it acts
inward direction or attractive in nature, then Δ< 0, i.e.,
Pr >Pt, as predicted by Hossein et al. [77]. Figure 9 shows
the graphical nature of anisotropic stress of the fluid sphere
by using two well-known f(R) models. It is obviously seen
from Figure 9 that the anisotropic pressure gradually boosts
from the center towards the boundary surface of the star
where r � 􏽥x, and it remains positive throughout the whole
configuration of the sphere or Pt − Pr > 0. +is constraint
yields that the pressure anisotropy is in outward direction or
repulsive in nature, and it helps to construct the ultradense
compact stellar body [122, 123].

5.6. Stability Analysis. We investigated the stability via
Herrera’s causality condition and the cracking method
[124, 125] for the physical acceptability of the presented
solutions by employing different unknown parameter
values. +e causality condition of the stability analysis tells
us that the square of the radial sound speed ]2rs and the
transverse sound speed ]2ts should always remain in the range
between 0≤ ]2rs ≤ 1 and 0≤ ]2ts ≤ 1. Another method describes
that the region for which the radial sound speed exceeds than
that of tangential sound speed is a potentially stable region
[124–128]. As a result, Herrera [125], Abreu et al. [127], and
Andréasson [128] suggest the inequality |]2ts − ]2rs|≤ 1 for
stable matter configuration.+is inequality is familiarized as
“no cracking” to occur, i.e., potentially stable region. +e
generic formulae of the squares of radial and tangential
sound speeds can be written as
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Figure 8:+e combined nature of five distinct forces has been plotted versus radial distance r for the CS1 object for two well-knownmodels
f(R) � R + cR2 (a) and f(R) � R + cR(R + αR2) (b).
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]2rs �
dPr

dμ
�
1
3
, (36)

]2ts �
dPt

dμ
. (37)

Figure 10 explains the nature of the causality condition
for the proposed CS1 object w.r.t. two well consistent f(R)

models. +e profile of the causality condition shows that the
squares of radial and tangential sound speeds does not cross

the certain range 0≤ ]2i ≤ 1 within the whole distribution of
the star. From Figure 11, we determine the potential stable
configuration for the inequality ]2ts − ]2rs < 0. +is inequality
suggests that “no cracking” occurs within a fluid sphere,
which indicates the confirmation of Herrera’s cracking
concept [125]. +e magnitude of the difference between the
squares of tangential and radial sound speeds is shown in
Figure 12. It can be easily understood from Figure 12 that
each plot of |]2ts − ]2rs|≤ 1 with their respective f(R) models
represents the monotonically increasing nature with the
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Figure 9: Physical evolution of the anisotropy w.r.t. radial coordinate r for the CS1 object for f(R) � R + cR2 (a) and f(R) � R + cR(R +

αR2) (b) models.

γ = 0.1
γ = 0.2
γ = 0.3

0 1 2 3 4 5 6 7
r (km)

ν2
ts

ν2
rs

0.20

0.25

0.30

0.35

ν2
i

(a)

γ = 0.1
γ = 0.2
γ = 0.3

0 1 2 3 4 5 6 7
r (km)

0.20

0.25

0.30

0.35

ν2
ts

ν2
i

ν2
rs

(b)

Figure 10: +e sound speeds ]2r and ]2t with radial distance r are represented according to equations (36) and (37) for the candidate CS1 for
f(R) � R + cR2 (a) and f(R) � R + cR(R + αR2) (b) models.
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increase of r, but it always less than one. Consequently, our
present system maintains the stability with Herrera’s
cracking method and resumes the stable position.

5.7. Static Stability Criterion. Another important criterion is
the static stability to study the stable position of the compact
celestial object. +is criterion was considered by Harrison
et al. [129] and Zel’ʼdovich–Novikov [130] for stable equi-
librium position of the matter object.+ey proposed that the
matter of the celestial body should be the boosting function
w.r.t. of the central density for the stable equilibrium po-
sition, i.e., (dM/dμ(0)) > 0, and it will be the unstable po-
sition in case of (dM/dμ(0))< 0. For our proposed
candidate, the mass in terms of central density is defined as

M(μ(0)) � − e
ln(􏽥x/2)− 􏽥x

2
(8πμ(0)/3F)+(1/F) (1/6)(f− RF)+F″( ){ }􏼂 􏼃

+
Q

2

2􏽥x
+

􏽥x

2
.

(38)

Alternatively, we obtain

dM

dμ(0)
�
8π􏽥x

2

3F
e

ln(􏽥x/2)− 􏽥x
2

(8πμ(0)/3F)+(1/F) (1/6)(f− RF)+F″( ){ }􏼂 􏼃
.

(39)

We plot the graphical evolution of mass as a function of
central density for CS1 candidate with their respective
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Figure 11: Evolution of ]2ts − ]2rs vs. r of the CS1 candidate for f(R) � R + cR2 (a) and f(R) � R + cR(R + αR2) (b) models.
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models of f(R) (Figure 13). Each profile of (dM/dμ(0))

with a magnified image represents the positive evolution in
the entire region of the star, and it attains the maximum
amount at the center of the sphere. Accordingly, there is
another condition that confirms the stability position for our
stellar system.

5.8. Adiabatic Index. +e term adiabatic index is described
as the ratio of two specific heats [131]. +e adiabatic index is
the foremost parameter that ruins the stability of any ce-
lestial body. We can employ it to examine the stability of
relativistic and nonrelativistic source systems. For aniso-
tropic source distribution, the Bondi [132] analysis reveals
that the adiabatic index Γ can be written as radial and
transverse adiabatic indices Γr and Γt, respectively.
According to Bondi [132], for the stable Newtonian system,
Γr > (4/3) and Γr � (4/3) are the constraints of neutral
equilibrium. For the relativistic isotropic system, the above
constraint changes due to the regenerative effect of the
pressure which manifests the system more unstable. In case
of the general relativistic anisotropic system, more problems
emerge because the nature of anisotropy determines the
stability of the celestial body. +e adiabatic index must be
greater than (4/3) in an interior relativistic anisotropic stable
star as proposed by several researchers [131, 133, 134]. +us,
the adiabatic indices (Γr and Γt) for our obtained solutions
are expressed as

Γr �
μ + Pr

Pr

􏼠 􏼡
dPr

dμ
, (40)

Γt �
μ + Pt

Pt

􏼠 􏼡
dPt

dμ
. (41)

+e evolutionary nature of both adiabatic indexes (Γr
and Γt) in Figures 14 and 15 indicate the viability of our
presented CS1 object w.r.t. two specific f(R) models. One
can eminently observe that from Figures 14 and 15, both the
profiles of adiabatic indices show monotonically increasing
nature with the increase of r and remain positive in the
whole configuration of the star. It would be necessary to
mention here that Γr and Γt exceed than (4/3) within the
entire region of the celestial sphere, which signifies the
potentially stable position of the CS1 object against the radial
perturbation.

6. Effective Mass Function, Compactification
Factor, and Surface Redshift

In this evaluation, we studied the effective gravitational mass
function as well as other standard prominent profiles for the
physical credibility of our proposed compact celestial object
in the presence of two viable f(R) models. +us, we initially
discuss the modified effective gravitational mass function for
the charged anisotropic source distribution as reported by
equation (7) which reads

Meff � 4π 􏽚
r
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Figure 13: +e nature of (dM/dμ(0)) shown vs. central density (μ(0)) for the object CS1 for viable models f(R) � R + cR2 (a) and
f(R) � R + cR(R + αR2) (b).
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+e physical determination of effective gravitational
mass for the CS1 candidate in the presence of two specific
f(R) models is shown in Figure 16. It is clearly seen from
Figure 16 that each plot of effective gravitational mass in-
dicates that the evolution is positive throughout the interior
distribution of the star and is a monotonically increasing
function of the radial parameter r. It is also noticed here that
the mass function is regular at the center of the star, i.e.,
r⟶ 0 and Meff⟶ 0. Besides this picture, one vital point
to mention here is that the maximal numerical value in each
profile remains in the limit 2.1166 (Table 7). Hence, this
result strongly suggests that our proposed strange star
candidate is physically acceptable and well consistent.

According to Buchdahl [135], for static isotropic fluid
sphere, the maximum allowable limit of twice the mass to
radius ratio of a compact object should be less than (8/9),
i.e., (2M/􏽥x)< (8/9). Later, this result was generalized by
Mak et al. [136] for the charged relativistic source distri-
butions. In 2009, Andre

�
easson [128] generalized Buchdahl’s

result for relativistic charged anisotropic matter configu-
ration and formulated the upper bound on the mass to
radius ratio for the charged spherical system as
M≤ ((

��
R

√
/3) +

��������������
(R/9) + (Q2/3R)

􏽰
)2. To derive this solu-

tion, Andre
�
easson considered the relation between pressures

(Pr and Pt) and energy density as Pr − μ + 2Pt ≤ 0. +is
condition must be fulfilled for the allowable limit of
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Figure 15: +e adiabatic index (Γt) versus r has been drawn according to equation (41) for the CS1 candidate for two well-known models
f(R) � R + cR2 (a) and f(R) � R + cR(R + αR2) (b).
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Andre
�
easson. So, the required compactification factor of the

stellar star is as follows:

ueff �
Meff

r
�
1
2

1 − e
− 􏽥Xr2

􏼒 􏼓 −
1
2r

􏽚
r

0

r
2

F

1
2

(f − RF) + e
− 􏽥Xr2

F″ +
2
r

− 􏽥Xr􏼒 􏼓F′􏼒 􏼓􏼔 􏼕dr. (43)

Figure 17 illustrates the compactification factor against the
radial coordinate r for the present stellar configuration with
two prominent types of f(R) models. Each plot transparently
shows that the compactification increases with the increase of r

and attains the maximum position at the boundary surface of

the star. Moreover, this maximum position of (M/􏽥x) always
remain in the specified range of Buchdahl [135]. We analyzed
the evolution of Andre

�
easson inequality Pr − μ + 2Pt w.r.t.

radial parameter r (Figure 18). One can easily observe from
Figure 18 that both profiles of Pr − μ + 2Pt represent the
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Figure 16: Profile of the effective mass function as a function of r for CS1 candidate for models f(R) � R + cR2 (a) and f(R) �

R + cR(R + αR2) (b).
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Figure 17: Physical evolution of compactness vs. r of the CS1 object with viable models f(R) � R + cR2 (a) and f(R) � R + cR(R + αR2) (b).
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negative evolution at every interior point of the fluid sphere
that actually confirmsAndre

�
easson bound. Hence, these results

evidently suggest that our considered celestial object should be
a strange star candidate.

+e surface redshift corresponding to the compactifi-
cation factor can be defined as

Zs �
1

1 − 2ueff( 􏼁
(1/2)

− 1 � 1 − 1 − e
− 􏽥Xr2

􏼒 􏼓 +
1
r

􏽚
r

0

r
2

F

1
2

(f − RF) + e
− 􏽥Xr2

F″(􏼔􏼢

+
2
r

− 􏽥Xr􏼒 􏼓F″􏼓􏼕dr􏼕
(− 1/2)

− 1.

(44)
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Figure 19: +e surface redshift w.r.t. radial coordinate r represented according to equation (44) for the CS1 candidate for feasible models
f(R) � R + cR2 (a) and f(R) � R + cR(R + αR2) (b).
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Figure 18: Physical evolution of Pr − μ + 2Pt vs. r of the CS1 object with viable models f(R) � R + cR2 (a) and f(R) � R + cR(R + αR2) (b).
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Here, we report some novel results of surface redshift
upper bound for isotropic and anisotropic matter distri-
butions with and without a cosmological constant. Barraco
and Hamity [137] investigated Zs ≤ 2 for isotropic fluid
sphere in the absence of a cosmological constant, whereas
Ivanov [138] proved that the maximum allowable value of
surface redshift must lie in the range Zs � 3.842 for the
isotropic star. In the presence of a cosmological constant,
Bohmer and Harko [139] calculated the maximum upper
bound of surface redshift as Zs ≤ 5 for anisotropic fluid
sphere. In connection of this discussion, for anisotropic-
charged strange star models, the maximum value of surface
redshift is in better position for our present CS1 candidate.
We plot the graphical behavior of surface redshift as a
function of r for the present stellar star candidate w.r.t. two
viable f(R) models (Figure 19). It can be clearly seen from
Figure 19 that both profiles of surface redshift show
monotonically increasing nature throughout the interior star
distribution, and it is finite at the center of the sphere where
r � 􏽥x � 0. So, this position ultimately indicates that our
strange star models are in good agreement and physically
well consistent (Figure 20).

7. Conclusions

+e present manuscript explored the new viable solutions of
charged anisotropic strange star models by implementing the
observational values of well-known compact objects within
the framework of so-called f(R) theory of gravity. +is in-
vestigation was made for relativistic charged fluid sphere case
in the assistance of the simple MIT bag model EoS and KB
type metric solutions ζ(r) � 􏽥Yr2 + 􏽥Z and ξ(r) � 􏽥Xr2 [96].
+e results of this technique for our compact star candidates
are free from central singularity as well as physically ac-
ceptable with twowell-known and cosmologically viablef(R)

models such as f(R) � R + cR2 [102] and
f(R) � R + cR(R + αR2) [42] at the theoretical and the as-
trophysical gauge. For this evaluation, from the set of
equations (7)–(11) along with KB type metric solutions, we
have found out the solutions of different physical parameters
for the graphical nature of our proposed compact object.
+ereafter, we have determined unknown arbitrary constant
values by employing the smooth matching between the in-
terior and exterior Reissner–Nordström spacetimes at the
bounding three-surface. Moreover, the numerical values of
these unknown arbitrary constants, central parameters (μ(0)

and Pr(0)), and surface parameter (μ(􏽥x)) for distinct in-
tervals of free parameter c of two viable f(R) models f(R) �

R + cR2 and f(R) � R + cR(R + αR2) against three distinct
compact celestial objects ((CS1)SAXJ1808.4 − 3658
(􏽥x � 7.07 km), (CS2)VelaX − 1 (􏽥x � 9.56 km), and
(CS3)4U1820 − 30 (􏽥x � 10 km)) are given in Tables 1–6.
Accordingly, we have mentioned several important silent
features for our proposed CS1 candidate in the following way:

(i) Metric coefficients: the metric coefficients or
metric potentials are geometrical representatives of
the spacetime, and it is also independent from
physical and geometrical singularities. +eir evo-
lution in both f(R) models for CS1 candidate
represents positive nature within the entire region
of the star and gradually increases with the increase
of the radial parameter r (Figure 20).

(ii) Density, pressure, and electric field: we plotted the
evolution of several physical parameters, namely,
energy density, radial and tangential pressures,
electric field, and derivative function of energy
density and radial pressure w.r.t. two particular
types of f(R) models in Figures 1–5, respectively.
One can easily observe from Figures 2–5 that each
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Figure 20: Combined graphical behaviors with magnified images of the metric potentials (eξ(r) and eζ(r)) versus r for compact object (CS1)
SAX J 1808.4-3658 with their respective unknown arbitrary constant values given in Tables 1 and 2 for two viable models f(R) � R + cR2 (a)
and f(R) � R + cR(R + αR2) (b). From each plot of the metric potentials, the evolution is positive throughout the interior compact object
and attains maximum position towards the boundary surface.

20 Advances in Astronomy



profile of energy density, radial pressure, tangential
pressure, and electric field suggests positive evo-
lution throughout the whole interior distribution
of the fluid sphere and remains regular (finite) at
every interior point of the star. One important
point that should be necessarily discussed is that
the numerical values of central density are greater
than the surface density (Tables 1–6), which ac-
tually expected the very massive strange quark star
objects [107–110]. We have also noted that the
radial pressure sharply dies out at the boundary
surface of the sphere, but tangential pressure does
not exactly vanish, which clearly signifies the
spheroidal nature for our CS1 candidate [112–114].
We have observed that from the evolutionary
behavior of electric field, it remains positive and
finite at every point of the interior compact sphere.
Next, we investigated the combined graphical
nature of derivative function of energy density and
radial pressure as shown in Figure 4. +e nature of
both profiles with their respective models remains
nonpositive within the whole distribution of the
compact star and disappears at the core, which
strongly supports the maximum rate of energy
density and radial pressure for our presented
model.

(iii) Energy conditions: we shed light over different
energy conditions such as null energy condi-
tions (NEC), weak energy conditions (WEC),
and strong energy conditions (SEC) for the
physical viability of our obtained solutions.
+ese energy conditions have been satisfied at
every interior point of the fluid sphere and al-
ways remain positive in the entire region of the
star (Figure 7).

(iv) Hydrostatic equilibrium equation: there is another
important feasible criterion that has been fulfilled
by the modified conservation equation or gener-
alized TOV equation (31) as predicted by under the
action of five different forces, namely, additional
dark force (Fd), electric force (Fe), anisotropic
force (Fa), hydrostatic force (Fh), and gravita-
tional force (Fg). We examined the combined
graphical nature of five forces with their respective
f(R) models for our proposed compact star
candidate as shown in Figure 8. +e combined
effect of dark force, electric force, anisotropic force,
and hydrostatic force balanced the effect of grav-
itational force. So, the presented situation has
satisfied the equilibrium position [120, 121] for our
CS1 object. +e modified TOV equation (31) can
be reproduced into the standard GR form by
simply imposing f(R) � R.

(v) Anisotropy: in our proposed star candidate, the
anisotropy of pressure maintains positive nature,
i.e., Pt − Pr > 0 within the entire region of the star,
and it is regular (singularity free) at the core of the

fluid sphere (Figure 9). Moreover, it monotonically
increases from the center towards the boundary
surface of the star and attains maximum limit. +is
maximum limit tells us that our proposed compact
object predicted an ultradense strange quark star
[123].

(vi) Stability analysis: we checked the stability condi-
tion by employing Herrera’s causality condition
and the cracking method [124, 125] for our
physically acceptable solutions (Figures 10–12).
+e inequalities 0≤ ]2rs ≤ 1, 0≤ ]2ts ≤ 1, ]2ts − ]2rs < 0,
and |]2ts − ]2rs|< 1 have been satisfied inside the
compact celestial object and always remain in the
certain range throughout the whole distribution of
the sphere (Figures 10–12). +erefore, the pre-
sented position strongly defends that our proposed
object is in good situation or physically in a po-
tential stable state [124–128].

(vii) Static stability criterion: Harrison-
Zel’ʼdovich–Novikov criterion of static stability
[129, 130] was estimated (Figure 13) for CS1
candidate. We observed from Figure 13 that the
physical evolution of mass function w.r.t. central
density μ(0) remains nonnegative in the entire
configuration of the star, i.e., (dM/dμ(0))> 0.
Consequently, our presented stellar system obeys
the stability condition by the Harrison-
Zelʼ’dovich–Novikov approach.

(viii) Adiabatic indices: the adiabatic indices Γr and Γt
were graphically analyzed for our presented object
with two specific viable f(R) models, respectively
(Figures 14 and 15). Each plot of adiabatic indices
with their respective profiles suggests the positive
nature in the whole interior distribution of the star,
and it is a monotonically increasing function of the
radial coordinate r. Moreover, it is finite at every
interior point of the sphere and also greater than
(4/3) at the core of the star, which actually indi-
cates the stable Newtonian position for our star
[132].

(ix) Equation of state: we have proved another stability
criterion by using EoS parameters for our physically
realistic solutions. From Figure 6, we have observed
that the variation of EoS parameters (ωr and ωt)
always remains in the range between 0 and (1/3). It
transparently shows that ωr and ωt are nonnegative
within the entire region of the sphere and attain
maximum amount at the core of the star where (r �

􏽥x � 0) and gradually decreases with the increase of
radial parameter r. Indeed, as a result, the matter
configuration is nonexotic in nature [118].

(x) Mass function, compactification factor, and sur-
face redshift: the physical variation of different
profiles such as mass function, compactification
factor, Andre

�
easson bound, and surface redshift

was examined (Figures 16–19). +e gravitational
mass function is regular (free from singularity) at
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the core and gradually increases from the center
towards the boundary surface of the star where
(r � 􏽥x). +e compactification factor obeys Buch-
dahl condition [135] and does not cross the al-
lowable range (4/9) for the mass to radius ratio. It
is finite at every interior point of the star and
positively increases from the center towards the
surface area. +e inequality Pr − μ + 2Pt has been
satisfied Andre

�
easson bound for charged compact

sphere. We have determined that the inequality is
negative inside the stellar object and remains
negative at every interior point of the star. From
Figure 19, we studied the evolutionary nature of
surface redshift with their respective f(R) models.
It suggested that the evolution is positive and at-
tains maximum allowable value ( ≈ 0.55) at the
boundary of the star where (r � 􏽥x). Hence, the
present results suggest that our proposed compact
star object should be a strange quark star.

In the present scenario, we explored the new viable
solutions of charged strange star models with the strange
matter MIT bag model EoS along with KB type metric ansatz
in the background of so-called f(R) gravity. From this
study, we obtained a wide family of solutions for our pro-
posed compact object. +e solutions are free of central
singularity, physically realistic, and stable in the entire
distribution of the fluid sphere. Conclusively, we expect that
our presented celestial object is an ultradense strange quark
star and quite fit with two specific viable f(R) models at the
theoretical and the astrophysical scales. Moreover, in future,
we will try to find out these results in other alternative
theories of gravity such as f(R, T), f(R, G), and f(T)

theories of gravity.
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