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&is study is devoted to explore bouncing cosmology in the context off(G, T) theory of gravity. For this purpose, a Gauss–Bonnet
cosmological model with logarithmic trace term is considered. In particular, the possibility of obtaining bouncing solutions by
considering two equations of state parameters is investigated. A graphical analysis is provided for analyzing the obtained bouncing
solutions. &e energy conditions are discussed in detail. It is interesting to notice that null and strong energy conditions are
violated near the neighborhood of bouncing points justifying the accelerating universe in the light of the recent observational data.
&e behavior of the scale factor, red shift function, deceleration parameter, and Hubble parameter is also debated. An important
feature of the current study is the discussion of conservation equation in f(G, T) gravity. &e possibility of some suitable
constraint equations which recover the standard conservation equation is discussed, and all the free parameters are assumed
accordingly. All the results in this study suggest that the proposed f(G, T) gravity model provides good bouncing solutions with
the chosen EoS parameters.

1. Introduction

Bouncing universes are possible alternatives to standard big
bang cosmology. Unfortunately, some of the older studies of
bouncing universes raise the issues such as cusp and angular-
momentum barrier, thus leaving this turnaround of nature
quite ambiguous [1]. Interest in bouncing universes was
declined after the onset of first cosmological singularity
theorem [2, 3]. In particular, some new types of isotropic
cosmological models were proposed without singularity [4].
However, a standard big bang cosmological model has also
some shortcomings such as horizon problem, flatness issues,
transplanckian problem, and entropy problem.&erefore, in
recent era, the investigation about bouncing cosmological
solutions is an interesting and attractive topic for re-
searchers. &ese solutions involve the cosmological models
that replace the big bang cosmological singularity with a “big
bounce” scenario, a smooth transition from contraction to
the expansion phase [5, 6]. In this situation, the contraction
phase of the universe is dominated by matter, and also, a
nonsingular bounce is occurred. Moreover, the density

perturbations having spectrum consistent with the obser-
vational data can be produced [7]. &e so-called BKL in-
stability can be witnessed after the contracting phase making
the universe anisotropic [8]. &e possible ways of avoiding
BKL instability and issues of the bounce in the ekpyrotic
scenario have been studied [9–12]. It has been explicitly
confirmed that spatially flat nonsingular bouncing cos-
mologies corresponds to effective theories of gravity [13].
Libanov et al. [14] studied flat bouncing cosmological
models with the early time Genesis epoch in the context of
generalized Galileon theories. &ey found that the bouncing
models either possessed these instabilities or had some
singularities. &e presence of a nonsingular bounce in a flat
universe may imply violation of the null energy condition
(NEC), which can be obtained via a ghost condensation
phase. Kobayashi [15] argued that the NEC could be violated
in the generalized Galileon theories supporting the possi-
bility of nonsingular cosmology. However, it was argued that
on many occasions, cosmological solutions were plagued
with instabilities. Furthermore, within the framework of the
effective field theory and beyond Horndeski theory, it has
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been shown that stable bouncing cosmologies can be con-
structed [16–20]. &e investigation of some cosmological
issues in extended gravity seems interesting because the big
bang singularity could be replaced by a big bounce using
modified gravity models [21–25].

Barragan et al. [26] studied oscillating cosmology in
f(R) Palatini formalism, and it was shown that the big bang
singularities could be replaced by a big bounce without
violating energy conditions. In fact, the bounce is possible
even for pressureless dust in f(R) gravity background. &e
metric version of f(R) gravity has also been used to find the
behavior of bouncing cosmology, and it was concluded that
this behavior could solve the singularity problem in standard
big bang cosmology [27]. Singh and his collaborators [28]
investigated a cosmological model in a flat homogeneous
and isotropic background in the context of f(R, T) gravity.
&ey proposed the Hubble parameter in a functional form
such that it fulfilled the successful bouncing criteria to in-
vestigate the solution of the gravitational field equations
without any initial singularity. Oikonomou [29] showed how
a cosmological bounce could be evolved by a vacuum f(G)

gravity model, and the stability of the obtained solutions was
addressed by analyzing a dynamical system of equations of
motion. Analytic bounce in nonlocal Einstein-
–Gauss–Bonnet cosmology has been discussed, and the
bouncing solutions are found to be stable during the bounce
phase [30]. Escofet and Elizalde [31] investigated some
Gauss–Bonnet (GB) extended gravity models exhibiting the
bouncing behavior. &ey argued that how the addition of a
GB term to a viable gravity model could influence some
properties and even the physical nature of the obtained
cosmological solutions. In particular, some new dark energy
models can be proposed in which the equation of the state
(EoS) parameter leads either to a big rip singularity or to a
bouncing solution evolving into a de Sitter spacetime. A new
theory by coupling GB term and trace of energy momentum
tensor has been proposed and named as f(G, T) gravity
[32], and it was proved that due to the presence of extraforce,
the massive test particles could follow nongeodesic lines of
geometry. &ough f(R, T) theories of gravity are the sim-
plest modifications with matter coupling, the construction of
some viable f(R, T) gravity models is not an easy task. &e
main reason behind this is that Ricci modified gravity may
produce a strong coupling between dark energy and a
nonrelativistic matter in the Einstein frame [33]. While,
some modified GB models may be consistent with solar
system barriers under certain constraints [34]. Nojiri et al.
[35] explored some f(G) gravity nonminimally coupled
models with matter Lagrangian and concluded that theories
with such coupling may unify the inflationary era with
current cosmic expansion. &us, modified GB gravity with
matter couplings can be more fascinating to study the
universe in comparison with f(R, T) gravity.

Motivated from the above discussions, this study fo-
cussed to examine bouncing cosmology in the context of
f(G, T) theory of gravity. For this purpose, a GB cosmo-
logical model with logarithmic trace term is considered. &e
analysis is based upon two important EoS parameters. A

brief structure of the study is as follows: in Section 2, some
basic important preliminaries to develop a required back-
ground for the analysis are provided. Section 3 is devoted to
provide cosmological solutions and a detailed graphical
analysis. Last section provides a brief summary of the work
and conclusive remarks.

2. Some Important Preliminaries

&emodified GB gravity can be described using the action [32]

A �
1
2κ2

􏽚 d
4
x

���
− g

√
[R + f(G, T)] + 􏽚 d
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x
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− g

√
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whereG and T represent the GB term and trace of the stress-
energy tensor, respectively. LM stands for the standard
matter Lagrangian, R being the Ricci scalar, κ is a coupling
parameter, and g is the determinant of metric tensor. &e
modified field equations are obtained by metric variation of
action above [32].
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where all the symbols involved have their usual meanings.
Moreover, the subscript G and T appearing in the functions
are to denote the partial derivatives and
Θζη � gμ](δTμ]/δgζη). &e trace of equation (2) turns out to
be

R + κ2T − (T +Θ)fT(G, T) + 2f(G, T) + 2GfG(G, T)

− 2R∇2fG(G, T) + 4R
ζη∇ζ∇ηfG(G, T) � 0.

(3)

It is worth noticing that if f(G, T) � 0 is replaced in
equation (3), GR is recovered as

R + κ2T � 0. (4)

&e important aspect of equation (3) is that it relates R,
G, and T differentially. However, as evident by the corre-
sponding GR version in equation (4), R and G are ma-
nipulated algebraically. &is clearly suggests that the
modified field equations will have more solutions than usual
GR. &e covariant divergence of equation (2) is given by

∇ζTζη �
fT(G, T)

κ2 − fT(G, T)
Tζη + Θζη􏼐 􏼑∇ζ ln fT(G, T)( 􏼁􏽨

+ ∇ζΘζη −
gζη

2
∇ζT􏼕.

(5)

2 Advances in Astronomy



It can be seen that the conservation equation is not
covariantly divergent here as in the case of GR. It is due to
the involvement of higher order derivatives of the matter
components in the modified field equations due to the
matter coupling. &us, a little drawback is that this theory
might be suffered by divergences at cosmological scales. &is
is an issue with other theories as well that includes higher
order terms of energy momentum tensor, such as the
f(R,T) theory of gravity. However, to deal with the issue,
some constraints are put to equation (5) to recover the
standard conservation equation. In present work, cosmology
in this modified theory by considering the flat Fried-
mann–Lemaitre–Robertson–Walker (FLRW) spacetime is
investigated:

ds
2

� dt
2

− a
2
(t) dx

2
+ dy

2
+ dz

2
􏽨 􏽩, (6)

and assumed that the universe is filled with perfect fluid:

Tμ] � (ρ + p)uμu] − pgμ], (7)

where a, ρ, and p represent the cosmic scale factors of
universe, energy density, and pressure of the fluid, respec-
tively. &e study of energy conditions involving these im-
portant parameters (energy density and pressure) has many
significant applications in cosmology. For example, one can
easily investigate the validity of the second law of black hole
thermodynamics and Hawking–Penrose singularity theo-
rems by using energy conditions [36]. In relativistic cos-
mology, many interesting constraints have been described
by the use of energy conditions [37–46]. Mainly five different
types of energy bounds are found in the literature:

Trace energy condition (TEC), now abandoned
Null energy condition (NEC)

Weak energy condition (WEC)

Strong energy condition (SEC)

Dominant energy condition (DEC)

&e TEC suggests that the trace of the energy-mo-
mentum tensor should always be negative (or positive
depending on metric conventions). &is condition was
popular among the researchers during the decade of 1960.
However, once it was shown that stiff EoS, such as those
which are appropriate for neutron stars, violates the TEC
[47, 48]. &us, the study of this energy condition was not
further encouraged, and it is now completely abandoned, in
fact no longer cited in the literature. However, the remaining
four energy constraints are known as a necessary feature for
the cosmological discussions. For an acceptable cosmolog-
ical model, these constraints should be validated. For this
purpose, the most important requirement is the positivity of
energy density. However, the negative pressure may indicate
the presence of exotic matter. In fact, the violation of energy
conditions may lead to some fascinating cosmological fea-
tures. &e violation of these conditions may yield some
instabilities and ghost pathologies in the presence of a ca-
nonical scalar field. &e SEC is currently the most heated
subject of discussions. It has been argued that the SEC
should be violated in the inflationary era [48]. Most

importantly, the SEC is violated on cosmological scales in
the light of the recent observational data regarding the
accelerating universe [37]. Also, the minimal condition for a
cosmological bounce rather than a big bang singularity
requires the violation of SEC [12]. Moreover, violation of
DEC is typically associated with either a large negative
cosmological constant or superluminal acoustic modes [49].

2.1. f(G, T) Gravity Model with Logarithmic Trace Term.
Now, for FLRW spacetime (6) with perfect fluid, the field
equation (2) takes the form
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(9)

where f ≡ f(G, T) and fG ≡ fG(G, T) are considered for
the sake of simplicity. Due to complicated and highly
nonlinear nature of field equations, sometimes it becomes
very difficult to choose a particular f(G, T) model which
could provide some viable results both analytical and nu-
merical. &e simplest choice is to consider a linear com-
bination [51]:

f(G, T) � f1(G) + f2(T). (10)

In present study, f1(G) � G + λG2, with λ being a real
constant is proposed. &is choice is important as the similar
power law f(G) gravity model has been studied with some
interesting results [50]. Most importantly, following the
work of Elizalde et al. [21], consider f2(T) � 2βLog(T),
where β is an arbitrary model parameter. &us, the proposed
f(G, T) model takes the form

f(G, T) � G + λG2
+ 2βLog(T). (11)

To the best of our knowledge, this is the first such at-
tempt to consider logarithmic trace term in the study of
f(G, T) cosmology.&us, in this case, TECmust be satisfied
to obtain realistic results from the logarithmic term.

2.2. Bouncing Cosmology and Equation of State. In recent
years, there has been an increasing interest of the researchers
in cosmological models that replace the big bang cosmo-
logical singularity with a “big bounce,” a smooth transition
from contraction to the expansion phase. In order to resolve
the fundamental problems in cosmology, the study of
cosmological dynamics inmodified gravity seems interesting
because the big bang singularity could be avoided by a big
bounce using modified gravity models [21–25].&e behavior
of the bouncing universe can be judged by the evolution of
the scale factor and Hubble parameter. One of the indica-
tions is that the size of the scale factor gets contracted to
some finite volume not necessarily zero and then shows an
increasing trend. Another possibility to indicate a bounce is
when the Hubble parameter becomes zero and then blows
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up. Mathematically, there must exist some finite points of
time at which the size of the universe attains a minimum
value. Another indication is the violation of NEC for some
period of time near the neighborhood of the bounce point in
the context of FLRW spacetime. Moreover, the EoS pa-
rameter goes in the negative range, especially a bouncing
cosmology with ω ≈ − 1 justifies the current cosmic ex-
pansion [52–54]. &e most interesting aspect of studying
bouncing cosmology is that the cosmic singularity problem
can be avoided, geodesically complete evolution can be
enabled, chaotic mixmaster behavior can be eliminated, the
horizon problem can be resolved, the smoothness and
flatness issues can be tackled, and the small entropy at the
onset of the expanding phase can be naturally explained [55].

EoS parameter is an important constituent to study
cosmological dynamics, in particular in the context of
modified gravity. In this analysis, two interesting proposals
were discussed [21]. First, the possibility of obtaining a
bouncing solution in f(G, T) gravity described by the
following EoS parameter is considered:

ω1(t) � −
kLog(t + ε)

t
− 1, (12)

where k is any arbitrary constant, and ε is the very small real
parameter. It is interesting to notice from equation (12) that
ω varies from negative infinity as t⟶ 0 to ω1 � − 1 (cosmic
expansion phase) when t � 1 − ε. Second, the bouncing
solution of f(G, T) gravity models by considering the
following EoS is investigated:

ω2(t) �
r

Log t
− s, (13)

where r is a negative parameter, while s is a positive pa-
rameter. In this case, witness that ω2 varies from negative
infinity as t⟶ 1 to the cosmic expansion era at t � e(r/s− 1)

and moves on, eventually coming back to again the same
phase as t approaches positive infinity and s � 1. Elizalde
et al. [21] obtained viable cosmological solutions in the
framework of f(R, T) theory of gravity using these two
interesting choices of the EoS parameter. In this study, their
work in the context of f(G, T) gravity is extended.

3. Cosmological Solutions and
Numerical Analysis

In this section, the main focus is to discuss the evolution of
energy density and pressure profile by using some suitable
choice of the scale factor. For this purpose, the possible
choice of the Hubble parameter which could provide viable
bouncing cosmology is first discussed. A well-known
functional form of the Hubble parameter as described in the
following equation is considered [21].

H(t) � αh(t)Sin(ξt), (14)

where h(t) is an arbitrary smooth function, and α and ξ are
the real constants. Mathematically, it is an interesting form
of the Hubble parameter as the trigonometric sine function
vanishes at some periodic values of t. Furthermore, such an

analytic form of h(t) which could provide the nonzero value
at these points can be considered. &us, a specific form of
h(t) is given by

h(t) � e
ζt

, (15)

where ζ is any arbitrary real parameter. &us, the complete
parameterized form of the Hubble parameter turns out to be

H(t) � αe
ζtSin(ξt). (16)

&is form of the Hubble parameter is important as it
allows to obtain the behavior of the cosmic scale factor in the
later stages of the evolution of the universe. &is form of the
Hubble parameter provides the scale factor:

a(t) � κ exp
αe

ζt
(ζSin(ξt) − ξSin(ξt))

ζ2 + ξ2
⎛⎝ ⎞⎠, (17)

where κ is an arbitrary integration constant. Now, investi-
gate bouncing cosmology in the below subsections for the
abovementioned two different EoS cases.

3.1. f(G, T) Cosmology: ω1(t) � − (kLog(t + ε)/t) − 1.
Here, the universe is assumed to be dominated by the matter
with the EoS given by (12).&e field equations (8) and (9) are
simplified using equation (12), for details see Appendix. &e
evolution of energy density and pressure of the universe
using the scale factor (17) are shown in Figure 1.&e left plot
indicates that the energy density is negative within the
neighborhood of the bouncing point t � 0. &ough, it is not
physical and one can get a better result (positive in the
immediate neighborhood) by manipulating the parameters
involved. Since this negative trend is for a very small du-
ration and positive energy density is witnessed very soon,
leave as it is. &e right plot indicates that the pressure is
negative, which might be an indication of accelerated ex-
pansion of the universe. &e left plot of Figure 2 depicts that
NEC is violated near the neighborhood of the bouncing
point.

&is justifies the indication of bouncing universe with
violation of NEC for some period of time near the neigh-
borhood of the bounce point in the context of FLRW
spacetime. Similarly, WEC and SEC are also violated as
evident from left plots of Figures 1 and 2. &is also ensures
the fact that the SEC is violated on cosmological scales in the
light of the recent observational data regarding the accel-
erating universe [37]. Figure 3 describes that DEC and TEC
are satisfied with the chosen values of parameters. &is
provides the justification that the chosen cosmological
model is well behaved. In particular, the choice of param-
eters strictly depends upon the evolution of energy density
and TEC. It is worthwhile to mention here that TEC
sometimes gets violated; however, in our case, it must be
satisfied due to the involvement of the logarithmic function
in the f(G, T) gravity model. &e well behaved behavior of
the scale factor and red shift function is shown in Figure 4.

According to a successful bouncing model, the Hubble
parameter passes through zero from H< 0 when the
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universe contracts to H> 0 when the universe expands and
H � 0 when the bouncing point occurs. &is feature of a
bouncing model in our case is evident from the left plot of
Figure 5. &e deceleration parameter q in cosmology is
defined as

q � −
€aa

_a
2 . (18)

&e negative trend of the deceleration parameter is
shown in the right plot of Figure 5. &e behavior of the EoS
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Figure 3: Evolution of DEC and TEC for ω1(t) � − (kLog(t + ε)/t) − 1 with α � 0.001; κ � 0.5; ε � 0.001;
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parameter is depicted in the left plot of Figure 6. It is shown
that the EoS parameter remains negative after the bouncing
point, in particular ω1 ≈ − 1, which justifies the current
cosmic expansion [52–54]. In particular, bouncing universe
in this case supports the lambda cold dark matter (Λ-CDM)
model; since when the cold dark matter dominates the

evolution of the universe, the value of EoS parameter is
negative and closer to zero (as evident in our case).

One of the important aspects of this study is the dis-
cussion of conservation equation. Modified theories of
gravity which involve matter curvature coupling do not act
as per usual conservation of GR. In case of f(G, T) gravity,
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this issue is evident from equation (5). Perhaps, there is a
little drawback that the theory might be plagued by diver-
gences at astrophysical scales. However, one can put the
following constraint on equation (5) to deal with the issue
and standard conservation equation can be recovered.

Tζη + Θζη􏼐 􏼑∇ζ ln fT(G, T)( 􏼁 + ∇ζΘζη −
gζη

2
∇ζT � 0.

(19)

&e exact solution of this equation is very difficult to
obtain due to highly nonlinear terms. However, in the
current study, the parameters are in such a way that this
equation is partially satisfied. It can be seen in the right plot
of Figure 6 that conservation equation is satisfied in the
neighborhood of the bouncing point but deviates as the time
passes. All the above discussions and graphical analyses
suggest that the proposed f(G, T) gravity model provides
good bouncing solutions with the chosen EoS parameters.

3.2. f(G, T) Cosmology: ω2(t) � (r/Log t) − s. Now, the
universe is considered as dominated by the matter with the
EoS given in (13). Here, also the field equations (8) and (9)
are simplified using equation (13) as in the previous case, for
details see Appendix. &e evolution of energy density and
pressure of the universe is shown in Figure 7. Left plot
indicates that the energy density is positive within the
neighborhood of the bouncing point t � 0. However, the
right plot indicates that the pressure is negative, whichmight
be an indication of accelerated expansion of the universe.
Left plot of Figure 8 depicts that NEC is violated near the
neighborhood of the bouncing point. In this case, the in-
dication of bouncing universe with violation of NEC for
some period of time near the neighborhood of the bounce
point in the context of FLRW spacetime is also justified.
Here, WEC and SEC are also violated as evident from the left
plot of Figures 7 and 8. Figure 9 describes that DEC and TEC
are satisfied with the chosen values of parameters. &is
provides the justification that the chosen cosmological
model is well behaved. In particular, the choice of param-
eters strictly depends upon the evolution of energy density
and TEC. It is worthwhile to mention here that TEC
sometimes gets violated; however, in our case, it must be
satisfied due to the involvement of logarithmic function in
the f(G, T) gravity model. &e well behaved behavior of the
scale factor and red shift function is shown in Figure 10.

&e negative trend of deceleration parameter is shown in
the right plot of Figure 11, while the behavior of the EoS
parameter is shown in the left plot of Figure 11. Here, the
EoS parameter also remains negative after the bouncing
point. From Figure 12, it is evident that for t< 0, H< 0, while
for t> 0, H> 0, so that around t � 0, i.e., in the early uni-
verse, the bouncing behavior of the universe can be justified.
Two bouncing points are shown in Figure 12 (a magnified
view is also inserted in the figure for better understanding),
one around t ≈ − 7 and the other around t ≈ 6.&ese results

are similar to already obtained bouncing solutions in the
context of modified GB gravity without matter coupling
[23].

4. Outlook

In present study, bouncing cosmology in the context of
f(G, T) theory of gravity is examined. For this purpose, a
GB cosmological model with logarithmic trace term, i.e.,
f(G, T) � G + λG2 + 2βLog(T), is considered. In this study,
the possibility of obtaining bouncing solutions by consid-
ering two EoS parameters is investigated. A detailed
graphical analysis is provided for discussing the obtained
bouncing solutions. To best of our knowledge, this is the first
such attempt in the frame-work of f(G, T) gravity. &e
main results of present study are itemized as follows.

&e analysis is based upon two EoS parameters, i.e.,
ω1(t) � − (kLog(t + ε)/t) − 1 and ω2(t) � (r/Log t) − s.
&e evolution of energy density and pressure profiles of
the universe for both these cases are shown in Figures 1
and 7. &e energy density is positive within the
neighborhood of bouncing points while the pressure
profiles are negative, which might be an indication of
accelerated expansion of the universe.
As evident from Figures 2 and 8, NEC is violated near
the neighborhood of bouncing points. &is justifies the
indication of bouncing universe with violation of NEC
for some period of time near the neighborhood of
bounce point in the context of FLRW spacetime.
Similarly, WEC and SEC are also violated for both these
cases. &is also ensures the fact that the SEC is violated
on cosmological scales in the light of the recent ob-
servational data regarding the accelerating universe
[37]. Figures 3 and 9 describe that DEC and TEC are
satisfied with the chosen values of parameters. &is
provides the justification that our chosen cosmological
model is well behaved. In particular, the choice of
parameters strictly depends upon the evolution of
energy density and TEC. It is worthwhile to mention
here that TEC sometimes gets violated; however, in our
case, it must be satisfied due to the involvement of
logarithmic function in the f(G, T) gravity model.
&e well behaved behavior of the scale factor and red
shift function is shown in Figures 4 and 10. From
Figures 5 and 12, it is evident that for t< 0, H< 0, while
for t> 0, H> 0, so that around t � 0, i.e., in the early
universe, the bouncing behavior of the universe can be
justified. Two bouncing points are shown in Figure 12
(a magnified view is also inserted in the figure for better
understanding), one around t ≈ − 7 and the other
around t ≈ 6. &ese results are similar to already ob-
tained bouncing solutions in the context of modified
GB gravity without matter coupling [23].
&e deceleration parameter q in cosmology is the
measure of the cosmic acceleration of the universe
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expansion. &e positive deceleration parameter cor-
responds to a decelerating model, while the negative
value provides cosmic expansion. &e negative trend of
the deceleration parameter can be seen in the right plots
of Figures 5 and 11. &e behavior of EoS parameters is
depicted in the left plots of Figures 6 and 11. It is shown
that EoS parameter remains negative after the bouncing
point, in particular ω1 ≈ − 1, which justifies the current
cosmic expansion [52–54]. Moreover, the bouncing
universe in the case of ω1(t) � − (kLog(t + ε)/t) − 1
supports the Λ-CDM model; since when the cold dark
matter dominates the evolution of the universe, the
value of EoS parameter is negative and closer to zero (as
evident in our case).
One of the important features of the current study is the
discussion of conservation equation. Modified theories
of gravity which involve matter curvature coupling do
not act as per usual conservation of GR. In case of
f(G, T) gravity, this issue is evident from equation (5).
Perhaps, there is a little drawback that the theory might

be plagued by divergences at astrophysical scales.
However, by putting some suitable constraints on
equation (5), the standard conservation equation has
been tried to be recovered. &e exact solution of the
constraint equation is very difficult to obtain due to
highly nonlinear terms. However, in the current study,
the parameters have been set in such a way that this
equation is partially satisfied. It can be seen in the right
plot of Figure 6 that conservation equation is satisfied
in the neighborhood of the bouncing point but deviates
as the time passes.

All the above itemized discussions suggest that the
proposed f(G, T) gravity model provides good bouncing
solutions with the chosen EoS parameters.

Appendix

Simplified field equations for the case
ω1(t) � − (kLog(t + ε)/t) − 1:

ρ �
2t
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Simplified field equations for the case
ω1(t) � (r/Log t) − s:
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