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Several essential properties of the linear canonical transform (LCT) are provided. Some results related to the sampling theorem in
the LCT domain are investigated. Generalized wave and heat equations on the real line are introduced, and their solutions are

constructed using the sampling formulae. Some examples are presented to illustrate our results.

1. Introduction

The linear canonical transform (LCT) is one of nontrivial
generalizations of the Fourier transform (FT). Recently, the
LCT has been investigated extensively both in theory and
applications. In the connection with the LCT theory, many
interesting papers on this topic have been already available
in the literature (see [1-5]). From the applied point of view,
the LCT also has been widely used in various areas such as
optics, radar system analysis, phase retrieval, pattern recogni-
tion, and many other applications (see [6-8]).

It is known that the wave and heat equations are important
in mathematical physics, applied mathematics, and engineer-
ing. Common methods to solve these equations are the Fourier
and Laplace transforms, which give their exact solutions. The
other techniques to have the solutions of these equations are
the variation iteration method and the domain decomposition
method, which coresponds to the adomian decomposition
method [9]. Recently, the fundamental solution of the general-
ized wave equation was obtained using the fractional Fourier
transform (FrFT) by [10]. Since the LCT is a general form of
the FrFT and also it is closely related to the FT, it is possible
to extend wave and heat equations into the LCT domain. How-
ever, as far as we observe, up to now, the solution of generalized
heat equation using the sampling formulae and the LCT has
not yet been published in the literature.

Therefore, in the present article, we provide useful
properties and examples of the LCT. We will consider the
wave equation in the LCT domain, and we will explore the
solution of this equation using the LCT as exact analytic tool
for solutions. We find a relation that the solution of the wave
equation using the FT and the FrFT is a special case of the
solution of these generalized wave equation. We explicitly
discuss a generalized version of the heat equation in the
LCT domains. Based on the sampling formulae related to
the LCT, we further derive its solution followed by using
the LCT. We emphasize that our solutions are nontrivial
generalizations of the solutions of the heat equation
using the sampling formulae and FT methods. For imple-
mentations, we finally provide a few examples to illus-
trate our results.

The remnants of the article are organized as follows: Sec-
tion 2 introduces definitions and examples of the LCT, which
will be needed in the sequel. The useful properties of the LCT
are presented in Section 3. Some results related to the sam-
pling theorems are demonstrated in Section 4. A general
form of wave equation in the LCT domain is provided in Sec-
tion 5. A general form of heat equation in the LCT domain
and its solution using the sampling formulae are presented
in Section 6. Its solution using LCT is discussed in detail in
Section 7. Finally, Section 8 concludes our article.
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2. Linear Canonical Transform

Stuart A. Collin [11] introduced the linear canonical transforms
(LCTs) during the early 1970s in paraxial optics. Independently,
Moshinsky and Quesne [12] studied LCTs in quantum mechan-
ics. Recently, Wolf [13] discussed in detail the development of
LCTs including several complex extensions of the LCTs.

Let us start with the definition of the several dimensional
linear canonical transform:

Definition 1. (see [12, 13]). For an arbitrary 2N x 2N sym-
plectic matrix
0 1,
], (1)

a b
E:
c d -1y 0

the N-dimensional of the linear canonical transform (LCT) is
then defined as

Le{/}®)= |

, EQET=0Q, Q=

S(OKE(& 1) dt, (2)

R
where

1 G dggT ) g
(2mi)N det b

Kg(é,t) =

where i = —1. Here, E is invertible and its inverse is given by
a dT _bT
E'= : (4)
c

' af
Secondly, let us introduce the inversion formula. Because of

-1
=QE'Q" =

Kg(& 1) = Kg1 (4, £), ()

then, inversion formula of (2) has the following form:
£ Lelr}@Ke 0 8 de ©
]R?X

To solve the generalized wave and heat equations, we will
only deal with the case that N =1. When N = 1, Definition 1
mentioned above becomes

[ FKs(E ) de b0
Le{fY () =Fgz(&)=¢ IR )

\/He"“d/z)ng(df), b=0,
where K (&, t) is so-called kernel of the LCT given by

1
Kp(E 1) = el/z((a/b)tz—(ZIh)t£+(d/b)Ez)) (8)

v/ 27tbi

c
—bc=1, that is, E € SI(2, R), which denotes the special linear
group over R.

b
and the matrix parameter E = l ] satisfies det (E) = ad
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Based on (5), the LCT kernel (8) satisfies

1 (@)= EdE)

Kpn (68) = K6, )" = ——

;

©)

where f* stands for the complex conjugation of f. Equation
(7) implies that for b= 0, the LCT of a signal is essentially a
chirp multiplication. Therefore, we only consider the case

of b#0 in this work. In the special case where E=

, the LCT mentioned above reduces to the Fourier
-1 0

transform (FT), that is,

1

Le{f(1)}(8) = 7

FFO}E): (10)

Here, the FT and its inverse are defined by (see [14-16])

FIONO = =] f0e e s
: )
_ ! oife
- —=| e

provided that the integral exists. The connection between the
FT and LCT is given by

L{f(H)}(E) = \/% e(id/zb)Ezg{e(z’alzb)ﬂf} (Z) . (12)

An application of (9), we get the inverse transform of the
LCT, that is,

1
Lo (L P10 =£0) = Jim || L1 Ko (1.6) 8

(13)
=jRLE{f}<£> K (6,8) de.

Or, equivalently,

1

v =2mbi

1= J Li{f}(§) e (@E-CIERE) ge.
R

(14)

b
Definition 2. For every E = d] € Sl(2, C), the complex

c
LCT is defined by

L {f}(2) :ij<x>KE<z, x)dx, (15)
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where

1 ei/z((a/b)xz—(Zlh)xz+(d/b)zz), (16)

v 2mbi

provided Re(ia/b) < 0. For a is a real number, b must satisfy
-m<argb<0. For an example, taking a=2""*=d,b=i
2712 = ¢, we obtain (compare to [17])

Ky(z,x) =

KE(Z, X) — ﬂ71/2271/4e—1/2(xz+zz)+2”2xz. (17)

The next, following [13], we have.

1 -2it
Remark 3. When E = [ ] , we obtain
0 1
1
Ky (& x) = me*‘*@z’“, £>0. (18)

This form is often so-called heat kernel or Gauss’s kernel.

Definition 4. The inversion formula of the complex LCT is
defined as in [13, 17].

16)= | LN @K (00 u(z2), #u(=2)

(19)
=, (z, zﬁ) d(Rez)d(Imz),
where
Vi (Z, Zé> - \/%emv(uzz_zzzé”j#), u=a*d-b'c, v=2Imab*>0.
(20)

Example 5. (Dirac delta function). The Dirac delta function
8(t) is a generalized function satisfying the following:

0(t) =0fort #0, 8(0)=00,J S(t)dt=1. (21)

By applying (7) to 6(t), we obtain

. 2
£idI2bE

Lo{8()}(6) = j 8(1)K (. 1) dt = Ky(§,0) =

R 2mbi
(22)

Example 6. (Gaussian function). The Gaussian function is
defined by

g(t)y=e*, k>o. (23)

The LCT of the Gaussian function g(t) is given by (see
(1)

ol 2kdir2(2kb-ai))&* (24)

Lt} )= 7W

Let us introduce the convolution of two complex func-
tions in the LCT domain and the relationship between the
convolution and its LCT (see [5, 18-20]).

Definition 7. Let f, g € L'(R). Then, the convolution opera-
tor associated with the LCT is given by

it(t-x)a

(f * 9)(x) = jReTfmg(x —nd. (25)

The LCT of the convolution of f and g is given by

1
\ 2mbi

3. Useful Properties of LCT

E) (% g} (E) = Ll FHE)Lp{g} (). (26)

The following Theorem 8 describes the LCT of the derivative
of a function (see [21]). It is very useful to solve partial differ-
ential equations related to the LCT.

Theorem 8. Let f(t) € L'(R). Assume that L{(d"/dt")f(t)
}(&) exist. Then, we have

L{ g0} (~divaf) LO}O. @)

Let us give a simple application of Theorem 8.

Example 9. (Mexican hat wavelet). The Mexican hat wavelet
is defined by (see [22])

M(t)=(1-1)e " (28)
The alternative form of (28) is

M(t) = @ en 29
(O)=-gz¢ " (29)

The LCT of (28) is given by

L{M(1)}(8) =~

a1+ biehEZ (—ica + 6haE - (4hica + cz)fz + 4h2a253>.
(30)

Let us give a sketch of the proof of (30) below.
By applying Theorem 8 with n =2 and Example 6, we get

Ly{M(1)}(&) = L{jT) }<€>

- <755i + a%) 2LE{e”Z’Z) j@
a4 1

2 o4 . d
<(C£l)21m5d§lmdrf£+azd.§2> me(

c+dif2(b-ai))E*

(31)



4
By algebraic simplifications, we obtain
1 ; d _. d & ac+bd)i-1/a*+b*) )&
Lg{M(t)}(§) =- NEYE (—CZEZ - 1cu§d—5 - 1cud—£c‘;’ +a d?,z> 2(((acrbayi-1/at+b?) )&
(32)
Now, setting h = 1/2(((ac + bd)i — 1/a* + b*)), we get
1 _.d . d &\ e
Le{M(t)}(&)=- NFYYE (—6252 - 1caEd—E - zcad—€/f +a? dEZ> e
2
= a1+ - (_C2€ZEhEZ - icaEd%ehE2 - icad%fehfz +a ;Ezehsz>
=-— \/1;1:5? (—czfzehsz - 2hica€2eh52 - ica(l + 2]152)6"5z
+ uzd% (1 + ZhEZ)ehf2>
=— \/Lﬁ (—czfzehEz - 2hicafzeh£2 - ica(l + ZhEz)eh52

+a <4h5 + (1 + zhzz) 2h£> e"fz)
1
[ o <—CZEZ — 2hicaE® - ica - 2hicaE®
a+ bi
+ 4ha’t + 2ha’E + 4h2a2£3>
1

== biehs2 (—ica +6ha*E — (4hica + )& + 4h2a253).

]

]

(33)

Definition 10. The Schwartz space §(RR) of rapidly decaying
functions is defined by a collection of complex valued func-
tions such that

S= {1//(1‘) € C®(R): sup | " D"y(t)|<o0,¥m, n € ]N},

teR
(34)

where D = d/dt.

The generalization of the Schwartz space in the LCT
domain is described in the following.

Definition 11. ([21]). The Schwartz space $;(IR) of rapidly
decaying functions associated with the LCT is defined by a
collection of complex valued functions such that

S = {w(t) € C*(R): sup | " Dpy/(t)|<co,Vm, n € ]N},

teR
(35)

where Dy = d/dt —i(a/b)t.

From the above definition, we obtain the following
important result (see [21]).
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Theorem 12. Let K (&, t) be the LCT kernel and Dy = —d/dt
—i(alb)t. Then, we have

DK (& t) = <—i%> nKE(E, t),Vn €N,

LD} = (<if ) Lew(O)HE)¥neNandy e,

(36)

4. Sampling Theorem in LCT Domain

The sampling theorem [23] states that a class of functions
can be determined perfectly from samples taken at equal
interval. In this part, we investigate some results of sam-
pling theorem associated with the LCT. We first introduce
the following result, which was investigated in [24, 25].

Theorem 13. Suppose that f is band limited to Qy in the LCT
domain. Then, for every x and b > 0, one has

n=00
_ =i(al12b)% £ (7 i(a/26)(nT)? Qp(x—nT)
f(x) Z e f(nT)e sinc |:—l77'[ .

n=—00

(37)

Here, T = b/Qy, and it is the sampling period.
This gives the following theorem which is very useful to
obtain the solution of heat equation in the LCT domain.

Theorem 14. Under assumptions as in Theorem 13, we have

L{f}(§) =Hy(E+Qp) — Hy(E - 2)

n br (i d120)E nio £(nT) ¢i(@/2b)(nT)? =inTElb.

QE\/Z n=—00
(38)
where the step function is defined by
1 ifQp<é<Qy
Hy(§+Qp) —Ho(§ - Qp) = ({ .
0 otherwise.
(39)

Proof. Substituting (37) into the LCT definition, it is not dif-
ficult to arrive at
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ei/z((a/b)xz—(z/b)xs+(d/b)§2) dx

L{f}®) J flx >\/%

[ Z f(nT)ei(alzb)(nT)z sinc {QE("’ ”T)}
JR 100 b
1 SRR EABE) g
2mbi
1 . > 'S . 2
_ i(d/2b)E i(al2b)(nT) J :
= [ nT)e sinc
2mbi n;mf( ) R
OQp(x— .
. |: b(‘x HT)} e—l(x{/b) dx
br

g

1 ; & . 2
_ ((d2b)E 2Tl @/2D)(nT) J sin (40)
V2mbi Z S(nT) R

_ (Qplbrr)x - (QpTIbn? ) nr GED) gy
(Qplbm)x — (Q TIbr

= Hy( +Qp) — Hy (€~ Qp)e @0

Y5

(nT zax/Zb)(nT2 br 7mT§/b
O bz

=H (E+QE) - H,(&-0p)

br 2 .
(d/ZbE Z f ra/Zb ) ﬂnTE/b.

' E\/_ e
This is the desired result.

5. Generalized Wave Equations in Linear
Canonical Transform Domain

In the present section, we study how the LCT can be applied
to solve partial differential equations. In particular, we are
going to obtain the solution of generalized wave equation.
In [26], the author have obtained the solution of wave equa-
tion using the LCT. Therefore, in this part, we propose a dif-
ferent way to obtain the solution of wave equations related to
the LCT. We also provide a simple example to illustrate the
result. Let us therefore introduce the generalized wave equa-
tion in the LCT domain.

Consider the following generalized one-dimensional
wave equation associated with the LCT:

aZ
T —eDige ),

—00<x<00, t>0, (41)

with the initial condition:

650) =), 2D

=g(x), —co<x<oo, (42)

t=0

where k is a positive constant and f(x), g(x) € L'(R). Note
that Dy, = —d/dx — i(a/b)x. The solution of the generalized
one-dimensional wave equation mentioned above is given by

e—i (a/2b)x2

$(x.1) =sgn (b)

% { flx+ kt) o(a/2b) (xkt)?

1 x+kt ) ,
+f(x kt) za/Zb)(x kt) + kj ) g(E)ez(a/Zb)E dE )
x—kt

(43)

Note that, in the case when E = , the solution

-1 0
(43) becomes the well-known d’Alembert solution of the
classical wave equation, that is,

1 1 x+kt
P(x, t) = 3 [f(x+ kt) + f(x — kt) + EJ g(&) df] . (44)
x—kt
cosa sina
When E = , (43) leads to
—sina cos «a
—i(cot a/2)x*

¢(x, t) = sgn (sin «) [ f(x+kt) pf(cot a/2)(x+kt)*

x+kt

g(g)ei(cot af2)E d£ ,

x—kt

+f(x kt) zcottx/Z ) (x—kt)? + %J

(45)

which is the solution of the generalized wave equation using

the FrFT (compare to [10]). Therefore, (43) can be seen as
follows:

For fixed ¢, applying the LCT on both sides of (41) and
using Theorem 12, we obtain

PopEt) L[ &\
%ﬁt) _K (-:%) (5, 1), (46)

where ¢ (&, ) = Ly{¢(x, t)} is the LCT of ¢(x, t) with respect
to x only. The solution of equation (46) takes the form:

9x(E 1) = Pp(§)e™ % + Qp(§)e K. (47)

Differentiating (47) with respect to t, we have

6, (6 1) = LEPL(ET - LeiQu(E)e IE. (48)

Now, we use the notation
Fp(§) =Le{f(x)}(§) = Lg{$(x, 0)}8) = ¢5(§,0),  (49)
Gg(8) = Le{g(x)}(§) = Le{¢(x,0)}8) = ¢, (,0).  (50)

Consequently, we obtain

Fg(8) = ¢5(5,0) = Pp(&) + Qu(8), (51)

%®=%ﬁﬁhgw%@—%@» (52)

From equations (51) and (52), we get

-2 (FE(g) + %GE(Q), (53)

—%@m) (54)



Substituting (54) in (47) yields

¢p(S 1)) = %FE(E) (e<ik/b)£r + e—(ikmgt)

b .
(ikib)Et -
+ TE Gg(§) (e e

(55)
(ik/b)Et) .

Now, applying inverse transform of the LCT defined by
(14) into both sides of (55), we immediately get

1 1 . )
Fo(8) ()8 4 g (ke
\/—271171,[ {( &l )( )
b . )
b (ikib)Et _ ~(ikib)Et
* ke O ) C ¢ ))

% e—i/2((u/h)xz—(Z/h)xEJr(d/b)Ez)} dE

¢ 1) =

_ 1 bJ [G 1bJ (e (@)=Y (0)E) g
vV =271bi Jr vV 2mbi JrR

. . b
( (ikib)Et —(zk/b)Et) v
(e +e * 3

1 J g(8)ei/2((a/b)sz—(Z/b)sE+(d/b)£z) de
R

) ( olikIb)EL _ e—(ik/b){t) ) e*i/Z((a/b)xt(z/b)x&(d/h)iz)}d‘f
1 1

1 i12((a/b)e2~(2/b)eE+(dIb)E?)
€)e de
\/—2 \/27rb1J { (J @)
( lKIDEL | o (zk/b)st)

b i2((alb)e?~(2/b)et+(d/b)E" )
— d
+ ikE ng(s)e 3
) ( olikIb)EL _ e—(ik/b){t) ) e*i/z((u/b)xzf(zlb)x&(d/b)fz)}dE

_ 1 1 i12((alb)e>~(2/b)ek )
"2 (b] JR[ZJJ(S)E

. (e(ik/b)gt n e—(ik/b){t) efi/z((a/b)xz—(Z/b)xE) de

b i12((alb)e?~(2/b)e )
+ 2ikE JIR g(e)e

. (e(ik/b)gt _ e—(ik/b){t) efi/Z((u/b)xz—(Z/h)xE) de|dE
—i(a/2b)x?

_€ 1 i12((alb)e2~(2/b)eE )
- Gatar Ly 2)."
. ( olikIb)EE | e—(ik/b)Et) e 2(-(2/b)xE) 4o

b i12((alb)~(2/b)et)
+ ke JIR g(e)e

. (e(ik/b)ft _ e—(ik/b){t) o i2(~(210)x%) de)dE

oi(al2b)x® 1 a1 e
T Ju
R R
.

. ( olikI)E e—(ik/b)ft) e i2(-(2/0)xE) g,
+ L g(s)ei(alzh)s2e—(isf/b)
2ikE | g
. (e(ik/b)ft _ e—(ik/b)ft) e i (210)x%) de} dEei(a/Zb)gze,(ieE/h)_

(56)
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Set f(e) = f()el @, 3(e) = gle)e! @, and v =E/b,
then we have
be-iar2b)x® 1 _ )
x, 1) = e)e M de
)=t o Ly [T
| kvt ~ikvt 1 57
(e te ) "+ (57)

. 1 = —ive ikvt _ —ikvt '\ jixv
] aor -l

By using the FT definition (11), we immediately obtain

b eilanb)x ook
— lV x+kt) iv(x—kt)
R NG UG
b _
S iv(x+kt) _ iv(x—kt)
+ ; VJ{g}(v) (e é )}dv
_sgn (b) pi(ar2b)x _ _
- Vo (Jx+ke) + f(x— ko))
x-+kt
+ ! F{g}(v) J " da | dv
k R x—kt
_sgn (b) eilah) i(al2b) (x+kt)?
- [\/EE(f(Hkt)e

x+kt

# flox= k)@ % j

: (LR%{ G e dv) doc}

—i(al2b)x?
_ sgn (b)‘; (@2b) [f(x+ kt)ei<a/zb)(x+kt)2

x—kt

+f(x- kt)ei(a/zb)(x,kt)z . lrﬂq
k x—kt

(| @ e iv)a

—i(al2b)x
_ sgn (b)e ) { F(x+ k) (@120 (x+kt)’
2

. ) 1 x+kt7
+ f(x — kt) /@b k) ; <J g(a) docﬂ

x—kt

_sgn (b)e~ila2b)’ [ Flx+kt) pi(a/2b) (ke

2
+f(X _ kt)ei(a/Zb)(x—kt)2 n % <J g(“) ¢ (a/2b)a? da>j|
(58)

x+kt

x—kt

as claimed in (43). For different values of (43) is shown in
Figures 1 and 2.

For an illustration, we provide the following simple
example.



Abstract and Applied Analysis

Example 5.1 Let us consider the following initial wave
equation:

aZ
(g(t ) =0. 25DE</>(x, t), —oo<x<oo, t>0
2951 )
_ —(12)%? X _ (12)2
$(x,0)=e , o |, .
According to (43), we get the solution in the form:
$(x, 1) = Sgnz(b) oilal2b)x* [ o 12(x40.5)? ir2(x+0.50)?
" e—l/2(x—0,5)2ei/2(x—0<5t)2 (60)
x+0.5¢ 5 . ,
+2J (1120 jilah)e dﬁ].
x—0.5¢
On the other hand, for a =b =1, we get
x+0.5¢ . , x+0.5¢
J e—(l/2){ ez(a/Zb)E dg:J —1/2 df
x-0.5¢ x-0.5¢t
x+0.5¢ _\2 (61)
:J e—( (172)(1-0%) dE.
x=0.5¢
Setting u = 1/(1/2)(1 —i)&, then
Jx+o 5t e la/zh)f g = 1 J (1/2)(Lz’)(xﬂ),st)eﬁZ iu
x-0.5¢ 1/2(1 - i) ) \ /@)= (x-05t)

u

2 a2 (2x4t)
= et d
V2-2i J 1/4+/(2=2i) (2xt)

VT

2 JO 2
= [ — e du
V2-2i\Vm 14/ (2-2i) (2x-1)

Ua/2i)xrt)
J e du
0

2 J1/4\ [2-2i)(t-2x)
R eiu

Ua/2i)axrt)
J e du
0

:\/Z—LZz( 711\/—21( 2x+t))
M(2x+t))).

du

1
+erf |-
4

N

(62)

It means that equation (60) takes the form

o (i12)2
¢l t)= ——

—1/2(x—0.5t)* i/z(xfost)z

\/2%( (—\/ﬁ( 2X+t)> (63)

+erf G V2 - 2i(2x + t)))],

[ o V2(x+0.51)? ir2(x+0.51)*

+e

where the error function is defined by

2 (* _p
erf (x) = ﬁjoe’t dt, for all x. (64)

In particular, if g(x) = 0, the above expression becomes

i(t2/8)
Bxt) =

~1/2(x-0.5¢t)*

+e

e—tO.Sxt:| .

[ ¢~ V2(x+0.50)° i0.5xt

(65)

6. Solution of Generalized Heat Equation Using
Sampling Formulae

Let us consider the following generalized one-dimensional
heat equation associated with the LCT:

a(P(at ) K }zsgo(x, ), —oco<x<oo, t>0, (66)
with the initial condition:
¢(x0)=f(x), (67)
where k # 0 is a constant and Dy, = —d/dx — i(a/b)x.

Theorem 15. Assume that f(x) in (67) is band limited to Q
in the LCT domain. Then, the solution of (66) is given by

—i(al2b)x ZO,O f nT i(a/2b)(nT) J £ 7(k2/b2)€2t cos

Ne

T
P(x.t) = Q_E

(o5 -

(68)
Proof. Applying the LCT to both sides of (66) yields
2560 _ K oyt (69)
This gives
9p(E. 1) = Fp(®)e )T, (70)

where Fy(&) is defined by (49). Taking the inverse transform
of the LCT in (70), it is easy to obtain
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o(x. 1) =Lp [FE(E) (1) t] Because f(x) is band limited to Qp, then L {f}(&) = 0 for
h e e e (71) | | >Qp. Applying this fact and then substituting (38) in (71),
= = J]RFE(E) (K1 )Et i12((alb)x*—(2/b)cE+(dIb)E )df we obtain
1 : 2 21,2 2 .
o(x, 1) — ¢ilai2b) omi(dizb)E Fy(§) o (K10) &t —i(at b) dE
- JR
_ 1 ¢ ilal2b) o i(dI2D)E i(dI2b)E? Z f(nT)e i(a/2b)(nT)? Vb ¢ i(nTElb) —(kZ/bz)Et ~i(x&/b) dE
—27tbi —QE n=-00 Q \/—
1 —i(a/2b)x2 oi(al2b)(nT)? nvbn o i(nTEL) = (16 )&t —i(xEIb)
= e e e dé
v =2mtbi -0 n—Zoof QE\/_ (72)
1 o ilarzb)x i(al2b)(nT)> T br J - (K10 )8t ~i&((nT/b)~(xE/b))
=—— nT)e e e d&
\/—Zﬂbl z 4 QE\/— -0,
T . 2 . 2 E 2722\ g2 .
_ T ianb)x F(nT)e@m) J ~(RI )E (i (T ~(5810) g
e nT)e e e
20 n:Z’oo -0,
_ T (al2b)x i(a/2b)( nT) ’ —(kzlbz)fzt nT xg
= — T)e — - | d&
QE n_Zoof ( JQE os (& b b ¢

The proof is complete.

7. Solution of Generalized Heat Equation

Using LCT

The purpose of this part is to solve (66) using the LCT. We

prove the following result.

L [ P96

Theorem 16. Assume that f(x) in (67) belong L'(R). Then,
the solution of (66) is given by

P(x,t) =

1 J eiu(u—x)a/bf(u)e1/2(—b2c—2akzit/2lébz)(x—u)z du.

V—4rk’t Jr
(73)

Proof. By using the inverse transform of the LCT (14), we
have

1 J o~ (107)Et ir2((alb)2—(2Ib)xE+ (1)) dE
R

e(—(kzlbz)t—dilzh)fz e(~iEx1Y) g
R

e(zkzt—idblzbz)(EZ—Zib{x/Zkzt—idb) dE

: (74)
e(zkzt—idblzbz)((EZ—ZibExlzkzt—idb)+(ibx/2k2t—idb)z—(ibxlzkzt—idb)2) dE

R

o(2Rt-idbi2p?) (—(ibxlzkzt—dbi)z) J

2 2, : —
& 14k"t Zdbxj e
R

: e(zklz—dbi/zbz)((Ez—zl'bfx/zk2z—dbi)+(ibxxzkzz—fdb)z) d
—2mbi
—(ia/2b)x*

R

(dbi-2k*t/26 ) (E-ibx/2k>t-idb)” dE,
—2mbi
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Re ¢(x,t)
Im ¢(x,t)

x-values
x-values

(a) (b)

FiGuRre 1: Real and imaginary parts of solution of (43) fora=b=1,k=1/2,t=1,t=2,t=4,t=5,t=7,and g(x) =0.

1.5 ]

' 051

< 5 0 +
&3 = i
S =]
~ = 0.5
14

-10 -5 0 5 10
x—values x-values
(a) (b)

F1GURE 2: Real and imaginary parts of solution of (43) for a=1/2,b=2,k=3/2,t=1/2,t=3/2,t=5/2,t=5,t =8, and g(x) = signum(x).

Based on Gaussian integral and basic property of matrix
parameter of the LCT, we obtain

Ly [ e—(kz/bz)fzt} _ 1 —(a(4k2t—2dbi)/2b(4k2t—2dbi))xzi ezhlezh(4k2t—2dbi) 2b°m

Nara dbi - 2k°t

_ b e( —4k? tai72adb+2b/2b(4k2 t—zdbi) )xz
V 2k%ti + db? (75)
_ / . .b 2e(f4k2tai72b2c/2b(4k2t—2dbi))xz
2k*ti+ db
_ b el/2(—2k2tui—hzclzkzbt—dbzi)xz
2Kk*ti + db?
Put h(x’ t) — el/2(—hzc—2ak2it/2k2bt—ihzd)xz. Then, we get From (70), we obtain

b (emye ¢(x, 1) = Lyt [ Fp(&)e (F0)E]. (77)
Lt \ (o ) = (KW (76) [
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-0.1

Re ¢(x,t)

-0.2

-10
x-values

()

FI1GURE 3: Real and imaginary parts of solution of (73) fora=b=c=1,k=1/2,t=1/2,t=2,t=3,t=

P(x.t)

x-values
(a)
FIGURE 4: Real and imaginary parts of solution of (73) fora=1/3,b=1/2,c=5/2,k=1,t=1/2,t=2,t=3,t=5,t=10, and f(x)

By inserting (76) in (77), it is easy to see that

o(t) = L {Lﬁf(x)}LE{ Vs e ) H

/ b
m g [Letf (0) Y g{h(x, 1) }]
- /Zkztib+ ke [ 2171bi &P rf h}} ,

For simplicity, let us assume E =

(78)

a b
. Then, the
c 0

above identity takes the form:

Vv b/2k2
V4 27'rbz

Applying the convolution theorem for the LCT defined
by (25), we obtain

p(xt)= it [La{f = b} (79)

1
(P(x’ )_ \/WL [ A{f*h}]
ezuuxa/b X—M,fdbl
—4ﬂk2tJR Sk )
e iu(u—x)a)/b 1/2(—1725—2ak21't/2k2ht)(x—u)2
—47‘[k2t J]R J(w)e

(80)

as claimed in (73).

Abstract and Applied Analysis

x-values

(b)

5,t=10, and f(x) = e (V2

Im ¢(x,t)

x-values

(b)

=u(x).

This solution of (73) with initial conditions f(x)=
(1122 and the Heaviside step function

0 x<0,
ﬂ@=%@={

1 x>0,

e
(81)
is described in Figures 3 and 4, respectively.

0 1
Remark 17. Notice first that, when E = [ ], (73) will
-1 0

lead to

J f(u)e("_”)zl‘“k2 du. (82)

1
ikv/4mt JR

The above identity is solution of the classical heat
equation.
Let us consider

P(x,t) =

1 e(iu(u—x)a)/beI/Z(—bzc—ZukzitIZkzbt) (x—u)?

V-4nkt

G(x—ut)=
(83)

Then, the solution of heat equation associated with the
" LCT (73) reduces to the form:

f(u)G(x —u,t)du.

R

(84)

ﬂ%ﬂ=J
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When f(x) = 8(x), (84) becomes

1 61/2(7b2572ak2it/2k2bt)x2 _ (85)

T

8. Conclusion

We have established the solution of generalized wave equa-
tion using the ICT and obtained the solution of heat equation
using the sampling formulae of band limited function related
to the LCT. The solutions have been obtained by applying the
properties of the LCT and the relationship between the FT
and the LCT. It is found that the solutions are general form
of the solutions of the classical wave and heat equations.
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