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The linear complementarity problem is receiving a lot of attention and has been studied extensively. Recently, El foutayeni et al.
have contributed many works that aim to solve this mysterious problem. However, many results exist and give good
approximations of the linear complementarity problem solutions. The major drawback of many existing methods resides in the
fact that, for large systems, they require a large number of operations during each iteration; also, they consume large amounts of
memory and computation time. This is the reason which drives us to create an algorithm with a finite number of steps to solve
this kind of problem with a reduced number of iterations compared to existing methods. In addition, we consider a new class of
matrices called the E-matrix.

1. Introduction

In the last decades, the complementarity problem has played
a very important role in several domains. It has been the
focus of many researchers and scientists. As an example, we
can cite the works of Cottle [1, 2] published between 1964
and 1966. Note that the above problem appears in older
works without reporting the name of complementarity prob-
lems. In particular, we mention the work of Du Val [3] and
Ingleton [4]. Let f be a function defined in ℝn to ℝn. A com-
plementarity problem (CP) associated with the function f
consists to find a vector z ∈ℝn such as z ≥ 0,f ðzÞ ≥ 0, and
zT f ðzÞ = 0. If the function f is affine, it is presented in form
f ðzÞ =Mz + q, where q is a vector of ℝn and M is a square
matrix of order n. Then, we have a linear complementarity
problem denoted by LCPðM, qÞ. The origin of the name
complementarity comes from the fact that if z ∈ℝn

+ is a solu-
tion of a linear complementarity problem, then zi = 0 or
f iðzÞ = 0 for all i = 1, 2,⋯, n. The linear complementarity
problem has been widely studied by researchers from a

variety of backgrounds, which has been a rich and varied
literature (see [5–17] and references therein). In [18], Kadiri
and Yassine described a new purification method for solving
monotonic linear complementarity problems. In their paper,
the proposed method is associated with each iterate of the
sequence, generated by an interior point method, one basis
that is not necessarily feasible. The authors proved that, under
the strict complementarity and nondegeneracy hypotheses,
the sequence of bases converges on a definite number of iter-
ations to an optimal basis which gives the exact solution to
the problem. In [19], to solve the linear complementarity
problem, Alves and Judice [19] proposed a pivoting heuristic
based on tabu search and its integration into an enumerative
framework. Recently, El foutayeni et al. [20–28] added a
contribution to the resolution of the linear complementarity
problem. In particular, in [27], they proved the equivalent
between solving a linear complementarity problem and solv-
ing a nonlinear equation. Also, they give a globally convergent
hybrid algorithmwhich is based on vector divisions for solving
the linear complementarity problem. In [27], the same authors
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determined the conditions that allow a linear complementar-
ity problem to have a solution. They calculated the solution
when it exists. In [24], they proposed to solve the linear
complementarity problem in the case where it has several
solutions. The aim of [29] is to propose an iterative method
of interior points that converge in the polynomial time to
the best solution of the linear complementarity problem;
this convergence requires at most oðn0,5LÞ iterations, where
n is the number of the variables and L is the length of a
binary coding of the input; furthermore, the algorithm does
not exceed oðn3,5LÞ arithmetic operations until its conver-
gence. In [24], El foutayeni and Khaladi have shown that
the linear complementarity problem LCPðM, qÞ is completely
equivalent to finding the fixed point of the map x =max ð0,
ðI −MÞx − qÞ, and they showed that to find an approxima-
tion of the solution to the second problem, they proposed
an algorithm that starts from an arbitrary interval vector
Xð0Þ, then they generalize a sequence of the interval vector
ðXðkÞÞk=1,⋯ that converges to the best solution of linear com-
plementarity problems. Newly, in [30], for solving the linear
complementarity problem, Wang et al. [31] propose an inte-
rior point method to find the solution of the linear comple-
mentarity problem, where the matrix is a real square hidden
Z-matrix. In this context, we can see the works [31–39].

It is well known that it is impossible to ensure the exis-
tence of a linear complementarity problem solution associ-
ated with any matrix and vector. This leads us to ask the
following questions: Under which conditions on the matrix
and the vector does this type of problem admit a solution,
and if it exists, what are the conditions for the uniqueness
of this solution? Once the existence and uniqueness are
assured, how we can express this solution according to the
data of the problem? Despite the great importance of the lin-
ear complementarity problems in several areas, they are not
yet completely resolved. However, many results exist and
give good approximations of the solutions, but the main dis-
advantage of many existing methods resides in the fact that,
for large systems, they require a large number of operations
during each iteration and they consume large amounts of
memory and computation time. This is the reason that drives
us to look for new methods that deal with this kind of prob-
lem which lower the number of operations at each iteration
compared to existing methods.

In the present work, we formulate an algorithm that can
solve the linear complementarity problem LCPðM, qÞ. This
algorithm has a finite number of steps and converges to the
solution. Also, we consider a new class of matrices called
the E-matrix. The algorithm has been surprisingly effective.
A numerical implementation of the algorithm is given in this
work.

We organized this document as follows. In Section 1, we
give preliminary definitions and we list some initial notations
that we need throughout this document. In Section 2, we
present the proposed linear complementarity problem under
some conditions. In Section 3, we formulate an algorithm for
solving our linear complementarity problem with the E
class’s matrix. And in Section 4, we give numerical examples
to confirm the theoretical part of our algorithm.

2. Preliminary and Notations

In this section, we recall preliminary definitions and general
notations used in this paper.

For any positive integer n, let ℝn×n be the ensemble of
all real n × n matrices. We denote by I the matrix of iden-
tity, ek is the k

th column of I, and e = ð1,⋯, 1ÞT is a vector
where all entries equal to 1. We also use the following
notation Ck· and C·k to represent the kth row and the kth

column of the C matrix, respectively; Yn = fy/∣y∣ = eg is
the ensemble of all ±1 vectors of ℝn, and its cardinality
is equal to 2n. For each x ∈ Rn, we define his sign vector
sgn ðxÞ by ðsgn ðxÞÞi = 1 if xi ≥ 0 and ðsgn ðxÞÞi = −1 if xi
< 0 with i ∈ f1, 2,⋯, ng. Then, sgn ðxÞ∈Yn. For each z ∈
ℝn, we denote Tz = diag ðz1,⋯, znÞ.

Definition 1. Given M ∈ℝn×n , the set of matrices

A = S ∈ℝn×n : S − M + Ið Þj j ≤ I + Mj jf g = M − Mj j, 2I +M + Mj j½ �,
ð1Þ

is called an interval matrix.

Definition 2. A square interval matrix A is called regular if
each S ∈ A is regular and singular if it exists S ∈ A singular.

Proposition 3. An interval matrix A is singular if and only if
the inequality

M + Ið Þxj j ≤ I + Mj jð Þ xj j, ð2Þ

has a nontrivial solution.

Proof.We suppose that A contains a singular matrix S, then
there exist x ≠ 0 such that Sx = 0, which implies that jðM +
IÞxj = jðM + IÞx − Sxj ≤ ðI + jMjÞjxj: Conversely, let (2) hold
for x ≠ 0: Define y ∈ℝn and z ∈ Yn by yi = ½ðI +MÞx�i/
½ðI+∣M ∣ Þ ∣ x ∣ �i, for i = f1,⋯, ng. If ½ðI+∣M ∣ Þ ∣ x ∣ �i > 0 or
yi = 1 and ½ðI+∣M ∣ Þ ∣ x ∣ �i = 0 taking into account that z =
sgn ðxÞ, then Tzx = jxj: Hence, ½ððI +MÞ − TyðI+∣M ∣ ÞTzÞ
x�i = ððI +MÞxÞi − yiððI+∣M ∣ Þ ∣ x ∣ Þi = 0 for each i.

Therefore, ðI +MÞ − TyðI+∣M ∣ ÞTz is singular, and since
jyij ≤ 1 for each i due to ð1Þ, it follows that jðI +MÞ − Ty

ðI + jMjÞTz − ðI +MÞj = jTyðI + jMjÞTzj ≤ ðI+∣M ∣ Þ:
Hence, ðI +MÞ − TyðI+∣M ∣ ÞTz ∈ A and A is singular.
We use the previous proposition to show the regularity or

the singularity of the matrix A in some cases.

Proposition 4. Let A be regular and let

I +M + I −Mð ÞTz ′ð Þx′ = I +M + I −Mð ÞTz″ð Þx″, ð3Þ

hold for some z′, z″ ∈ Yn and x′ ≠ x″:

So, there exists an i satisfying zi′zi′′= −1 and xi′xi′′> 0:
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Proof. We assume that for each i,zi′zi′′= −1 implies xi′xi′′≤ 0, so
∣xi′− xi′′∣ = ∣xi′∣ + ∣xi′′∣. We shall prove in this case that

Tz ′x′ − Tz″x″
�� �� ≤ x′ − x″

�� ��, ð4Þ

i.e., the inequality jzi′xi′− zi′′xi′′j ≤ ∣xi′− xi′′∣ holds for each i:

Since jzi′xi′− zi′′xi′′j = jzi′ðxi′− zi′zi′′xi′′Þj = jxi′− zi′zi′′xi′′j, this is
clear fact for zi′zi′′= −1: If zi′zi′′= −1, so jzi′xi′− zi′′xi′′j = jxi′+ xi′′j ≤ ∣
xi′∣ +∣xi′′∣ = ∣xi′− xi′′∣ which together proves (3).

Now, from (3), we have jðI +MÞðx′ − x″Þj = jðI −MÞ
ðTz ′x′ − Tz″x″Þj ≤ ðI + jMjÞjx′ − x″j, by (4), with x′ − x″
≠ 0, then A is singular following the first proposition, and
this is a contradiction.

We use the Sherman-Morrison formula to prove the effi-
ciency of the proposed algorithm.

Let A ∈ℝn×n be nonsingular matrix, ðb, cÞ ∈ℝn×n, and let
α = 1 + cTA−1b.

So, we have det ðA + bcTÞ = α det ðAÞ, if α = 0, then A +
bcT is singular, and if α ≠ 0, we deduce that ðA + bcTÞ−1 =
A−1 − ð1/αÞA−1bcTA−1 (see [40]).

3. Main Results

It is a known fact (see El foutayeni and Khaladi [27]) that
the linear complementarity problem LCPðq,MÞ is
completely equivalent to solving the equation ðI +MÞx +
ðI −MÞ ∣ x ∣ = q, where z = ∣x ∣ −x and w = ∣x ∣ +x. To pres-
ent the algorithm, we define a new class of matrices that
we call the class of E-matrices.

Definition 5. Let M ∈ℝn×n . The matrix M is called the
E -matrix if all the principal minors of M are nonzero and
if all the eigenvalues of M are different from −1.

Notation 6. We denote E the set of E -matrices

E = M ∈Mn/MP ≠ 0 and λi ≠ −1,∀i ∈ 1, 2,⋯, nf gf g, ð5Þ

such that MP is the set of the principal minors of M and λi is
the eigenvalues of M.

Lemma 7.We have the equivalence between the following four
properties of a matrix A:

(1) All the principal minors of matrix A are positive

(2) For each vector x ≠ 0, there exists i such that xiyi > 0,
with y = Ax

(3) For each vector x ≠ 0, there exists a diagonal matrix
Dx ≥ 0 such that ðAx,DxxÞ > 0

(4) The real eigenvalues associated with A and every prin-
cipal minor of A are positive

Proof. 1⇒ 2: We denote by N the set of indices 1, 2, 3⋯ , n:
We select an arbitrary vector x ≠ 0, and we assume that xiyi

≤ 0, for each i ∈N , with y = Ax. Let Γ = fi/xi ≠ 0g: Clearly
Γ ≠ 0: If AðΓÞ is the main submatrix with rows and columns
of Γ, xðΓÞ is the vector wherein coordinates have indices of Γ
and coincide with those of x; hence, for i ∈ Γ, the coordinates
zi of the vector z = AðΓÞxðΓÞ coincide with yi: So, there exists
a diagonal matrix U ≥ 0 (over Γ × Γ) such as z = −UxðΓÞ, i.e.,
ðAðΓÞ +UÞxðΓÞ = 0. Therefore, the matrix AðΓÞ +U is
singular. Note that the principal minors of AðΓÞ are positive.
So, we have the same result for AðΓÞ +U since U is diagonal
positive. This is a contradiction that proves the implication.
2⇒ 3. We suppose that x ≠ 0 is a vector, y = Ax, and i is the
index for which xiyi > 0: There exists a positive number η,
such as xiyi + η∑ j≠ixjyj is positive. To prove this, it is suffi-
cient to choose Dx as the diagonal matrix, where dii = 1 and
djj = η, for j ≠ i:3⇒ 4. Let 0 ≠ Γ ⊂N and let λ be a real eigen-
value of AðΓÞ with the eigenvector xðΓÞ:We denote by x the
vector with the coordinates xi that coincide with those of
xðΓÞ for i ∈ Γ: In accordance with (4), there exists a diag-
onal matrix Dx ≥ 0 such that ðAx,DxxÞ > 0: But evidently,
ðAx,DxxÞ = λðx,DxxÞ, since ðx,DxxÞ > 0. Then, we have λ
> 0:4⇒ 1. Now, using the fact that the determinant of a
matrix A is equal to the product of all eigenvalues of A
and that the product of the nonreal eigenvalues of a real
matrix is positive, we can easily complete the proof.

Lemma 8. Any matrix P -matrix is an E -matrix.

Proof. Let M be a P-matrix. Then, all principal minors of M
are positive. From the previous Lemma, we can deduce that
all real eigenvalues of M are positive sinceMis anE-matrix.

It is easy to check that the identity matrix is an E-matrix;
every symmetric positive definite matrix is an E-matrix and
any Hilbert matrix is an E-matrix (we recall that a Hilbert
matrix is a square matrix of general terms hij = 1/ði + j − 1Þ).

Theorem 9. For all matrixM ∈ E‐matrices and vector q ∈ℝn ,
the following algorithm “SolveLCP” has a finite number of
steps and converges to the solution of the linear complemen-
tarity problem LCPðM, qÞ if it exists.

The linear complementarity problem LCPðM, qÞ implies

I +Mð Þx + I −Mð Þ xj j = q: ð6Þ

According to a change of variables, z = ∣x ∣ −x and w =
∣x ∣ +x. Hence, if we consider Tz = diag ðzÞ with z = sgn ðxÞ,
then the equation (4) becomes

I +Mð Þ + I −Mð ÞTzð Þx = q: ð7Þ

The problem is that we do not know the values of either x
or z, but we know that they must satisfy Tzx = jxj ≥ 0, i.e.,
zixi ≥ 0 for each i:

Step 1. The algorithm beginning with the vector p = 0 and
during each pass of the loop “while” it increases by 1; hence
pk becomes pk + 1 which means that after a finite number

3Abstract and Applied Analysis



of steps, pk will become superior to 2n−k and the algorithm
will end.

Step 2. The initial point is z = sgn ððI +MÞ−1qÞ; it is achiev-
able since ðI +MÞ is a regular matrix; indeed, we have M ∈
E‐matrices, so all the principal minors of M are nonzero,
and for all λ eigenvalues of M, λ ≠ −1: Then, there exists v
∈ℝn such that Mv = λv: Therefore, ðI +MÞv = ð1 + λÞv;
hence, ð1 + λÞ is an eigenvalue of ðI +MÞ:

Step 3. x = ððI +MÞ + ðI −MÞTzÞ−1q is also feasible, since the
matrix H = ððI +MÞ + ðI −MÞTzÞ is regular. We have H =
ðHijÞ1≤i,j≤n where

Hij =
1 +miið Þ + zi 1 −miið Þ, if i = j,
mij −mijzj, if i ≠ j:

(
ð8Þ

Consequently, ðHÞij = 2ej if zj > 0 or ðHÞij = 2mij if zj < 0;
M is regular because M ∈ E‐matrices. Therefore, all the col-
umn vectors of M are linearly independent, so H is regular.

Step 4. When x and z are held, we calculate xz; we have two
cases

Case 1. xizi > 0, for all i ∈ f1,⋯, ng, then Tzx ≥ 0 implies that
Tzx = ∣x ∣ and such x = ððI +MÞ + ðI −MÞTzÞ−1q, we find
ðI +MÞx + ðI −MÞ ∣ x ∣ = ððI +MÞ + ðI −MÞTzÞx = q. So, x
solves the equation (4) and z = ∣x ∣ −x is the solution of
the linear complementarity problem LCPðM, qÞ.

Case 2. xizi < 0, we assume the existence of j such as j =
min fi : xizi < 0g and we updated the matrix Tz and z. So,
we bring back zj to −zj, and the Tz matrix will be modified.

Then, for all real t,T~z = Tz − 2tz jejeTj .

The matrix H will change to the matrix ~H defined by
~H =H − 2tzjðI −MÞejeTj .

Now checking the regularity of the matrix ~H. We have,
according to the formula of Sherman-Morrison, det ð~HÞ =
ð1 − 2tzjeTj H−1ðI −MÞejÞ det ðHÞ:

We consider C = −H−1ðI −MÞ, then det ð~HÞ = ð1 + 2tzj
CjjÞ det ðHÞ. Therefore, we have two possible cases

(a) If 1 + 2zjCjj ≤ 0, we have Cjj ≠ 0 and the function
φ : ℝ⟶ℝ defined by φðtÞ = 1 + 2tzjCjj satisfies
φð0Þφð1Þ = 1 + 2zjCjj ≤ 0: Then, according to the
Theorem of Intermediate Values, there exist t0 ∈ ½0,

An algorithm for solving the linear complementarity problem LCPðM, qÞ
function ½z∗� = SolveLCPðM, qÞ
p = 0 ∈ℝn

z = sgn ððI +MÞ−1qÞ
x = ððI +MÞ + ðI −MÞTzÞ−1q
C = −ððI +MÞ + ðI −MÞTzÞ−1ðI −MÞ
while zixi < 0 for some i
j =min fi/zixi < 0g
if 1 + 2zjCjj ≤ 0
x = ½� ;
display(no solution)
return
end
pj = pj + 1
if log 2ðpjÞ > n − j
x = ½� ;
display(no solution)
return
end
if 1 + 2zjCjj > 0
Tz = Tz − 2zjejeTj ;
zj = −zj ;
α = ðð2zjÞ/ðð1 − 2zjCjjÞÞÞ ;
x = x + αxjC·j;
C = C + αC·jCj·;
end
end
z∗ = ∣x ∣ −x ;
end

Algorithm 1.
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1� such as φðt0Þ = 0, so t0 = −1/2zjjCjj and thus

det ðH − 2t0zjðI −MÞejeTj Þ = 0; hence, in this case,

the matrix ~His singular and the solution does not exist

(b) If 1 + 2zjCjj > 0, we have the matrix ðI +MÞ + ðI −
MÞT �z =H − 2zjðI −MÞejeTj which is regular for t =
1, then according to Sherman-Morrison’s formula

I +Mð Þ + I −Mð ÞT �z½ �−1 =H−1 +
H−12zj I −Mð ÞejeTj H−1

1 + 2zjCjj

=H−1 + αC·je
T
j H

−1:

ð9Þ

We obtain

α =
−2zj

1 + 2zjCjj
,

�x =H−1q + αC·je
T
j H

−1q = x + αxjC·j,
�C = −H−1 I −Mð Þ − αC·je

T
j H

−1 I −Mð Þ = C + αCj·C·j:

8>>>>><
>>>>>:

ð10Þ

Therefore, we conclude that the matrix C plays an
important role for giving an explicit calculation of x =
ððI +MÞ + ðI −MÞTzÞ−1q at each step.

Step 5. Let us show that if log2pj > n − j, then the matrix A is
singular and the solution x does not exist. This will be proven
by showing that if A is regular so pj ≤ 2n−j for each j. So, we

can demonstrate that every j can appear at most 2n−j times
ðj = n,⋯, 1Þ; we have two cases

Case 1. j = n: we suppose that n appears at least twice in the
sequence and that x′, z′ and x}, z} correspond to the two
closest occurrences, that is to say, that there is no other
occurrence of n between them. So, xi′zi′≥ 0 and xizi ≥ 0
for i = f1,⋯, n − 1g, and xn′zn′ < 0, x}nz}n < 0, zn′zn} = −1, which
implies that xn′zn′x}nz}n > 0 and xn′xn} < 0: Then, xi′zi′xizi ≥ 0
for all i = f1,⋯, n − 1g. But since

I +Mð Þ + I −Mð ÞTz½ �x′ = q = I +Mð Þ + I −Mð ÞTz½ �x},
ð11Þ

we obtain the relation (11) using the fact that x =
½ðI +MÞ + ðI −MÞTz�−1q and x′ ≠ x} since xn′xn} < 0; it fol-
lows from Proposition 4 that there is an i where zi′zi} = −1
and xi′xi} > 0, which implies that xi′zi′xi}zi} < 0, which is a
contradiction, so n occurs at most once in the sequence.

Case 2. j < n: let z′, x′ and z}, x} correspond to two occur-
rences of j, so that zi′xi′≥ 0,zixi ≥ 0 for i = f1,⋯, j − 1g,
zj′xj′< 0,zj}xj} < 0 and zj′zj} = −1: This gives that xi′zi′xizi ≥ 0

for i = f1,⋯, j − 1g,xj′zj′x}j z}j > 0 and xj′xj} < 0. Then, as the

condition (11) holds because of x = ½ðI +MÞ + ðI −MÞTz�−1
q and x′ ≠ x} since xn′xn} < 0, then Proposition 4 implies
the existence of an i where zi′zi} = −1 and xi′xi} > 0, as well
as xi′zi′xi}zi} < 0 so that i > j. So as zi′zi} = −1,i should have
entered the sequence of j; there is an occurrence of some
i > j in the sequence; this means, by the assumptions, that
j cannot appear there more than ð2n−j−1+⋯+2 + 1Þ + 1 =
2n−j times.

4. Numerical Examples

In this section, we demonstrate the effectiveness of our pro-
posed algorithm in relation to the execution time and the
number of iterations. To do this, we made comparisons
between our algorithm and other existing methods. In the
first, we give a simple example of a matrix E-matrix of order
4, for which we find the solution in a short time. In the sec-
ond example, we compare the results obtained by our
method with those obtained by the method of El foutayeni
et al., the method of Yu, and the method of Chen-Harker-
Kanzow-Smale (CHKS), and in the third example, we com-
pare the execution time of our method with the method of
Lemke and the method of the interior point.

Example 10. Considering the next linear complementarity
problem, where we search to determine a vector z in ℝ4 such
that z ≥ 0,w =Mz + q ≥ 0 and zTw = 0, with

M =

4 2 0 3
−1 4 −3 −6
1 −1 1 1
0 1 0 5

2
666664

3
777775, q =

−1
2
−1
−1

2
666664

3
777775: ð12Þ

It is easy to prove that the associated matrix M is
an E-matrix, by applying the proposed algorithm. Then, we
obtain z = ð0, 1, 2, 0ÞT and the elapsed time is 0.000547
seconds.

Example 11. In this example, we compare the results
obtained with our method to those obtained with the
method of El foutayeni, the method given by Yu, and
the method of Chen-Harker-Kanzow-Smale (CHKS). For
attending this, we adopt our MATLAB program to calcu-
late the optimal solution z, the final values w =Mz + q,
the number of iterations, and the time in seconds. Consider-
ing the following linear complementarity problem LCPðM,
qÞ, where M = ðmijÞ1≤i,j≤n such as mii = 4 for i = j,mi,i+1 =
mi+1,i = −1 for all i = 1,⋯, n, and it equals to 0 otherwise,
and q = ðqiÞ1≤i≤n such as qi = −1:

Tables 1–4 present the summaries of the results obtained,
where Iter represents the iteration numbers when the algo-
rithm ends and Time indicates the total cost in seconds to
resolve the problem.

5Abstract and Applied Analysis



From Figures 1 and 2, we can notice that our method can
be comparable with the method of El foutayeni, the method
of Yu, and the method of CHKS, from the iteration numbers
and CPU computation time in seconds.

Example 12. In this example, we compare three different
methods in order to solve a linear complementarity problem
CPðM, qÞ . The first one is our method, the second one is Lemke’s
method, and the last one is the interior point method [30]. We
take the same example, where M = ðmijÞ1≤i,j≤n such as mii = 4,

mi,i+1 =mi+1,i = −1 for all i = 1,⋯, n and zero in the rest and
q = ðqiÞ1≤i≤n such as qi = −1: The matrixM is definitely positive,
so we ensure the convergence of Lemke’s method. In Table 5, the
first column represents the dimension of the linear complemen-
tarity problem. The second provides (the third and the fourth)
the computation time in seconds for Lemke’s method to be per-
formed (interior point algorithm and our algorithm).

Based on this table, in the case where n = 1000, we con-
clude that Lemke’s method is divergently compared to time
(it needs 334 seconds to display the results), but our

Table 1: Numeric outcomes of our method.

z∗ w∗ Iter Time (s)

n = 4 (0.3636, 0.4545, 0.4545, 0.3636) (0, 0, 0, 0) 1 0.0040

n = 8 (0.3660, 0.4641, 0.4902, 0.4967, 0.4967, 0.4902, 0.4641, 0.3660) (0, 0, 0, 0 0, 0, 0, 0) 1 0.0050

Table 2: Numeric outcomes of the El foutayeni method.

z∗ w∗ Iter Time (s)

n = 4 (0.363636, 0.454545, 0.454545, 0.363636) (0, 0, 0, 0) 2 0.000000

n = 8 (0.366013, 0.464052, 0.490196, 0.496732, 0.496732,
0.490196, 0.464052, 0.366013)

(0, 0, 0, 2.220446E − 16, 2.220446E − 16, 4.440892E − 16
, 0, −1.110223E − 16) 2 0.031200

Table 3: Numeric outcomes of the Yu method.

z∗ w∗ Iter
Time
(s)

n = 4 (0.363636, 0.454545, 0.454545, 0.363636) (0, 0, −1.11022E − 16, 0) 5 0.031

n = 8 (0.366013, 0.464052, 0.490196, 0.496732, 0.496732, 0.490196, 0.464052,
0.366013)

(−1.11022E − 16, 0, 0, 0, 0, −1.11022E − 16,
0, 0)

5 0.016

Table 4: Numeric outcomes of the CHKS method.

z∗ w∗ Iter
Time
(s)

n = 4 (0.363636, 0.454545, 0.454545, 0.363636) (−6.72751E − 12, −5.38214E − 12, −5.38214E − 12, −6.72751E − 12) 5 0.016

n = 8 (0.366013, 0.464052, 0.490196, 0.496732,
0.496732, 0.490196, 0.464052, 0.366013)

(−6.68399E − 12, −5.27156E − 12, −4.9909E − 12, −4.92495E − 12,
−4.92495E − 12, −4.9909E − 12, −5.27178E − 12, −6.68399E − 12) 5 0.031
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Figure 1: Comparison between our method with the method of El foutayeni, the method of Yu, and themethod of CHKS as a function of time
and number of iterations in the case where n = 4.
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method only needs 0.928443 seconds to find the solution
of LCPðM, qÞ. The same is said for the point interior method.
We noticed that our algorithm is faster than the other algo-
rithms compared to the execution time. Then, we can deduce
that the performance of our method is effective.

5. Conclusion

Solving a linear LCP complementarity problem has been the
goal of much research. Thus, in this article, we have proposed
an algorithm allowing us to solve the LCP linear complemen-
tarity problem. This algorithm has a finite number of steps
and converges to the solution. In addition, we have consid-
ered a new class of matrices called the E-matrix such that
the algorithm is efficient. In perspective, we seek to find a
simple method to solve linear complementarity problems
with any matrix M and vector q without treating the cases
on the matrix M, so that it is fast in execution time and in
the number of iterations. A digital implementation of the
algorithm is given in this work.
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