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The boundary layer flow of an incompressible viscoelastic Jeffrey’s nanofluid from a vertical permeable flat plate is investigated. We
consider the effects of heat generation, thermal radiation, and chemical reaction on the fluid flow. The nonlinear transformed
coupled differential equations that describe the transport processes are solved numerically using a multidomain bivariate
spectral quasilinearization method (MD-BSQLM). This innovative method involves blending the quasilinearization idea with
the bivariate Lagrange interpolation. The solutions of the resulting system of equations are then obtained sequentially on
multiple intervals using the Chebyshev spectral collocation method. The method is shown to give accurate solutions for
boundary layer-type equations. The influence of various physical parameters on velocity, temperature, and nanoparticle
concentration fields, as well as on the skin friction and heat and mass transfer coefficients, is shown and discussed in detail. The
range of the values of the governing parameters considered in this study is between ½0, 4�. For qualitative validation of the results
and the numerical method used, calculations were carried out to graphically obtain the velocity, temperature, and nanoparticle
concentration fields for selected physical parameter values. The results obtained were found to correlate with the results from
published literature. For quantitative verification of our findings, the MD-BSQLM numerical solutions were again confirmed
against published results reported in the literature, and the results were observed to be in perfect agreement. This study’s
findings indicate that the Deborah number and suction parameter have related effects on the velocity profile, which is to
suppress both the flow velocity and the momentum boundary layer thickness. Increasing the heat generation and thermal
radiation parameters enhances both the temperature and thermal boundary layer depths. In contrast, an increase in the
chemical reaction parameter causes a decrease in the fluid concentration.

1. Introduction

The study of non-Newtonian fluidflowhas been an active area
of interest in the past several decades, specifically concerning
heat and mass transfer processes in industrial processes such
as themanufacture of plastic films and artificial fibers, cooling
of metallic sheets, aerodynamic extrusion of plastic sheets,
liquid film condensation, and crystal growing. According to
Shehzad et al. [1], non-Newtonian fluids do not obey New-
ton’s law of viscosity. In such fluids, nonlinearity exists
between the shear stress and the strain rate relation, thereby
making the flow model complicated and relating the shear

stresses to the velocity field [2]. Significant contributions to
the study of different non-Newtonian fluid models by differ-
ent researchers include oblique flows [3], nanofluid flow [4],
Maxwell fluid [5], tangent hyperbolic flows [6], Williamson
fluid [7], Khan et al. [8], Bibi et al. [9], Powell-Eyring fluid
[10], Oldroyd-B fluid [11], power-law fluid [12], Walter’s B
fluid [13], and Jeffrey’s fluid [14]. An interesting and one of
the simplest subclasses of non-Newtonian fluids is Jeffrey’s
fluid. This is because Jeffrey’s fluid model utilizes the time
derivatives instead of converted derivatives and degenerates
to the Newtonian model at very high wall shear stress [2].
Also, Jeffrey’s fluid model approximates well the rheological

Hindawi
Abstract and Applied Analysis
Volume 2020, Article ID 9816942, 23 pages
https://doi.org/10.1155/2020/9816942

https://orcid.org/0000-0002-8813-0955
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/9816942


behavior of a wide range of industrial processes such as
biotechnological detergents, physiological suspensions, dense
foams, geological sediments, and cosmetic creams. Due to the
importance of Jeffrey’s fluids, many researchers have studied
several flow geometries of this fluid with different boundary
conditions, using various techniques to solve such models.
These include the study of Turkyilmazoglu and Pop [15]
who presented an analytical solution for the flow and heat
transfer of Jeffrey’s fluid near the stagnation point on a
stretching/shrinking sheet with the parallel external flow. In
their study, it was shown that the structure of the solutions
they presented strongly depends on the stretching strength
parameter; this parameter measures the ratio of the strength
of the externalflow to surface stretching/shrinking.When this
parameter is set to zero, the solutions evolve into the multi-
ple/triple solutions already known in the literature. The influ-
ence of heat transfer on peristaltic transport of Jeffrey’sfluid in
a vertical porous stratum was studied by Vajravelu et al. [16]
using the perturbation technique. In their study, it was
observed that the effects of Jeffrey’s number, the Grashof
number, the perturbation parameter, and the peristaltic wall
deformation parameter are the strongest on the trapping
bolus phenomenon.

The combined effect of heat and mass transfer on Jeffrey’s
fluid over a stretching sheet in the presence of a heat source/-
heat sink was investigated by Qasim [17]. His study assumed
that the surface temperature and the concentration vary
according to the power-law form. Exact solutions for the
nonlinear equations governing the flow were derived by the
power series method using Kummer’s confluent hypergeo-
metric functions. He further observed that the velocity
increases with an increase in the Deborah number. Simulta-
neously, the temperature is a decreasing function of the
Deborah number, and the thermal boundary layer thickness
decreases by increasing the wall temperature and heat sink
parameters. Ahmad et al. [18] numerically investigated the
steady two-dimensional magnetohydrodynamic (MHD)
mixed convection boundary layer flow and heat transfer of
Jeffrey’s fluid over an exponentially stretched plate using an
implicit finite difference scheme. In their investigation, local
similarity solutions were obtained for some embedded
parameters, such as the Deborah number, mixed convection
parameter, Prandtl number, and Hartmann number. They
also observed that as the Deborah number increases, unusual
behavior is found to happen when the flow is assisted by the
buoyancy force. The shooting method with the fourth-order
Runge-Kutta scheme was used by Narayana and Babu [19] to
study the effects of chemical reaction and a heat source on
MHD heat and mass transfer of an electrically conducting
Jeffrey’s fluid over a stretching sheet in the presence of a
power-law form of temperature and concentration. It was
observed in their study that the Deborah number and ratio
of relaxation and retardation time parameter have opposite
effects on the skin friction coefficient. Saqib et al. [20]
reported the applications of Caputo-Fabrizio time-
fractional derivatives to generalize Jeffrey’s fluid over a
vertical static plate. Analytical solutions using the Laplace
transform technique was presented for the governing equa-
tions of generalized Jeffrey’s fluid model. They also reported

that free convection is caused due to the temperature gradi-
ent; therefore, heat transfer was considered for free convec-
tion in their study. Exact solutions for unsteady free
convection flow of Jeffrey’s fluid were obtained by Khan
[21] using the Laplace transform technique. His research
found that the obtained solutions satisfy the imposed initial
and boundary conditions and can be easily reduced to similar
solutions for a Newtonian fluid. Zin et al. [22] presented
exact and numerical solutions for unsteady heat and mass
transfer problems of Jeffrey’s fluid with MHD and Newto-
nian heating effects using the Laplace transform and finite
difference techniques, respectively. They found that the
magnetic field resists the fluid flow due to the Lorentz force.
In contrast, the thermal radiation and Newtonian heating
parameters lead to the enhancement of velocity and temper-
ature fields.

The impact of the Cattaneo-Christov heat flux in Jeffrey’s
fluid flow with homogeneous-heterogeneous reactions was
analyzed by Hayat et al. [23]. The series results they obtained
show that the ratio of relaxation to retardation times and
Deborah number have inverse relation for the velocity pro-
file, and temperature distribution has decreasing behavior
for the Prandtl number and thermal relaxation time. They
also reported that concentration decreases for larger values
of strength of the homogeneous reaction parameter while it
increases for the power of the heterogeneous reaction param-
eter. Hayat et al. [24] considered the unsteady flow and heat
transfer of Jeffrey’s fluid over a stretching sheet using the
homotopy analysis method. They obtained exact solutions
of the momentum equation and numerical solutions of the
dimensionless energy equations for the steady-state case.
Their results indicated that an increase in the elastic param-
eter of Jeffrey’s fluid (Deborah number) corresponds to the
rise in the velocity and the boundary layer thickness. The
homotopy analysis method was used by Hayat and Mustafa
[25] to analyze the effect of thermal radiation on the unsteady
mixed convection flow of Jeffrey’s fluid over a porous vertical
stretching surface. They reported that the heat transfer rate is
increased with increasing values of the Prandtl number, the
radiation parameter, and the unsteadiness parameter.
Muhammad et al. [26] discussed the hydromagnetic
unsteady squeezing flow of Jeffrey’s fluid between two paral-
lel plates. The nonlinear governing system of ordinary differ-
ential equations was solved analytically using the homotopy
analysis method and numerically using the NDsolve. They
showed that an increase in the squeezing parameter enhances
the velocity profile for both suction and blowing cases. The
unsteady axisymmetric flow of Jeffrey’s fluid between two
parallel disks was investigated by Qayyum et al. [27] using
the homotopy analysis method. It was found in their investi-
gation that the velocity profile increases when porosity and
squeezing parameters are increased. Venkateswara et al.
[28] studied the unsteady MHD mixed convection Jeffrey’s
fluid flow over an inclined permeable moving plate in the
presence of thermal radiation, heat generation, thermophor-
esis effect, and homogenous chemical reaction, subjected to
variable suction. In their study, they solved the governing
equations using a regular perturbation technique. The study
showed that the velocity increases with an increase in the
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Soret number in the presence of permeability. At the same
time, a reverse effect in the case of the heat absorption coeffi-
cient, magnetic parameter, radiation parameter, and chemi-
cal reaction parameter was observed.

In the past few decades, the study of the flow and the
thermophysical properties of nanofluids has been given
much attention due to the enormous importance of these
fluids, such as in microelectronics, fuel cells, pharmaceuticals
processes, cancer therapy, and electronics, among others.
The concept of nanofluids was first introduced by Choi
[29], where he proposed the suspension of nanoparticles in
a base fluid such as water, oil, and ethylene glycol. Buon-
giorno [30] developed a nonhomogeneous two-component
equation for nanofluids. He proposed seven slip mechanisms
between nanoparticles and the base fluid. He attempted to
explain the increase in the thermal conductivity of nano-
fluids, and his model took into account the particle Brownian
motion and thermophoresis. Dhanai et al. [31] presented
multiple solutions of MHD boundary layer flow and heat
transfer behavior of nanofluids induced by a power-law
stretching/shrinking permeable sheet with viscous dissipa-
tion with the aid of the shooting method. In their study,
viscous dissipation was found to be significant, whereas the
Brownian motion has a negligible effect on the rate of heat
transfer. The generalized diffusion effects on the Maxwell
nanofluid stagnation point flow over a stretchable sheet with
slip conditions and the chemical reaction were analyzed
numerically by Khan et al. [8] using the fourth-order
Runge-Kutta method along with the shooting technique.
Their results showed that the skin friction coefficient reduces
for large values of the slip parameter, but opposing behavior
is noticed for the fluid relaxation parameter. The homotopy
analysis method was used by Alamri et al. [32] to analyze
the effects of the second-order slip-on plane Poiseuille nano-
fluid under the influence of the Stefan blowing in a channel.
They observed that the slowing down effects of the Stefan
blowing are significantly seen for velocity and temperature
profiles, whereas the opposite characteristic for the case of
nanoparticle concentrations is noticed. Also, an extra
sensitivity in the field of velocity was observed for a second-
order slip as compared to the first-order slip.

Nadeem et al. [33] used the homotopy analysis method to
solve the nonlinear differential equations governing the obli-
que stagnation point flow of the Casson nanofluid towards a
stretching surface with heat transfer. They found that the
boundary layer is formed when the surface’s stretching veloc-
ity is less than the inviscid free-stream velocity, and velocity
at a point decreases with the increase in a non-Newtonian
(Casson) parameter of the fluid. An optimal and numerical
tactic was used by Shah et al. [34] to get the solution of radi-
ative heat and mass transfer analysis of the micropolar nano-
fluid flow of the Casson fluid between two rotating parallel
plates with effects of the Hall current. They found that an
amassed Hall impact decreases the effective conductivity,
which intends to increase the velocity field, and the tempera-
ture field enhances with larger values of the Brownian motion
thermophoresis effect. Recently, Nadeem and Khan [35]
obtained dual solutions of MHD oblique stagnation point
flow of nanofluid over an oscillatory stretching/shrinking

sheet using the bvp4c package in MATLAB. They showed
that dual solutions exist in both the stretching case and the
shrinking case. Also, the lower solution branch they obtained
shows singular behavior for the skin friction coefficient in the
shrinking domain. In contrast, the upper solution branch has
smooth behavior in both the stretching and shrinking
domains. Other recent studies of nanofluid flows include
those by Yousif et al. [36], Sadiq et al. [37], Besthapu et al.
[38], Kamal et al. [39], Nasir et al. [40], Nayak et al. [41],
Salawu and Ogunseye [42], Kumar and Srinivas [43], and
Awais et al. [44], among others.

As far as the authors are aware, the study of Jeffrey’s
nanofluid has not been given much attention. In this
study, the fluid flow, heat, and mass transfer in Jeffrey’s
fluid containing suspensions of nanoparticles are studied
with combined effects of various parameters entering the
flow problem. This work is aimed at studying the effects
of heat generation, thermal radiation, chemical reaction,
and some other parameters discussed in the problem on
natural convection viscoelastic Jeffrey’s nanofluid flow
from a vertical permeable flat plate. The traditional model
of Hussain et al. [45] is revised into Jeffrey’s nanofluid
model. The flow is characterized by thermal radiation, suc-
tion/injection, chemical reaction Brownian motion, and a
thermophoretic force. Much emphasis is laid on the nano-
particle concentration boundary conditions, which is made
to be more realistic due to the incorporation of the Brow-
nian and thermophoresis diffusion coefficients, and their
effect on the fluid model is studied. Another aim of the
study is to apply, for the first time, the multidomain bivar-
iate spectral quasilinearization method (MD-BSQLM) to
solve coupled nonlinear systems of partial differential
equations (PDEs) describing Jeffrey’s nanofluid-type equa-
tions. The multidomain bivariate spectral quasilineariza-
tion method linearizes the nonlinear governing system of
PDEs using the Newton-Raphson-based quasilinearization
method of Bellman and Kalaba [46]. The resulting equa-
tions are then integrated into multiple subintervals using
the Chebyshev spectral collocation method with the
Lagrange interpolation polynomials as basis functions.
The Chebyshev spectral collocation method with the
Lagrange interpolation polynomials are applied to the lin-
earized nonlinear systems of partial differential equations
independently in both space and time directions. These
useful features of the MD-BSQLM enable the approach
to yield a very accurate solution. The method has a much
better region of convergence for the approximate solution
when compared to other Chebyshev spectral collocation-
based methods such as bivariate spectral homotopy analy-
sis method [47], bivariate spectral quasilinearization [48],
and bivariate spectral relaxation method [49], among
others. This study sought, among other things, to check
the accuracy and robustness of the MD-BSQLM scheme
in finding solutions to this class of problems with signifi-
cant complexities. Accuracy of the numerical method used
is established by computing and analyzing solutions of the
momentum, heat, and mass equation. Solutions found
using the multidomain bivariate spectral quasilinearization
method are compared with solutions existing in the
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literature, and a good agreement is observed. The effect of
different embedded physical parameters on the velocity,
temperature, and concentration fields is discussed in tabu-
lar and graphical forms. The results illustrate the different
behavior that occurs when these parameters are varied.
The present study finds applications in polymeric
manufacturing processes, heat exchanger technology
nuclear waste simulations, nuclear engineering, thermal
fabrication of paint sprays, and low-density polymeric
materials in the process engineering industry.

2. Mathematical Formulation of the Problem

A steady two-dimensional natural convection boundary layer
flow of an incompressible viscoelastic Jeffrey’s nanofluid
from a vertical permeable flat plate, as shown in Figure 1, is
investigated. The fluid is maintained at the same temperature
and concentration. The temperature and concentration of
the fluid are raised simultaneously. The acceleration due to
gravity g acts vertically downward. The surface of the fluid
is held at a variable temperature and concentration propor-
tional to the power of the distance along the surface; i.e.,
TwðxÞ = T∞ + Bd1xn and CwðxÞ = C∞+Bd2xn, where B, d1,
d2 are constants and n is the power-law exponent. As
highlighted by Bird et al. [50], the physical characteristics of
certain polymers are accurately captured by Jeffrey’s model.
The Cauchy stress tensor, S, of Jeffrey’s viscoelastic nanofluid
is given by [2] as

T = −pI + S,

S = μ

1 + λ
_γ + λ1€γð Þ,

ð1Þ

where a dot above a quantity signifies the material time deriv-
ative, _γ is the shear rate, μ is the dynamic viscosity, λ is the
ratio of relaxation to retardation times, and λ1 is the retarda-

tion time. The shear rate and gradient of the shear rate are
defined in terms of velocity vector V by [2] as

_γ = ∇V + ∇Vð ÞT ,

€γ = d
dt

€γð Þ:
ð2Þ

Under the Boussinesq boundary layer approximations,
the flow is governed by the following equations (see [2, 45,
51]) as

∂u
∂x

+ ∂v
∂y

= 0, ð3Þ

u
∂u
∂x

+ v
∂u
∂y

= ν

1 + λ

∂2u
∂y2

+ λ1 u
∂3u
∂x∂y2

−
∂u
∂x

∂2u
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+ ∂u
∂y

∂2u
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+ v
∂3u
∂y3

 ! !

+ gβ T − T∞ð Þ + gβ∗ C − C∞ð Þ,
ð4Þ

u
∂T
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+ v
∂T
∂y
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ρcp

∂2T
∂y2

−
1
ρcp

∂qr
∂y

−
Q0
ρcp

T − T∞ð Þ + Dmk0
cscp

∂2C
∂y2

+ τ DB
∂C
∂y

∂T
∂y

+ DT

T∞

∂T
∂y

� �2
" #

,

ð5Þ

u
∂C
∂x

+ v
∂C
∂y

=DB
∂2C
∂y2

+ DT

T∞

∂2T
∂y2

+ Dmk0
Tm

∂2T
∂y2

− Kr C − C∞ð Þ:

ð6Þ
In the above equations, u and v are the velocity com-

ponents in x and y directions, respectively, ν = ðμ/ρÞ is the
kinematic coefficient of viscosity of the fluid, g is the
acceleration due to gravity, β and β∗ are the thermal
expansion and concentration expansion coefficients,
respectively, T is the fluid temperature, C is the fluid con-
centration, T∞ is the ambient fluid temperature, C∞ is the
ambient fluid concentration, k0 is the thermal diffusivity
ratio, ρ is the density of the fluid, cp is the specific heat
at constant pressure of the fluid, qr is the radiative heat
flux, Q0 is the heat generation constant, Dm is the mass
diffusivity, cs is the concentration susceptibility, τ = ðρcÞp/
ðρcÞf is the ratio of the heat capacity of the nanoparticle
material and the heat capacity of the fluid, DB is the
Brownian diffusion coefficient, DT is the thermophoretic
diffusion coefficient, Tm is the mean fluid temperature,
and Kr is the chemical reaction coefficient. The radiative
heat flux qr is defined using the Rosseland approximation
[52] as

qr = −
4σ∗
3k∗

∂T4

∂y
, ð7Þ

where σ∗ and k∗ are the Stefan-Boltzmann constant and
mean absorption coefficient, respectively. Assuming that
the temperature differences within the flow are sufficiently

T
w
, C

w
T∞, C∞

V
w

T, C

g

y

u

x

v

Figure 1: The flow coordinate system and the flow configuration.
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small, T4 may be approximated in the Taylor series form
about T∞ after ignoring higher-order terms as

T4 ≈ 4T3
∞T − 3T4

∞: ð8Þ

The associated boundary conditions are

u = 0,
v = −Vw,

−k∞
∂T
∂y

= hf Tw − Tð Þ,

DB
∂C
∂y

+ DT

T∞

∂T
∂y

= 0 at y = 0,

u⟶ 0,
∂u
∂y

⟶ 0,

T ⟶ T∞,
C⟶ C∞ at y⟶ ,∞,

ð9Þ

where k∞ is the thermal conductivity, hf is the convective heat
transfer coefficient, and Vw is the transpiration velocity of the
fluid. Vw > 0 denotes suction or withdrawal, i.e., mass flux
removal from the boundary layer through the permeable sur-
face wall into the permeable surface, and Vw < 0 stands for
injection or blowing of fluid through the permeable surface.
In this present investigation, the case of suction or injection
will only be considered rather than the blowing case, and
therefore, Vw is taken to be positive throughout this study.
The following dimensionless transformations are then intro-
duced into equations (4)–(9):

ψ = νGr1/4x f η, ξð Þ + ξ½ �, ð10Þ

η = y
x
Gr1/4x , ð11Þ

ξ = xVw

ν
Gr−1/4x , ð12Þ

Grx =
gβ Tw − T∞ð Þx3

ν2
, ð13Þ

θ η, ξð Þ = T − T∞
T − T∞

, ð14Þ

ϕ η, ξð Þ = C − C∞
Cw = −C∞

: ð15Þ

In equation (10), Grx is the local Grashof number, ξ is
the transpiration parameter depending on the transpiration
velocity Vw, x is the axial variable, η is the pseudosimilarity
variable, f , θ, φ are the dimensionless velocity, dimension-
less temperature, and dimensionless concentration of the

fluid, respectively, and ψ is the stream function defined as

u = ∂ψ
∂y

,

v = −
∂ψ
∂x

,
ð16Þ

which satisfies the continuity equation (1). Substituting the
transformations given in equation (10) into equations
(4)–(9) gives the following set of the nonsimilarity system
of partial differential equations which are expressed in a
dimensionless form as

f ′ ′ ′

1 + λ
+ 3 + n

4 f f ′ ′ ‐ 1 + n
2 f ′2 + ξf ′ ′ + θ +Nϕ

+ De
1 + λ

−
1 − n
2 f ′ f ′′′ + 3n + 1

4 f ′′2 − 3 + n
4 f f ′ ′ ′ ′ ‐ξf ′′′′

� �

= ξ 1 − nð Þ
4 f ′ ∂f

′
∂ξ

− f ′ ′
∂f
∂ξ

−
De
1 + λ

"

� f ′ ∂f
′ ′ ′

∂ξ
− f ′ ′ ′

∂f ′
∂ξ

+ f ′ ′
∂f ′ ′

∂ξ
− f ′ ′ ′ ′

∂f
∂ξ

 !#
,

ð17Þ

1 + NRð Þ
Pr θ″ + 3 + n

4 f θ′ + ξθ′ − nθf ′ + Dfϕ″ + Heθ

+ Nbθ′ϕ′ + Ntθ′2 = ξ 1 − nð Þ
4 f ′ ∂θ

∂ξ
− θ′ ∂f

∂ξ

� �
,

ð18Þ

ϕ″ + Sc 3 + n
4 f ϕ′ + ξϕ′ − nϕf ′ + Srθ″ − δϕ

� �
+ Nt
Nb θ

″

= ξ 1 − nð ÞSc
4 f ′ ∂ϕ

∂ξ
− ϕ′ ∂f

∂ξ

� �
,

ð19Þ

subject to the boundary conditions:

f ′ 0, ξð Þ = 0,
f 0, ξð Þ = f w,

f ′ ∞,ξð Þ = 0,

f ′′ ∞,ξð Þ = 0,
θ′ 0, ξð Þ = −Bi 1 − θ 0, ξð Þð Þ,
θ ∞,ξð Þ = 0,

Nbφ′ 0, ξð Þ + Ntθ′ 0, ξð Þ = 0,
φ ∞,ξð Þ = 0,

ð20Þ

where the prime denotes differentiation with respect to η, N
= β∗ðCw − C∞Þ/βðTw − T∞Þ is the buoyancy ratio parame-
ter, De = λ1vGr1/2x /x2 is the Deborah number, λ is the ratio
of relaxation to retardation time, NR = 16σ∗T3

∞/3k∗vρcpk0 is
the radiation parameter, Pr = vρcp/k0 is the Prandtl number,
n is the power-law exponent, Df =Dmk0ðCw − C∞Þ/cscpvðTw

− T∞Þ is the Dufour number, He =Q0x
2Gr−1/2x /vρcp is the

heat generation parameter, Nb = τDBðCw − C∞Þ/v is the
Brownian motion parameter, Nt = τDTðTw − T∞Þ/vT∞ is
the thermophoresis parameter, Sc = v/DB is the Schmidt
number, Sr =Dmk0ðTw − T∞Þ/vTmðCw − C∞Þ is the Soret
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number, δ = Krx
2/vGr1/2x is the chemical reaction parameter,

f w = ð4/3 + nÞðxVw/νGr1/4x Þ is the suction or injection param-
eter, and Bi = xhf /k∗Gr1/4x is the Biot number.

The physical quantities of importance are the skin friction,
the Nusselt number, and the Sherwood number which may be
obtained from

Cf xGr−3/4x = f ″ 0, ξð Þ,
NuxGr‐1/4x = −θ′ 0, ξð Þ,
ShxGr‐1/4x = f ′ 0, ξð Þ:

ð21Þ

3. Multidomain Bivariate Spectral
Quasilinearization Method

In this section, a description of the multidomain bivariate
spectral quasilinearization method (MD-BSQLM) for

solving the set of coupled nonlinear partial differential
equations (17)–(19) is given. The basic idea of the
approach is to decompose solutions over a large interval
into smaller subintervals, then solve the system of equa-
tions in the small subintervals, and take the solution at
the end of each of the subintervals to get the resulting
solution. The multidomain approach is applied in the ξ
direction only. We first linearize equations (17)–(19) using
the quasilinearization (QLM) as described in [46, 53]. This
technique uses the Taylor series expansion to linearize
nonlinear differential equations. In the linearization tech-
nique, we make the assumption that the difference
between the value of the unknown function at the current
iteration level denoted by r + 1 and the value at the previ-
ous iteration level denoted by r is small. Applying the
QLM on (17)–(19) gives the following:

where

a0,r− = −
De
1 + λ

3 + n
4 f r −

De
1 + λ

ξ −
ξ 1 − nð Þ

4
De
1 + λ

∂f
∂ξ

,

a1,r =
1

1 + λ
−

De
1 + λ

1 − n
2 f r′−

ξ 1 − nð Þ
4

De
1 + λ

∂f r′
∂ξ

,

a2,r =
3 + n
4 f r + ξ + De

1 + λ

3n + 1
2 f r′′+

ξ 1 − nð Þ
4

∂f r
∂ξ

+ ξ 1 − nð Þ
4

De
1 + λ

∂f r′′
∂ξ

,

a3,r = − 1 + nð Þf r′−
De
1 + λ

1 − n
2 f r′′′−

ξ 1 − nð Þ
4

∂f r′
∂ξ

+ ξ 1 − nð Þ
4

De
1 + λ

∂f r′, ′
∂ξ

,

a4,r =
3 + n
4 f r′′−

De
1 + λ

3 + n
4 f r′′′′,

a5,r =
ξ 1 − nð Þ

4
De
1 + λ

f r′,

a6,r =
ξ 1 − nð Þ

4
De
1 + λ

f r′′′,

a7,r = −
ξ 1 − nð Þ

4 f r′−
ξ 1 − nð Þ

4
De
1 + λ

f r′′′,

a8,r =
ξ 1 − nð Þ

4 f r′′−
ξ 1 − nð Þ

4
De
1 + λ

f r′′′′,

a9,r = 1,

a10,r =N ,

b0,r =
1 + NR
Pr ,

b1,r =
3 + n
4 f r + ξ + Nbϕr′+ 2Nbϕr′+

ξ 1 − nð Þ
4

∂f r
∂ξ

,

b2,r = −nf r′+He,

b3,r = −
ξ 1 − nð Þ

4 f r′,

b4,r = −nθr −
ξ 1 − nð Þ

4
∂θ
∂ξ

,

b5,r =
3 + n
4 θr′,

a0,r f r+1′′′′ + a1,r f r+1′′′ + a2,r f r+1′′ + a3,r f r+1′ + a4,r f r+1++a5,r
∂f r+1′′′
∂ξ

+ a6,r
∂f r+1′′
∂ξ

+ a7,r
∂f r+1′
∂ξ

+ a8,r
∂f r+1
∂ξ

+ a9,rθr+1 + a10,rθr+1 = R1,r ,

b0,rθr+1′′ + b1,rθr+1′ + b2,rθr+1 + b3,r
∂θr+1
∂ξ

+ b4,r f r+1′ + b5,r f r+1 + b6,r
∂f r+1
∂ξ

+ b7,rϕr+1′′ + b8,rϕr+1′ = R2,r ,

c0,rϕr+1′′ + c1,rϕr+1′ + c2,rϕr+1 + c3,r
∂ϕr+1
∂ξ

+ c4,r f r+1′ + c5,r f r+1 + c6,r
∂f r+1
∂ξ

+ c7,rθr+1′′ = R3,r ,

ð22Þ
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b6,r =
ξ 1 − nð Þ

4 θr′,

b7,r =D, f ,

b8,r = Nbθr′,

c0,r = 1,

c1,r =
3 + 2
4 Scf r + Scξ + ξ 1 − nð Þ

4 Sc ∂f r
∂ξ

,

c2,r = −nScf r′− δSc,

c3,r = −
ξ 1 − nð Þ

4 Scf r′,

c4,r = −nScϕr −
ξ 1 − nð Þ

4 Sc ∂ϕ
∂ξ

,

c5,r =
3 + n
4 Scϕr′,

c6,r =
ξ 1 − nð Þ

4 Scϕr′,

c7,r = ScSr + Nb
Nt ,

R1,r =
3 + n
4 f r f r′′−

1 + n
2 f r′
� �2 De

1 + λ

1 − n
2 f r′′′ f r′

+ De
1 + λ

3n + 1
4 f r′′

� �2
−

De
1 + λ

3 + n
4 f r′′′′ f r

−
ξ 1 − nð Þ

4
∂f r′
∂ξ

f r′+ ξ
1 − n
4

∂f r
∂ξ

f r′′

+ De
1 + λ

ξ 1 − nð Þ
4

∂f r′′′
∂ξ

f r′−
De
1 + λ

ξ 1 − nð Þ
4

∂f r′
∂ξ

f r′′′

+ De
1 + λ

ξ 1 − nð Þ
4

∂f r′′
∂ξ

f r′′
De
1 + λ

ξ 1 − nð Þ
4

∂f r
∂ξ

f r′′′′,

R2,r =
3 + n
4 f rθr′− nθr′ f r′+ Nbθr′ϕr′+ Nt θr′

� �2
+ ξ 1 − nð Þ

4
∂θr
∂ξ

f r′+
ξ 1 − nð Þ

4
∂f r
∂ξ

θr′,

R3,r =
3 + n
4 Scf rϕr′− nScϕr f r′−

ξ 1 − nð Þ
4 Sc ∂ϕ

∂ξ
f r′

+ ξ 1 − nð Þ
4 Sc ∂f r

∂ξ
ϕr′:

ð23Þ

Now, let ξ ∈Ω, where Ω ∈ ½0, T�, and the domain Ω is
decomposed into p nonoverlapping intervals as

Ωm = ξm − 1, ξm½ �, ξm − 1 < ξm,
ξ0 = 0,
ξp = T ,
m = 1, 2,⋯, p:

ð24Þ

The partial differential equations are solved indepen-
dently at each of the p subintervals. Once the solution
at the first subinterval has been computed, the new solu-
tions at the subsequent mth interval are computed using
the solution at the right-hand boundary of the m − 1th
interval as an initial solution. In the mth subinterval,
we solve

a mð Þ
0,r f r+1′′′′ mð Þ + a mð Þ

1,r f r+1′′′′ mð Þ + a mð Þ
2,r f r+1′′ + a mð Þ

3,r f r+1′ mð Þ

+ a mð Þ
4,r f

mð Þ
r+1 + a mð Þ

5,r
∂f r+1′′′ mð Þ

∂ξ
+ a mð Þ

6,r
∂f r+1′′ mð Þ

∂ξ

+ a mð Þ
7,r

∂f r+1′ mð Þ
∂ξ

+ a mð Þ
8,r

∂f mð Þ
r+1
∂ξ

+ a mð Þ
9,r θ

mð Þ
r+1

+ a mð Þ
10,rϕ

mð Þ
r+1 = R mð Þ

1,r ,

ð25Þ

b mð Þ
0,r θr+1′′ mð Þ + b mð Þ

1,r θr+1′ mð Þ + b mð Þ
2,r θ

mð Þ
r+1 + b mð Þ

3,r
∂θ mð Þ

r+1
∂ξ

+ b mð Þ
4,r f r+1′ mð Þ + b mð Þ

5,r f
mð Þ
r+1 + b mð Þ

6,r
∂f mð Þ

r+1
∂ξ

+ b mð Þ
7,r ϕr+1′′ mð Þ

+ b mð Þ
8,r ϕr+1′ mð Þ = R mð Þ

2,r ,
ð26Þ

c mð Þ
0,r ϕr+1′′ mð Þ + c mð Þ

1,r ϕr+1′ mð Þ + c mð Þ
2,r ϕ

mð Þ
r+1 + c mð Þ

3,r
∂ϕ mð Þ

r+1
∂ξ

+ c mð Þ
4,r f r+1′ mð Þ + c mð Þ

5,r f
mð Þ
r+1 + c mð Þ

6,r
∂f mð Þ

r+1
∂ξ

+ c mð Þ
7,r θr+1′′ mð Þ = R mð Þ

3,r ,
ð27Þ

subject to the boundary conditions:

f mð Þ
r+1 0, ξð Þ = f w,

f r+1′ mð Þ 0, ξð Þ = 0,
f r+1′ mð Þ ∞,ξð Þ = 0,
f r+1′′ mð Þ ∞,ξð Þ = 0,

θr+1′ mð Þ 0, ξð Þ = −Bi 1 − θ
mð Þ
r+1 0, ξð Þ

� �
,

θ
mð Þ
r+1 ∞,ξð Þ = 0,

Nbϕr+1′ mð Þ 0, ξð Þ + Ntθr+1′ mð Þ 0, ξð Þ = 0,

ϕ
mð Þ
r+1 ∞,ξð Þ = 0:

ð28Þ

A suitable initial condition to start the multidomain
iteration scheme in the first subinterval is the one that
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satisfies the boundary conditions (20). The initial condi-
tion at the subsequent subintervals is given by the conti-
nuity conditions:

f mð Þ η, ξm−1ð Þ = f m−1ð Þ η, ξm−1ð Þ,
θ mð Þ η, ξm−1ð Þ = θ m−1ð Þ η, ξm−1ð Þ,
φ mð Þ η, ξm−1ð Þ = φ m−1ð Þ η, ξm−1ð Þ:

ð29Þ

The physical domains in η and ξ are first transformed
to the computational domain ðx, tÞ ∈ ½−1, 1� × ½−1, 1� at
each subinterval using the linear transformation:

η = Lx
2 1 + xð Þ,

ξ = 1
2 ξm − ξm−1ð Þt + 1

2 ξm + ξm−1ð Þt + 1
2 ξm + ξm−1ð Þ,

ð30Þ

where Lx is a number large enough to approximate
conditions at infinity in η. The collocation points are
the Chebyshev-Gauss-Lobatto nodes defined in [54, 55]
by

xi cos
πi
Nx

� �
,

t j = cos
πj

Nt

� �
,

 i = 0, 1,⋯,Nx, j = 0, 1,⋯,Nt ,
x ∈ −1, 1½ �,
t ∈ −1, 1½ �,

ð31Þ

where ðNx + 1Þ and ðNt + 1Þ are the total number of col-
location points in η and ξ directions, respectively. Sup-
pose that the solutions f , θ, and φ can be approximated
at each subinterval by a bivariate Lagrange interpolation
polynomial to the form:

f mð Þ η, ξð Þ ≈ F mð Þ x, tð Þ = 〠
Nx

p=0
〠
Nt

q=0
F mð Þ xp, tq

� 	
Lp xð ÞLq tð Þ,

θ mð Þ η, ξð Þ ≈Θ mð Þ x, tð Þ = 〠
Nx

p=0
〠
Nt

q=0
Θ mð Þ xp, tq

� 	
Lp xð ÞLq tð Þ,

ϕ mð Þ η, ξð Þ ≈Φ mð Þ x, tð Þ = 〠
Nx

p=0
〠
Nt

q=o
Φ mð Þ xp, tq

� 	
Lp xð ÞLq tð Þ,

ð32Þ

where the functions LpðxÞ and LqðtÞ are the Lagrange car-
dinal polynomials defined as

Lp xð Þ =
YNx

i=0
i≠k

x − xk
xi − xk

,

Lq tð Þ =
YNt

j=0
j≠k

t − tk
t j − tk

,

ð33Þ

with

Lp xkð Þ = δik =
0, if i ≠ k,
1, if i = k,

(

Lq tkð Þ = δjk =
0, if j ≠ k,
1, if j = k:

( ð34Þ

The first spatial derivatives of f , θ, and φ with respect
to η at the Chebyshev-Gauss-Lobatto points ðxi, t jÞ for i
= 0, 1, 2,⋯,Nx are evaluated as

∂f mð Þ

∂η
xi, t j
� 	

= 〠
Nx

p=0
〠
Nt

q=0
F mð Þ xp, tq

� 	 dLp xið Þ
dx

Lp t jð Þ

= 〠
Nx

p=0
F mð Þ xp, t j

� 	 dLp xið Þ
dx

= 〠
Nx

p=0

2
Lx

� �
D̂i,pF

mð Þ xp, t j
� 	

= 2
Lx

� �
D̂F mð Þ

j =DF mð Þ
j ,

∂θ mð Þ

∂η
xi, t j
� 	

= 〠
Nx

p=0
〠
Nt

q=0
Θ mð Þ xp, tq

� 	 dLp xið Þ
dx

Lp t j
� 	

= 〠
Nx

p=0
Θ mð Þ xp, t j

� 	 dLp xið Þ
dx

= 〠
Nx

p=0

2
Lx

� �
D̂i,pΘ

mð Þ xp, t j
� 	

= 2
Lx

� �
D̂Θ

mð Þ
j =DΘ

mð Þ
j ,

∂ϕ mð Þ

∂η
xi, t j
� 	

= 〠
Nx

p=0
〠
Nt

q=0
Φ mð Þ xp, tq

� 	 dLp xið Þ
dx

Lp t j
� 	

= 〠
Nx

p=0
Φ mð Þ xp, t j

� 	 dLp xið Þ
dx

= 〠
Nx

p=0

2
Lx

� �
D̂i,pΦ

mð Þ xp, t j
� 	

= 2
Lx

� �
D̂Φ

mð Þ
j =DΦ

mð Þ
j ,

ð35Þ

where D̂ = LxD/2 is the standard first derivative Cheby-
shev differentiation matrix of size ðNx + 1Þ × ðNx + 1Þ as
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defined in Trefethen [54]. The vectors FðmÞ
j ,ΘðmÞ

j ,ΦðmÞ
j are

defined as

F mð Þ
j = η0, ξj

� 	
, F η1, ξj
� 	

⋅ F ηNx, ξj
� 	
 �T ,

Θ mð Þ
j = Θ η0, ξj

� 	
,Θ η1, ξj
� 	

⋅Θ ηNx, ξj
� 	
 �T ,

Φ mð Þ
j = Φ η0, ξj

� 	
,Φ η1, ξj
� 	

⋅Φ ηNx, ξj
� 	
 �T ,

ð36Þ

and the superscript T here denotes matrix transpose. The
nth-order derivatives of f , θ, and φ with respect to η are
approximated using the matrix product as

∂nF mð Þ

∂ηn
xi, t j
� 	

=D nð ÞF mð Þ
j ,

∂nF mð Þ

∂ηn
xi, t j
� 	

=D nð ÞΘ mð Þ
j ,

∂nΦ mð Þ

∂ηn
xi, t j
� 	

=D nð ÞΦ mð Þ
j :

ð37Þ

The spatial derivatives of f , θ, and φ are evaluated at
the Chebyshev-Gauss-Lobatto points (xi, t j) for j = 0, 1, 2
,⋯,Nt as

∂F mð Þ

∂ξ
xi, t j
� 	

= 〠
Nx

p=0
〠
Nt

q=0
F mð Þ xp, tq

� 	
Lp xið Þ dLq t j

� 	
dt

= 〠
Nt

q=0
F mð Þ xi, tq

� 	 dLq t j
� 	
dt

� 〠
Nt

q=0

2
ξm − ξm−1

� �
d̂ j,qF

mð Þ xi, tq
� 	

= 〠
Nt

q=0

2
ξm − ξm−1

� �
d̂ j,qF

mð Þ 〠
Nt

q=0
dj,qF

mð Þ
q ,

∂Θ mð Þ

∂ξ
xi, t j
� 	

= 〠
Nx

p=0
〠
Nt

q=0
Θ mð Þ xp, tq

� 	
Lp xið Þ dLq t j

� 	
dt

= 〠
Nt

q=0
Θ mð Þ xi, tq

� 	 dLq t j
� 	
dt

� 〠
Nt

q=0

2
ξm − ξm−1

� �
d̂ j,qΘ

mð Þ xi, tq
� 	

= 〠
Nt

q=0

2
ξm − ξm−1

� �
d̂ j,qΘ

mð Þ 〠
Nt

q=0
dj,qΘ

mð Þ
q ,

∂Φ mð Þ

∂ξ
xi, t j
� 	

= 〠
Nx

p=0
〠
Nt

q=0
Φ mð Þ xp, tq

� 	
Lp xið Þ dLq t j

� 	
dt

= 〠
Nt

q=0
Φ mð Þ xi, tq

� 	 dLq t j
� 	
dt

� 〠
Nt

q=0

2
ξm − ξm−1

� �
d̂ j,qΦ

mð Þ xi, tq
� 	

= 〠
Nt

q=0

2
ξm − ξm−1

� �
d̂ j,qΦ

mð Þ 〠
Nt

q=0
dj,qΦ

mð Þ
q ,

ð38Þ

where d̂ j,q = ðξm − ξm−1Þ/2dj,q, j, q = 0, 1, 2,Nt are the
entries of the standard first-order Chebyshev differentia-
tion matrix in the mth subinterval. Substituting equations
(35)–(38) into equations (25)–(27), we have

a mð Þ
0,r D4 + a mð Þ

1,r D3 + a mð Þ
2,r D2 + a mð Þ

3,r D + a mð Þ
4,r

h i
F mð Þ
j,r+1

+ a mð Þ
5,r 〠

Nt

q=0
dj,qD3F mð Þ

q,r+1 + a mð Þ
6,r 〠

Nt

q=0
dj,qD2F mð Þ

q,r+1

+ a mð Þ
7,r 〠

Nt

q=0
dj,qDF mð Þ

q,r+1 + a mð Þ
8,r 〠

Nt

q=0
dj,qF

mð Þ
q,r+1

+ a mð Þ
9,r

h i
Θ mð Þ

0,r+1 + a mð Þ
10,r

h i
Φ mð Þ

0,r+1 = R mð Þ
1,j,r ,

ð39Þ

Table 1: Comparison of the MD-BSQLM approximate solutions of
−θ′ð0, ξÞ and −φ′ð0, ξÞ, against those of Ref. [45] for different values
of n and ξ when Pr = 0:72, Sc = 0:94, N = 1/3, λ = δ =He = NR =
De = Df = f w = 0, and Sr = 0 in the absence of Nt, Nb, and Bi.

n ξ
−θ 0, ξð Þ −φ 0, ξð Þ

Present Ref. [45] Present Ref. [45]

0

1 0.7827 0.7827 1.0230 1.0230

2 1.4031 1.4031 1.8835 1.8835

4 2.8000 2.8000 3.7600 3.7600

6 4.2000 4.2000 5.6400 5.6400

8 5.6000 5.6000 7.5200 7.5200

10 7.0000 7.0000 9.4000 9.4000

0.5

1 0.8220 0.8220 1.0525 1.0525

2 1.4380 1.4380 1.8984 1.8984

4 2.8179 2.8179 3.7581 3.7581

6 4.2146 4.2146 5.6394 5.6394

8 5.7585 5.7585 7.5197 7.5197

10 7.1992 7.1992 9.3998 9.3998
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Table 2: Comparison of MD-BSQLM values for f ″ð0, ξÞ, −θð0, ξÞ, and −φð0, ξÞ for different values of N , Pr, Sc, and f w with those of Gaffar
et al. [2] when De = 0:1, λ = 0:2, n = 0:5, δ =NR =Df = Sr = He = 0, and ξ = 3 in the absence of Nt, Nb, and Bi.

N Sc Pr f w
f ″ 0, ξð Þ −θ′ 0, ξð Þ −φ′ 0, ξð Þ

Present Ref. [2] Present Ref. [2] Present Ref. [2]

-0.2 0.6 1.0 0.8 0.0425 0.0425 4.5364 4.5364 2.7249 2.7249

-0.1 0.0532 0.0532 4.5383 4.5383 2.7256 2.7256

0.0 0.0655 0.0655 4.5406 4.5406 2.7260 2.7260

0.25 0.0976 0.0976 4.5408 4.5408 2.7365 2.7365

0.5 0.1299 0.1299 4.5498 4.5498 2.7515 2.7515

0.75 0.1621 0.1621 4.5721 4.5721 2.7844 2.7844

0.5 0.6 0.5 0.8 0.2240 0.2240 2.2783 2.2783 2.7298 2.7298

0.71 0.1672 0.1672 3.2261 3.2261 2.7290 2.7290

1.5 0.1023 0.1023 6.8019 6.8019 2.7270 2.7270

3.0 0.0799 0.0799 13.5703 13.5703 2.7263 2.7263

5.0 0.0726 0.0726 22.5693 22.5693 2.7260 2.7260

7.0 0.0697 0.0697 31.5627 31.5627 2.7243 2.7243

0.5 0.6 1.0 0.8 0.1299 0.1299 4.5383 4.5383 2.7249 2.7249

0.9 0.1227 0.1227 4.7249 4.7249 2.8385 2.8385

1.0 0.1162 0.1162 4.9121 4.9121 2.9529 2.9529

1.2 0.1055 0.1055 5.2872 5.2872 3.1826 3.1826

1.3 0.1010 0.1010 5.4742 5.4742 3.2966 3.2966

1.5 0.0934 0.0934 5.8461 5.8461 3.5211 3.5211

0.5 0.25 1.0 0.8 0.2431 0.2431 4.5890 4.5890 1.1476 1.1476

0.78 1.1476 1.1476 4.5446 4.5446 3.5408 3.5408

0.94 0.1015 0.1015 4.5438 4.5438 4.2663 4.2663

1.25 0.0901 0.0901 4.5407 4.5407 5.6705 5.6705

1.75 0.0814 0.0814 4.5380 4.5380 7.9305 7.9305

2.0 0.0789 0.0789 4.5372 4.5372 9.0588 9.0588

Table 3: Table of values of showing the skin friction coefficient, local Nusselt number, and local Sherwood number for different values of N ,
Pr, Sc, f w, and ξ when De = 0:1, λ = 0:2, n = 0:5, δ = 0:2, Bi = 0:8, NR = 0:2, Df = 0:1, Sr = 0:4, Nb = 0:3, Nt = 0:2, and He = 0:2.

N Sc Pr f w
ξ = 1 ξ = 2 ξ = 3

f ″ 0, ξð Þ − θ 0, ξð Þ − φ 0, ξð Þ f ″ 0, ξð Þ − θ 0, ξð Þ − φ 0, ξð Þ f ″ 0, ξð Þ − θ 0, ξð Þ − φ 0, ξð Þ
-0.2 0.6 1.0 0.8 0.16708 0.50534 -0.33689 0.04620 0.59162 -0.39441 0.01707 0.63883 -0.42588
-0.1 0.18907 0.50589 -0.33726 0.05792 0.59167 -0.39445 0.02270 0.63884 -0.42589
0.0 0.21067 0.50642 -0.33761 0.06959 0.59173 -0.39448 0.02833 0.63885 -0.42590
0.25 0.26309 0.50769 -0.33846 0.09858 0.59186 -0.39457 0.04239 0.63887 -0.42591
0.5 0.31346 0.50887 -0.33925 0.12728 0.59199 -0.39466 0.05641 0.63889 -0.42592
0.75 0.36199 0.50998 -0.33999 0.15572 0.59212 -0.39475 0.07040 0.63891 -0.42594
0.5 0.6 0.5 0.8 0.55304 0.38188 -0.25459 0.30070 0.46368 -0.30912 0.15388 0.52446 -0.34964

0.71 0.42907 0.44310 -0.29540 0.19797 0.53093 -0.35395 0.09236 0.58670 -0.39114
1.5 0.20821 0.58266 -0.38844 0.07780 0.65291 -0.43527 0.03349 0.68834 -0.45890
3.0 0.02825 0.69354 -0.46236 0.01456 0.72879 -0.48586 0.00848 0.74640 -0.49760
5.0 0.01972 0.74209 -0.49472 0.01062 0.76180 -0.50787 0.00621 0.77140 -0.51427
7.0 0.01700 0.76508 -0.51005 0.00930 0.77686 -0.51791 0.00521 0.78263 -0.52175

0.5 0.6 1.0 0.8 0.31346 0.50887 -0.33925 0.12728 0.59199 -0.39466 0.05641 0.63889 -0.42592
0.9 0.28987 0.51844 -0.34563 0.11789 0.59716 -0.39811 0.05286 0.64200 -0.42800
1.0 0.26779 0.52749 -0.35166 0.10930 0.60209 -0.40139 0.04958 0.64499 -0.43000
1.2 0.22816 0.54412 -0.36275 0.09424 0.61125 -0.40750 0.04375 0.65065 -0.43377
1.3 0.21054 0.55176 -0.36784 0.08765 0.61551 -0.41034 0.04115 0.65332 -0.43555
1.5 0.17937 0.56583 -0.37722 0.07605 0.62349 -0.41566 0.03650 0.65839 -0.43893

0.5 0.25 1.0 0.8 0.30582 0.51142 -0.34094 0.15235 0.59361 -0.39574 0.08013 0.63973 -0.42649
0.78 0.30717 0.50780 -0.33854 0.11813 0.59154 -0.39436 0.05087 0.63865 -0.42577
0.94 0.30160 0.50705 -0.33804 0.11233 0.59124 -0.39416 0.04765 0.63849 -0.42566
1.25 0.29263 0.50598 -0.33732 0.10488 0.59082 -0.39388 0.04374 0.63825 -0.42550
1.75 0.28275 0.50489 -0.33659 0.09816 0.59038 -0.39359 0.04040 0.63800 -0.42533
2.0 0.27926 0.50451 -0.33634 0.09603 0.59023 -0.39348 0.03937 0.63790 -0.42527
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b mð Þ
0,r D2 + b mð Þ

1,r D + b mð Þ
2,r

h i
Θ mð Þ

j,r+1 + b mð Þ
3,r 〠

Nt

q=0
dj,qΘ

mð Þ
q,r+1

+ b mð Þ
4,r D + b mð Þ

5,r
h i

F mð Þ
j,r+1 + b mð Þ

6,r 〠
Nt

q=0
dj,qF

mð Þ
q,r+1

= b mð Þ
7,r D2 + b mð Þ

8,r D
h i

Φ mð Þ
j,r+1 = R mð Þ

2,j,r ,

ð40Þ

c mð Þ
0,r D2 + c mð Þ

1,r D + c mð Þ
2,r

h i
Φ mð Þ

j,r+1 + c mð Þ
3,r 〠

Nt

q=0
dj,qΦ

mð Þ
q,r+1

+ c mð Þ
4,r D + c mð Þ

5,r
h i

F mð Þ
j,r+1 + c mð Þ

6,r 〠
Nt

q=0
dj,qF

mð Þ
q,r+1

+ c mð Þ
7,r D2

h i
Θ mð Þ

j,r+1 = R mð Þ
3,j,r:

ð41Þ

Noting that the solution at the time level j =Nt of
each subinterval is given by the solution at the previous
level and taking i and j as dummy indices, equations
(39)–(41) can be written as

a mð Þ
0,r D4 + a mð Þ

1,r D3 + a mð Þ
2,r D2 + a mð Þ

3,r D + a mð Þ
4,r

h i
F mð Þ
j,r+1

+ a mð Þ
5,r 〠

Nt−1

j=0
di,jD3F mð Þ

j,r+1 + a mð Þ
6,r 〠

Nt−1

j=0
di,jD2F mð Þ

q,r+1

+ a mð Þ
7,r 〠

Nt

j=0
di,jDF mð Þ

j,r+1 + a mð Þ
8,r 〠

Nt

j=0
di,jF

mð Þ
j,r+1 + a mð Þ

9,r
h i

Θ mð Þ
i,r+1

+ a mð Þ
10,r

h i
Φ mð Þ

i,r+1 = R mð Þ
1,i,r − a mð Þ

5,r di,Nt
D3F mð Þ

Nt,r+1

− a mð Þ
6,r di,Nt

D2F mð Þ
Nt,r+1

− a mð Þ
7,r di,Nt

DF mð Þ
Nt,r+1

− a mð Þ
8,r di,Nt

F mð Þ
Nt,r+1

,

ð42Þ

b mð Þ
0,r D2 + b mð Þ

1,r D + b mð Þ
0,r D2 + b mð Þ

1,r D + b mð Þ
1,r

h i
Θ mð Þ

i,r+1

+ b mð Þ
3,r 〠

Nt−1

j=0
dj,qΘ

mð Þ
j,r+1 + b mð Þ

4,r D + b mð Þ
5,r

h i
F mð Þ
i,r+1

+ b mð Þ
6,r 〠

Nt−1

j=0
di,jF

mð Þ
j,r+1 + b mð Þ

7,r D2
h i

Φ mð Þ
i,r+1 + b mð Þ

8,r D
h i

Φ mð Þ
i,r+1

= R mð Þ
2,i,r − b mð Þ

3,i,rdi,NtΘ
mð Þ
Nt ,r+1 − b mð Þ

6,r di,Nt
F mð Þ
Nt ,r+1,

ð43Þ

c mð Þ
0,r D2 + c mð Þ

1,r D + c mð Þ
2,r

h i
Φ mð Þ

i,r+1 + c mð Þ
3,r 〠

Nt−1

j=0
dj,qΦ

mð Þ
j,r+1

+ c mð Þ
4,r D + c mð Þ

5,r
h i

F mð Þ
j,r+1 + c mð Þ

6,r 〠
Nt−1

j=0
di,jF

mð Þ
q,r+1 + c mð Þ

7,r D2
h i

Θ mð Þ
i,r+1

= R mð Þ
3,i,r − c mð Þ

3,r di,Nt
Φ mð Þ

Nt ,r+1 − c mð Þ
6,r di,Nt

F mð Þ
Nt ,r+1:

ð44Þ

In a more compact format, equations (42)–(44) can

be written as

A ið Þ
1,1F

mð Þ
i,r+1 + a mð Þ

5,r 〠
Nt−1

j=0
di,jD3F mð Þ

j,r+1 + a mð Þ
6,r 〠

Nt−1

j=0
di,jD2F mð Þ

j,r+1

+ a mð Þ
7,r 〠

Nt−1

j=0
di,jDF mð Þ

j,r+1 + a mð Þ
8,r 〠

Nt−1

j=0
di,jF

mð Þ
j,r+1

+A ið Þ
1,2Θ

mð Þ
i,r+1 +A ið Þ

1,3Φ
mð Þ
i,r+1 = β

mð Þ
1,i,r ,

A ið Þ
2,1F

mð Þ
i,r+1 + b mð Þ

6,r 〠
Nt−1

j=0
di,jF

mð Þ
j,r+1 +A ið Þ

2,2Θ
mð Þ
i,r+1

+ b mð Þ
3,r 〠

Nt−1

j=0
di,jΘ

mð Þ
j,r+1 +A ið Þ

2,3Φ
mð Þ
i,r+1 = β

mð Þ
2,i,r ,

A ið Þ
3,1F

mð Þ
i,r+1 + c mð Þ

6,r 〠
Nt−1

j=0
di,jF

mð Þ
j,r+1 +A ið Þ

3,2Θ
mð Þ
i,r+1

+A ið Þ
3,3Φ

mð Þ
i,r+1 + c mð Þ

3,r 〠
Nt−1

j=0
di,jΦ

mð Þ
j,r+1 = β

mð Þ
3,i,r ,

ð45Þ

Table 4: Computed values of the skin friction coefficient, local
Nusselt number, and local Sherwood number for different values
of Sr, Df , NR, and δ when De = 0:1, λ = 0:2, n = 0:5, Bi = 0:8, N =
0:5, ξ = 2, Pr = Sc = 1, Nb = 0:3, Nt = 0:2, and f w = 0:8.

Df Sr NR δ He f ″ 0, ξð Þ −θ 0, ξð Þ −φ 0, ξð Þ
0 0.4 0.2 0.2 0.2 0.11265 0.58223 -0.38815

0.1 0.11056 0.59114 -0.39410

0.2 0.10841 0.60034 -0.40023

0.3 0.10619 0.60982 -0.40655

0.4 0.10390 0.61960 -0.41306

0.5 0.10156 0.62968 -0.41979

0.1 0.4 0 0.2 0.2 0.08502 0.62028 -0.41352

0.2 0.11056 0.59114 -0.39410

0.3 0.12425 0.57754 -0.38502

0.4 0.13840 0.56453 -0.37635

0.5 0.15292 0.55210 -0.36807

0.6 0.16772 0.54023 -0.36015

0.1 0 0.2 0.2 0.2 0.08749 0.59210 -0.39473

0.5 0.11632 0.59091 -0.39394

0.7 0.12780 0.59043 -0.39362

0.8 0.13353 0.59020 -0.39346

1.0 0.14497 0.58973 -0.39315

1.2 0.15638 0.58926 -0.39284

0.1 0.4 0.2 0.3 0.2 0.10902 0.59117 -0.39412

0.4 0.10759 0.59120 -0.39413

0.5 0.10626 0.59123 -0.39415

0.6 0.10501 0.59125 -0.39417

0.7 0.10384 0.59127 -0.39418

0.8 0.10274 0.59129 -0.39419

0.1 0.4 0.2 0.2 0 0.08600 0.59907 -0.39938

0.1 0.08759 0.59672 -0.39782

0.4 0.09290 0.58897 -0.39265

0.6 0.09699 0.58307 -0.38872

0.7 0.09924 0.57987 -0.38658

0.8 0.10165 0.57646 -0.38431
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where

A ið Þ
1,1 = a mð Þ

0,r D4 + a mð Þ
1,r D3 + a mð Þ

2,r D2 + a mð Þ
3,r D + a mð Þ

4,r ,

A ið Þ
1,2 = a mð Þ

9,r ,

A ið Þ
1,3 = a mð Þ

10,r ,

A ið Þ
2,1 = b mð Þ

4,r D + b mð Þ
5,r ,

A ið Þ
2,2 = b mð Þ

0,r D2 + b mð Þ
1,r D,+b mð Þ

2,r ,

A ið Þ
2,3 = b mð Þ

7,r D2 + b mð Þ
8,r D,

A ið Þ
3,1 = c mð Þ

4,r D + c mð Þ
5,r ,

A ið Þ
3,2 = c mð Þ

7,r D2,

A ið Þ
3,3 = c mð Þ

0,r D2 + c mð Þ
1,r D + c mð Þ

2,r ,

β
mð Þ
1,i,r = R mð Þ

1,i,r − a mð Þ
5,r di,Nt

D3F mð Þ
Nt ,r+1 − a mð Þ

6,r di,Nt
D2F mð Þ

Nt ,r+1

− a mð Þ
7,r di,Nt

DF mð Þ
Nt ,r+1 − a mð Þ

8,r di,Nt
F mð Þ
Nt ,r+1,

β
mð Þ
2,i,r = R mð Þ

2,i,r − b mð Þ
3,r di,Nt

Θ mð Þ
Nt ,r+1 − b mð Þ

6,r di,Nt
F mð Þ
Nt ,r+1,

β
mð Þ
3,i,r =R mð Þ

3,i,r − c mð Þ
3,r di,Nt

Φ mð Þ
Nt ,r+1 − c mð Þ

6,r di,Nt
F mð Þ
Nt ,r+1:

ð46Þ

The boundary conditions given in equation (28) when
evaluated at the Chebyshev-Gauss-Lobatto collocation
points give

f mð Þ
r+1 ηNx , ξið Þf w,

〠
Nx

p=0
DNx,p

f mð Þ
r+1 Nx, ξið Þ = 0,

〠
Nx

p=0
D0,p f

mð Þ
r+1 ηpx, ξi
� �

= 0,

〠
Nx

p=0
D2

0,p f
mð Þ
r+1 ηpx, ξi
� �

= 0,

〠
Nx

p=0
DNx,p

θ
mð Þ
r+1 Nx, ξið Þ = −Bi 1 − θ

mð Þ
r+1 ηNx

, ξi
� �� �

,

 θ
mð Þ
r+1 η0, ξið Þ = 0,

Nb 〠
Nx

p=0
DNx,p

ϕ
mð Þ
r+1 Nx, ξið Þ = −Nt 〠

Nx

p=0
DNx,p

θ
mð Þ
r+1 Nx , ξið Þ = 0,

 ϕ
mð Þ
r+1 η0, ξið Þ = 0:

ð47Þ
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Figure 2: Profiles for different values of De when λ = 0:1, N = 0:5, n = 0:5, f w = 0:8, ξ = 1, Nb =Nt = Df = Sr = Bi = 0:5, He = δ =NR = 0:2,
Sc = 0:6, and Pr = 1.
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4. Results and Discussion

In this section, we present the numerical solutions of the
coupled system of nonlinear differential equations that
model natural convection viscoelastic Jeffrey’s nanofluid flow
from a vertical permeable flat plate with thermal radiation.
The modeled equations have been solved using the multido-
main bivariate spectral quasilinearization method. To vali-
date our numerical method and to show that our approach
is suitable for the problem under investigation, a comparison
with results in the published literature was made, and our
results are in excellent agreement with these published
results. We further present and examine the impact of a wide
range of embedded pertinent thermophysical parameters on
the flow properties, the skin friction coefficient, the Nusselt
number, and the Sherwood number. Comprehensive results

are obtained and are presented in Tables 1–4 and
Figures 2–15. It is worth noting that the range of the param-
eter values used in this study is between ½0, 4�. These values
have been chosen based on the works of existing literature
similar to this study.

Table 1 shows a comparison of the Nusselt number and
Sherwood number with the results of Hussain et al. [45] for
different values of n and ξ. A good agreement is observed.
It is seen from the table that an increase in the Nusselt num-
ber and the Sherwood number is observed as n and ξ values
increase. This gives confidence that the present numerical
results are accurate.

To further ascertain the accuracy of the present numerical
method, we have compared the skin friction coefficient, Nus-
selt number, and Sherwood number for different values of N ,
Sc, Pr, and f w when ξ = 3 with the published result of Gaffar
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Figure 3: Profiles for different values of λ when De = 0:1, N = 0:5, n = 0:5, f w = 0:8, ξ = 1, Nb =Nt = Df = Sr = Bi = 0:5, He = δ =NR = 0:2,
Sc = 0:6, and Pr = 1.
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et al. [2]. The comparison is shown in Table 2. From the table,
it is seen that an excellent agreement between the present
numerical results and the published results is achieved, thus
validating the accuracy of the current numerical method.
Also, it can be observed from the table that an increase in
the values of N increases the skin friction coefficient, heat
transfer rate, and mass transfer rate. The heat transfer rate
increases significantly with increasing values of Pr, while a
reduction in the skin friction coefficient and the mass transfer
rate is observed for an increase in Pr. Also, increasing f w is
seen to reduce the skin friction coefficient and heat transfer
rate, while the mass transfer rate is enhanced for an increase
in f w. Lastly, a decrease in the skin friction coefficient is seen
with increasing values of Sc. A reduction in the heat transfer
rate is observed with increasing amounts of Sc, while themass
transfer is seen to increase significantly.

Table 3 shows the skin friction coefficient, Nusselt num-
ber, and Sherwood number for various values ofN , Sc, Pr, f w,
and ξ. It is noticed in the table that as we increase the values
of N , the skin friction coefficient and the Sherwood number
increase while the Nusselt number decreases. Also, as the
values of Pr increase, the Nusselt number increases while
the skin friction coefficient and the Sherwood number
decrease. For higher values of Pr, velocity decreases, thereby
reducing the skin friction coefficient. The reduction is due
to the increase in the viscosity, which in turn enhances the
momentum boundary layer thickness. Increasing the values
of f w is seen to reduce the skin friction coefficient and mass
transfer rate, while the heat transfer rate is increased.
Furthermore, a significant decrease in the skin friction coef-
ficient is observed with increasing Sc. A slight decrease in
the Nusselt number is observed with increasing values of Sc
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Figure 4: Profiles for different values of n when De = 0:1, N = 0:5, λ = 0:1, f w = 0:8, ξ = 1, Nb =Nt = Df = Sr = Bi = 0:5, He = δ =NR = 0:2,
Sc = 0:6, and Pr = 1.
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while the Sherwood number is seen to increase. Increasing Sc
results in a decrease in species mass diffusivity.

Table 4 displays the computed values of the skin fric-
tion coefficient, the heat transfer coefficient, and the mass
transfer coefficient for different values of Df , Sr, NR, δ,
and He. We note that an increase in Df reduces both
the skin friction coefficient and the Sherwood number,
whereas the Nusselt number increases when Df is
increased. The skin friction coefficient and the Sherwood
number are enhanced by increasing the values of NR
and Sr, while the Nusselt number decreases when increas-
ing the values of NR and Sr. The Nusselt number is
slightly increased by increasing δ, but the opposite trend
is observed in the case of the skin friction coefficient and
the Sherwood number. Again, the skin friction coefficient
and the Sherwood number increase, whereas the Nusselt
number decreases when increasing the values of He.

Figures 2(a)–2(c) show the velocity, thermal, and concen-
tration profiles for increasing De values. We note that the
velocity profile is reduced for higherDe values while the tem-
perature and concentration profiles are slightly enhanced
with an increase in De values. De, by definition, is the ratio
of specific time to the timescale of deformation and thus gives
an insight into the physics of the fluid. For De > 1, elasticity
dominates the fluid, while for De < 0:5, viscosity dominates
the fluid. Further, increasing De is expected to enhance the
velocity profile as De arises in connection with higher-order
derivatives in the momentum boundary layer equation (17);
hence, the parameter De exerts a strong impact on the shear-
ing characteristic of the flow. This will, in turn, correspond to
a decrease in the momentum boundary layer thickness. A
similar trend was observed in [2].

Figures 3(a)–3(c) depict the velocity, thermal, and con-
centration profiles with different values of λ (ratio of
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Figure 5: Profiles for different values of N when De = 0:1, N = 0:5, λ = 0:1, f w = 0:8, ξ = 1, Nb =Nt = Df = Bi = Sr = 0:5, He = δ =NR = 0:2,
Sc = 0:6, and Pr = 1.
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relaxation to retardation time). Here, the velocity profile is
significantly increased with increasing values of λ, especially
that close to the surface of the wall, whereas temperature
and concentration profiles slightly reduce with increasing λ.
The parameter λ is expected to expend a reasonable impact
on the flow properties as increasing relaxation times (or
decreasing retardation times) helps in the development of
momentum in the boundary layer but reduces both thermal
and mass diffusion. This flow pattern with a similar parame-
ter effect is observed in [2].

Figures 4(a)–4(c) illustrate the variation of the velocity,
temperature, and concentration profiles for different values
of n.We note that there is a considerable decrease in the veloc-
ity profile with n. The same trend is obtainable for the temper-
ature and concentration profiles as they are seen to reduce
with an increase in n, as presented in Figures 4(b) and 4(c).
For n > 0, the wall temperature upsurges with distance from
the leading edge; for n < 0, the wall temperature reduces;
and for n = 0, the wall temperature is seen to be isothermal.
Increasing the values of n results in a reduction in boundary
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layer flow and a corresponding increase in momentum
boundary layer thickness and a deceleration in thermal
boundary layer thickness. This trend was observed in [2].

Figures 5(a)–5(c) present the influence of N on the veloc-
ity, temperature, and concentration profiles. An increase in
N is observed to upsurge the velocity profile, while a decrease
in both temperature and concentration profiles is seen for
increased values of N . This same trend was observed in the
fluid model studied by [2].

Figures 6(a)–6(c) give a visual display of the velocity,
temperature, and concentration profiles for different values
of f w. It can be seen from Figures 6(a)–6(c) that there is a
decrease in the velocity, temperature, and concentration pro-

files with an increase in f w values. The parameter f w (suc-
tion) causes the boundary layer to be closely attached to the
wall, thereby reducing the momentum boundary layer thick-
ness. The thickening of the momentum boundary layer
simultaneously obstructs heat diffusion, which consequently
leads to a decrease in the temperature profile. This trend
was observed in [2, 56].

Figures 7(a)–7(c) show the impact of ξ on velocity,
temperature, and concentration profiles. It is clearly seen that
the velocity profile decelerates with an increase in the values
of ξ. An increase in the buoyancy forces as the momentum
diffusion reduces leads to a decrease in the flow and thickens
the boundary layer structure. Further, it is observed in
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Figures 7(b) and 7(c) that the temperature and concentration
profiles are reduced by increasing ξ. In the study by [2], sim-
ilar profile patterns were obtained and explained extensively.

Figures 8(a) and 8(b) show the effect of Df on the
temperature and concentration profiles. Increasing the Df
parameter leads to a decrease in the temperature and concentra-
tion profiles. The Dufour effect is the heat transfer induced by
volume fraction gradients and significant due to the density dif-

ference in the flow regime. The thermal energy flux is seen to be
affected by the concentration gradients because of the reduction
in the temperature profile. The temperature gradient effect is
reduced, thereby leading to the cooling of the boundary layer
region. In effect, this means that the thermal and mass bound-
ary layer thickness is reduced as the parameter is enhanced.

Figures 9(a) and 9(b) illustrate the behavior of tempera-
ture and concentration profiles for different Bi. Increasing

0.7

Df = 0
Df = 0.5

Df = 0.8
Df = 1

0

0.1

0.2

0.3

0.4

0.5

0.6

𝜂
0 1 2 3 4 5 6 7 8 9 10

𝜃 
(𝜂

, 𝜉
)

(a) Temperature profile

Df = 0
Df = 0.5

Df = 0.8
Df = 1

0

0.02

0.04

0.06

0.08

0.1

0.12

𝜂

𝜙
 (𝜂

, 𝜉
)

0 0.5 1 1.5 2 2.5 3 3.5 4

(b) Concentration profile

Figure 8: Profiles for different values of Df when De = 0:1, N = 0:5, λ = 0:1, N = 0:5, f w = 0:8, ξ = 1, Nb =Nt = Bi = Sr = 0:5, He = δ =NR
= 0:2, Sc = 0:6, and Pr = 1.

Bi = 0.5
Bi = 0.8

Bi = 1
Bi = 1.2

0

0.1

0.2

0.3

0.4

0.5

0.6

𝜂

0 1 2 3 4 5 6 7 8 9 10

𝜃 
(𝜂

, 𝜉
)

(a) Temperature profile

Bi = 0.5
Bi = 0.8

Bi = 1
Bi = 1.2

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

𝜂

0 1 2 3 4 5 6 7 8 9 10

𝜙
 (𝜂

, 𝜉
)

(b) Concentration profile

Figure 9: Profiles for different values of Bi when De = 0:1, N = 0:5, λ = 0:1, N = 0:5, f w = 0:8, ξ = 1, Nb =Nt = Df = Sr = 0:5, He = δ =NR
= 0:2, Sc = 0:6, and Pr = 1.

18 Abstract and Applied Analysis



Bi raises both the temperature and concentration profiles. An
increase in Bi yields more vigorous convection, which in turn
causes higher surface temperature and an increase in wall
temperature, thereby leading to thicker related layers.

The effect of Nt on the temperature and concentration
profiles is shown in Figures 10(a) and 10(b). As Nt increases,
the temperature profile decelerates, whereas the concentration

profile upsurges. The thermophoresis parameter is defined as
the ratio of thermophoretic diffusion due to the temperature
gradient to the momentum diffusion in the nanofluid. So, a
higher thermophoresis parameter implies a stronger thermo-
phoretic force. As a result, thermophoretic force drags enor-
mous nanoparticles through greater diffusion from the hot
surface towards the ambient surface, thereby increasing the
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fluid temperature and diminishing the related layer thickness.
Also, higher thermophoresis values suggest a higher concen-
tration of the nanoparticles in the fluid, hence increasing the
concentration boundary layer thickness.

Figures 11(a) and 11(b) show the effect of Nb on the tem-
perature and the concentration profiles. It was observed that
the temperature profile increases withNbwhile the concentra-
tionprofile decreaseswithNb. The concentrationprofile is seen
to decrease with increasing Nb near the wall up to a certain
value of η, while beyond this point, a reverse trend is observed.

Figure 12 depicts the temperature profile for various He
values. An increase in He corresponds to an enhancement
in temperature and boundary layer thickness. Physically,
the parameter He releases heat energy to the fluid flow; this
energy released enhances fluid temperature and thus leads
to an increase in the thickness of the thermal boundary layer.
In the investigation carried out by [51], a similar temperature
profile pattern was reported.

Figure 13 clearly shows that both the thermal boundary layer
thickness and the temperature profile increase owing to the rise
in the values ofNR. A similar trend was reported in [57].
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The effect of Sr on the concentration profile is observed in
Figure 14. The parameter Sr is the ratio of the thermal diffu-
sion coefficient and diffusion coefficient. This ratio acts as the
mass flux produced by temperature gradients. Therefore, as
Sr increases, the concentration profile significantly increases.
This implies that the temperature gradients render a mass
flux, which increases the concentration profile, thus enhanc-
ing the nanoparticle concentration boundary layer thickness.

Figure 15 shows the impact of δ on the concentration
profiles. It is observed that increasing δ reduces the concen-
tration profile. This suggests that higher values of δ lead to
a decrease in the chemical molecular diffusivity, thereby
causing a reduction in the concentration of the diffusing
species, and a decrease in mass diffusion, hence leading to
the thinning of the concentration boundary layer.

5. Conclusion

In this paper, we have investigated the combined effects of the
Soret and Dufour numbers, thermal radiation, heat
generation, and chemical reaction on natural convection
viscoelastic Jeffrey’s nanofluid flow from a vertical permeable
flat plate. The governing nonlinear differential equations were
solved using the multidomain bivariate spectral quasilineari-
zationmethod.A comprehensive assessment of different ther-
mophysical quantities is discussed graphically and in a tabular
form. The method employed in this study has demonstrated
its ability to solve nonlinear boundary layer equations effi-
ciently and shows an excellent promise in simulating trans-
port phenomena in other non-Newtonian fluids. In terms of
the physical problem, the study has shown, among other
things, that by increasing the Deborah number, power-law
exponent, transpiration parameter, and suction parameter,
we reduce the fluid velocity profile. Both the fluid temperature
and thermal boundary layer thickness are found to increase
with the heat generation parameter, Brownianmotion param-
eter, Biot number, and thermal radiation parameter while
they decreased with an increase in the thermophoresis param-
eter and Dufour number. The concentration profile reduces
with the chemical reaction and Brownianmotion parameters,
whereas the profile is enhanced with the thermophoresis
parameter and Soret and Biot numbers. These observations
are parallel with earlier studies in the literature.
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