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The vibration-based structural health monitoring has been traditionally implemented through the deterministic approach that
relies on a single model to identify model parameters that represent damages. When such approach is applied for truss bridges,
truss joints are usually modeled as either simple hinges or rigid connections. The former could lead to model uncertainties due to
the discrepancy between physical configurations and their mathematical models, while the latter could induce model parameter
uncertainties due to difficulty in obtaining accurate model parameters of complex joint details. This paper is to present a new
perspective for addressing uncertainties associated with truss joint configurations in damage identification based on Bayesian
probabilistic model updating and model class selection. A new sampling method of the transitional Markov chain Monte Carlo is
incorporated with the structure’s finite element model for implementing the approach to damage identification of truss structures.
This method can not only draw samples which approximate the updated probability distributions of uncertain model parameters but
also provide model evidence that quantify probabilities of uncertain model classes. The proposed probabilistic framework and its
applicability for addressing joint uncertainties are illustrated and examined with an application example. Future research directions

in this field are discussed.

1. Introduction

Steel truss bridges are commonly used in the highway system.
Those truss bridges are typically composed of slender steel
members connected at truss joints. The truss joints may
take various types or configurations. During their long-
term operations, steel truss bridges may become deteriorated
(such as development of fatigue cracks and corrosions) due
to increased volumes of traffic and adverse environment
impacts. Such deterioration or damage could pose serious
threats to the safe operation of bridges if its development
cannot be identified in a timely manner. Researchers have
explored various approaches for effectively detecting the
development of deterioration or damages of truss structures
at their early stages through implementing vibration-based
structural health monitoring (SHM), which typically relies
on vibration measurements and structural models to identify
model parameters that represent extents and locations of
damages.

Gao et al. [1, 2] had proposed an approach of diagnosis
locating vector (DLV) for damage identification of steel
truss structures by using distributed computing strategy
(DCS). They verified this approach by using computational
simulation of damage identification of a simple 14-bay planar
truss structure. Spencer et al. [3] and Ji et al. [4] further
validated the effectiveness of the above DCS method through
experiments on a truss model and a two-storey steel braced-
frame model. Sohn [5] introduced an approach of load-
dependent Ritz vectors as an alternative approach to identify
damages in an eight-bay truss structure. In the above studies,
truss joints were simply modeled as hinges in the structure
model that was used for the damage identification. The
impact of types of the joint model (e.g., hinged, semirigid,
or rigid) on outcomes of the damage diagnosis of truss
structures was not explicitly addressed.

Some researchers, on the other hand, have attempted
to explicitly consider the complexity of truss joint config-
urations in their models for damage identification of truss



structures. Jones et al. [6] and Lewitt et al. [7] considered
that the true behavior of joints is between the fully-rigid
joints and the perfectly-pinned joints and includes somewhat
nonlinear behaviors. By using data from field monitoring,
Li et al. [8] had developed a multiscale bridge model that
includes the detailed model of the joint configurations. They
adopted this model to identify local deterioration of two
typical weld connections in a steel truss bridge. Based on
the global dynamic response data, Zhu and He [9] adopted
a detailed finite element model of the bolted connection for
detecting damages of a three-bay steel frame structure. Yun
[10] developed the Steady-state genetic algorithm (SSGA)
for damage identification of truss structures. They adopted
detailed joint models in the truss finite element model and
demonstrated the performance of their proposed approach
through a 14-bay planar truss. Law et al. [11] presented a
model updating method for a superelement model, in which
joints were modeled as the semirigid joints with specified
stiffness. They validated their approach to identifying the
damage of joints of a three-dimensional 10-bay cantilevered
truss structure.

Among two types of strategies for modeling joints of steel
truss structures adopted in the previous research, one adopts
oversimplified models of truss joint that could lead to model
uncertainties due to the discrepancy between joint physical
configuration and its model representation; the other could
induce more uncertainties associated with model parameters
due to difficulties in obtaining accurate model parameters of
complex joint configurations. Both strategies could cause the
deviation of the identified model parameters that represent
damages from their true physical damages and lead to mask-
ing real damages or triggering false damage alarms. Even
though progresses have been made in vibration-based struc-
tural health monitoring of the truss or truss-like structures,
most of existing methods rely on deterministic methods that
cannot evaluate the impacts of uncertainties associated with
the model of joint configurations on outcomes of damage
identification. Because the in situ measurement data is always
limited for a complex truss structure with many unknown
or uncertain model parameters, deterministic approaches to
damage identification often yield ill conditions (unidenti-
fiable solution) or nonuniqueness (multiple solution) and
cannot address inherent uncertainties associated with the
structural model and model parameters.

With those uncertainties present, monitoring and assess-
ing damages of steel truss bridges may better be conducted
within a probabilistic framework. The recently resurgent
Bayesian inference could provide an applicable computa-
tional framework for robustly addressing uncertainties asso-
ciated with models and model parameters in damage identifi-
cation. Within this framework, uncertainties associated with
structural models are represented by the probability of model
among competing candidate models, and unknown damage
status of structural members is presented by the probability
distributions of model parameters. The probabilities of com-
peting candidate models and the probability distributions
of uncertain model parameters can be first assumed based
on prior knowledge and engineering judgment and then
updated based on Bayes theorem by using available in
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situ measurement data. These updated model probabilities
and probability distributions of model parameters not only
identify the most suitable model among competing candidate
models and estimate the most suitable model parameters that
correspond to the damage location and extent but also quan-
tify uncertainties in such identification and estimation, which
are essential for assessing the reliability-based performance of
the system for decision making. For example, the quantified
uncertainties obtained from probabilistic inference can be
used to make a statement such as that the probability of
a specific truss member damaged with stiffness reduction
ranging from 20% to 30% is 90%.

The general framework of Bayesian inference for struc-
tural model updating and damage identification was pre-
sented by Beck and his associates in the 90s [12]. Subsequent
research has shown the effectiveness of Bayesian probabilis-
tic inference in assessing uncertainties in structural model
updating and damage identification. Yuen and Katafygiotis
[13] present a time-domain Bayesian inference approach to
update uncertain modal parameters in a four-bay simple truss
model by using measured time histories of ambient response.
Beck and Yuen [14] demonstrated Bayesian model selection
for system identification based on dynamic response of
nonlinear oscillator among competing candidate models.
Chen and Feng [15] illustrated the effectiveness of Bayesian
inference for consistently estimating the system parameters
and their uncertainties through two simulation examples and
one shake table test. Ntotsios et al. [16] adopted Bayesian
inference to bridge damage identification by using acceler-
ation measurements and demonstrated its effectiveness by
using simulated measurements of a prototype bridge, as
well as using experimental vibration data from a laboratory
small-scaled bridge model. However, the application of the
Bayesian probabilistic framework has not been fully explored
for addressing uncertainties associated with models of truss
joint configurations that are encountered in monitoring and
assessing damages of steel truss bridges.

This paper presents probabilistic computational frame-
work for identifying structural damage of the truss members
under uncertainties associated with modeling joint config-
urations by using vibration measurements. The framework
integrates the advanced sampling algorithm of the tran-
sitional Markov chain Monte Carlo with structure’s finite
element model. It can be used to effectively draw statistical
samples that approximate the updated probabilistic distri-
butions of uncertain model parameters and provide the
model evidence that can be used to quantify probabilities
of uncertain model classes. The paper in the subsequent
sections is organized as follows. Firstly, the theoretic frame-
work of Bayesian inference for damage identification is
outlined. Secondly, computational procedures that integrate
the structural model with advanced sampling algorithm are
presented. Thirdly, an application of the proposed framework
and its effectiveness are illustrated and examined through
numerical simulation of damage identification of nine-bay
three-dimensional steel truss model. Finally, future research
directions in this field are discussed.
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2. Theoretical and Computational Framework

2.1. Damages Identification through Model Updating. Vibra-
tion measurements have been used in SHM for identifying
structural damages of engineering systems. The vibration-
based SHM approach is based on the premises that structural
dynamic characteristics are functions of structural properties
and boundary conditions, and can be reflected in the vibra-
tion responses of the structures under external dynamic exci-
tations. As damages cause the change of structural properties,
the measured vibration responses from the structure will also
alternate. The process of the model updating or calibration is
to determine the most suitable model parameters, which are
related to damage status, structural properties, or boundary
conditions, through minimizing the difference between the
predicted structural response from the structural model
and the measured structural response from sensor networks
installed in the structure.

In model updating process, uncertain model parameters
that need to be calibrated are unknown or cannot be prede-
termined accurately. In the context of damage identification,
structural damages are usually parameterized in terms of the
change of stiffness of structure members between damaged
structures and undamaged structures, because the damage
would cause the reduction of stiffness of an individual
structural member or a group of structural members (i.e., a
substructure). Thus, structural damages can be parameter-
ized mathematically into the global stiffness matrix of a finite
element model as follows:

N
K(a) =K, + Y oK, Q)
i=1

where K(«) is the global stiffness matrix of a finite element
model; K, is the part of the global stiffness matrix con-
tributed from the structural members which are assumed
to be undamaged; K; is the part of the global stiffness
matrix contributed from the ith structural members which is
suspected to be damaged; «; is the stiffness reduction factor
that indicates the damage extent and location in the structure
for example; for o; = 1 it represents no damage, and for ; = 0
it represents complete loss of stiffness or resistance.

In another similar formulation of damage identification,
when measurement data are available for both before and
after damage occurrence, K; in the above formula can be
considered as initial estimated stiftness contributed from ith
structural members, and the a*! and ™ are the stiffness
factors for both before and after damages occurrence and can
be obtained for both before and after damages occurrence,
respectively. The change of Aa; = o’ — a® before and
after damages can be used to reveal the damage extents and
locations.

2.2. Bayesian Model Updating and Model Class Selection. If
there are uncertainties associated with model parameters
for a specific model of the system M;, uncertain model
parameters can be denoted as a vector &, where the dimension
of @ is N, and may take different values. As a result, the
structural model M; would correspond to a class of models

for different model parameter vector . Thus, in the Bayesian
inference framework, one specific type of structural model
M; is usually referred to as a model class M;. For a given
specific value for &, the model M; and & descri{)e the relation
between the model input vector Z and its output vector X; that
is, X = g;(a, Z, M j)~ When there are uncertainties associated
with the structural model of a specific structure system, the
structural model class M could possibly take different forms.
As a result, classes of multiple competing candidate models
denotedas M = {M; : j = 1,2,..., N} may be considered
for the structure system.

Bayesian inference essentially provides a probabilistic
computational framework based on Bayes’ theorem to quan-
tify uncertainties associated with model parameters and
model classes by specifying the probability density function
(PDF) (or probabilistic distribution) of uncertain model
parameters and relative model probabilities of competing
candidate model classes [14, 17, 18]. The formulation of
Bayesian inference can be applied in the time domain or in
the spectrum domain for vibration-based structural health
monitoring and damage identification. For obtaining details
in this regard, readers may refer to [14, 17]. This paper adopts
Bayesian model updating and model selection in the time
domain [14, 18], which is briefly outlined as follows.

The key for applying Bayes” theorem to update the prob-
abilistic distributions of uncertain models and their param-
eters using the measurement data is to create a probability
model P with a model parameter vector 0 or the likelihood
function p(D | 6, M;), which defines the likelihood of getting
the measurement data D for a given parameter vector § and a
structural model M, where the probability mode parameter
vector 0 contains the structural model parameter vector a and
other parameters that describe probabilistic characteristics
of the probability mode and are defined subsequently. The
likelihood function p(D | 6, M ;) can be established based
on the probability density function of the prediction error,
that is, the difference between the measured system outputs
from in situ sensors deployed at selected locations and the
predicted system outputs from the structural model with
given model parameter & contained in the parameter vector
0 [18].

If the available input-output data D contains the mea-
sured input vector Z,, and output (or response) vector Y, for
N, of selected degree of freedom (DOF) of the system, which
corresponds to measurement locations at different times, t =
n- At, wheren = 1,2,...,N,, and N, is the total number of
time series of measurement, then the prediction error vector,
e,, at the time t = n - At and at the selected DOF of the
structural system for a given structural model M; and its
parameter vector & can be expressed as

en:Yn_LO‘qj(“’Zn’Mj)’ (2)

where q;(&, Z,,, M;) is a vector of the predicted outputs at
all degrees of freedom (DOF) of the structural model M f
with given structural model parameter vector & and input
vector Z,, at time t = n - At; L is the selection matrix with
only nonzero element equal to 1 in each row for converting
the output vector gq;(a, Z,, M) at all DOF of the structural



model M; into the output vector at the measured DOEF, so
that L, - q;(&, Z,,, M) is the vector of the predicted system
outputs at N; of measured degree of freedom (DOF) of the
model M; e, Y,,, and L - q;(a, Z,, M) are vectors with Ny
dimensions.

It is usually assumed that the prediction error vector
e, is a zero-mean stationary normally-distributed stochastic
process with a standard deviation of o, which is equal for
all DOF of the model. It is also assumed that the predic-
tion errors at different times and at different locations are
independent. Then, the likelihood function p(D | 6, M;)
can be represented as the probability density function of
joint distribution of multiple independent normal distributed
statistical variables (total number is N, - N;) as follows:

p(D16,M))

1
 \2moNeNe

1 N Ny k) #01?
e MR CRACE R
n=1j=

(3)

where 8 = {a7, U}T is the uncertain parameter vector of the
probability model P as mentioned before and needs to be
updated through Bayes’ theorem with measurement data; Y,(lk)
is the kth component of the vector Y,, at the time t = n - At;
and{L, - q;(&, Z,, M j)}(k) is the kth component of the vector
Ly-qj(a,Z,, M) at the time t = n- At.

For the specific candidate structural model class M, the
prior probability density function (PDF) of model param-
eters p(6 | M;) can usually be preassumed based on
prior knowledge or engineering judgment on the statistical
distribution of parameters 6; for example, p(6 | M j) can
be a normal distribution or uniform distribution between
specific values. Once the measurement data D are available
from instrumentation installed in the structure system, the
posterior PDF p(@ | D, M;) of parameters can be obtained
based on Bayes’ theorem as follows:

p(D16.M;)-p (01 M))
p(D1M;)

where p(f | M;) is the prior PDF and can be preassumed;
p(D | 8, M) s thelikelihood function as defined in (3); p(D |
M) is called the model evidence (or the marginal likelihood
function), actually is a normalization factor that makes the
integral of the right side in (4) over all spaces of parameters 0
to be equal to 1, and thus can be determined as follows:

p(01D,M;) =

(4)

p(D|M;)= Jp(D|e,Mj)-p(e|Mj)do. ()

When there are uncertainties associated with the struc-
tural model of a specific system, classes of multiple competing
candidate structural models may be considered for the system

and denoted by M = {M; : j = 1,2,...,Ny}. With the
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measurement data D available, Bayesian model class selection
can be conducted to obtain the posterior probability P(M; |
D, M) of each model class M; in the model classes M based
on Bayes’ theorem as follows:

p(P1M;)-P(M; | M)

P(M;|D,M) = S p(D 1 M) P (M, | M)

where P(M; | M) is the prior probability of model class M;
and can be taken to be 1/N,, if it is reasonable to consider
all model classes to be equally plausible; N, is the number
of model classes; p(D | M ]-) is the model evidence for model
M; as defined in (5).

The model class with the largest posterior probability
P(M; | D,M) will be the most plausible model among the
model classes M and can be used to represent the system
behaviors. If needed, the combination of several of the most
suitable models weighted with their probability can be used
to represent the system behaviors based on Bayesian model
class averaging [18].

3. Probabilistic Simulation

The posterior PDF of model parameters as defined in (4)
usually cannot be obtained explicitly. This is not only because
that the posterior PDF may have a complicated format, but
also because that the calculation of posterior PDF needs
assessment of the model evidence p(D | M ]-) and requires the
evaluation of an integral over the space of model parameters
asindicated in (6), which cannot be evaluated analytically due
to higher dimensions of the parameter vector 0 [14, 17, 18].
Particularly for structural model updating or damage identi-
fication, the evaluation of the likelihood function also needs
the calculation of the predicted response from the structural
finite element model. This makes analytical evaluation of
the posterior PDF of model parameters impossible. Thus,
the posterior PDF of uncertain model parameters defined in
(4) is often evaluated and represented alternatively by using
statistical samples drawn from posterior probability density
functions (PDFs) through probabilistic simulation.

One commonly-implemented probabilistic simulation
for drawing samples from the target PDF is the Markov Chain
Monte Carlo (MCMC) algorithm proposed by Hastings [20,
21]. Based on well-defined criteria, the MCMC algorithm
creates a chain of samples whose statistical distribution can
approximate the target PDF by either accepting or rejecting
the proposed samples from the spaces of parameters of
interest. For detailed description of MCMC, the reader can
refer to [20, 21]. However, the standard MCMC algorithm
may not be efficient when there is a very sharp peak or
maxima or there are multiple peaks in the shape of the target
PDF, because the drawn samples may become “stuck” in one
local peak and cannot move to all other spaces of parameters
of interest. Considering that the properties (or shapes) of the
posterior PDFs are usually not known beforehand, Ching and
Chen [19] had proposed the transitional Markov chain Monte
Carlo (TMCMC) intended to be applied for all cases (e.g.,
very peaked PDFs and multiplepeaked PDFs).
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In the subsequent descriptions of TMCMC procedures,
the subscript j for a specific model class M; is dropped
for convenience because the TMCMC is applied for each
individual specific model class. The idea behind the TMCMC
is to avoid the problem of sampling from difficult target PDFs
but draw samples from a series of PDFs that are easier to
sample and converge gradually to the target PDE In addi-
tion, the TMCMC can draw samples from any probability
distribution and require only that a function proportional
to the target PDF to be calculated without knowing the
normalization factor, such as the model evidence f(D | M)
in (2). Furthermore, through drawing samples from series of
intermediate PDFs, the model evidence f(D | M) can be
obtained as a byproduct of drawing the samples of uncertain
model parameters for evaluating the model probability. The
TMCMC approach was established based on the technique
initiated by Beck and Au [22] and includes consideration of a
series of intermediate PDFs as follows [19]:

p; (@) ccp(®] M) p(D]6, M), j=0,....m

0=ty <ty <---<t, =1,

where the operator o< denotes “is proportional to”; the index
j denotes the number of the stage or level of intermediate
PDFs. It is assumed that the change between two adjacent
intermediate PDFs is so small that the PDF of the current
stage can be efficiently sampled from the PDF of its previous
stage. For simplicity in the description below, the normaliza-
tion constant P(D | M) as indicated in (4) is dropped in the
following procedures, because those procedures are operated
based on the ratio of PDFs at two different parameters and
this normalization constant in the target PDF is canceled off.

Briefly speaking, the method of TMCMC uses series of
intermediate PDFs, in which the first PDF in the sequence is
the prior PDF py(0) = p(6 | M) of model parameter when
j = 0andt; = 0in (6), and the last PDF in the sequence
is the posterior PDF p,.(0) = p(@ | M) - p(D | 6, M) as
defined in (4) when j = mandt,, = 1in (7). By using the data
from those intermediate PDFs, the model evidence P(D | M)
defined in (5) can also be obtained for the selected model
class M and can be used to conduct Bayesian model class
selection and model averaging [19]. For details of particular
steps of algorithm in integrating TMCMC with Bayesian
model updating and model class selection, readers can refer
to [19]. The TMCMC algorithm [19] can be described as
follows.

(1) Set the first intermediate PDF equal to the prior PDF,
that is, p,(0) = p@ | M). Select a uniformly
distributed probability density function for the prior
PDF p(@ | M). Draw samples from the prior PDF
p(@ | M), and denote them by 67, k = 1,...,N,,
where N, is the number of samples of the unknown
parameters at the stage j = 0. Repeat the following
steps total 2 to step 4 for j =0,1,...,m — L.

(2) Choose the tempering parameter ¢;,; for the next
stage PDF to make sure that the coefficient of variance

(COV) of p;y(@)/p@) = pD 16,0,

k ., N, does not exceed some prescribed
threshold ) tfllat the next stage PDF p;,,(6) is not

much different from current PDF p j(0)> where Gk,
k =1,...,Nj, are samples drawn from the PDF at the
current stage.

(3) Calculat the plausibility weight w(()j) = pD]
0, M) ", k=1,...,N,and$; = Y1, w(@))/N;.

(4) Based on given N; samples Hi from the current stage
PDF p;(0), generate N;,, samples Biﬂ from the next
stage PDF p;,(0) by using following procedures. For

k=1,...,N 41> Obtain 0 = Olj with the probability
p = w®)/ Y., w®)) for I = 1,2,...,N;. Then,

draw 8° (the superscript © denotes “candidate”) from
a normal distribution N(67, )’ j), which has mean 67,

and covariance matrix is ), that is defined by Ching
and Chen [19]. Set Biﬂ = 6% and 0, = 0° with
the probability p = p/*'(8)/ p(87); otherwise, set
0" = 6°

r =Yk

(5) Stop, ift;,; =t,, = 1is reached.

4. Computational Framework

For the selected candidate structural model, the uncertain
model parameters are selected as the parameters that need
to be updated through Bayesian inference through drawing
samples of parameters from the posterior PDF of parameters.
While the candidate structural model is established by using
finite element model, the TMCMC for sampling and Bayesian
inference are coded and implemented in the MATLAB
environment. To establish the computational framework,
there is a need for the exchange of data between the finite
element model and the MATLAB algorithm. To facilitate
this data exchanging, the open-source program OpenSees is
used to establish the finite element model for the structural
system. OpenSees is the popular computational tool for
studying dynamic responses of structures under the external
excitations. It provides modular structures that allow users
to develop and modify specific modules with relatively little
dependence on other modules for the finite element analysis
[23]. Even though written in C++, the OpenSees allows users
to use a special Tcl language to define the nodes, boundary
conditions, and finite elements [23]. The Tcl language also
can be used as a powerful script to control the execution and
inputs/outputs of a large number of participating codes and
allows exchanging of the inputs and outputs from OpenSees
program into TMCMC and Bayesian inference algorithm
in the MATLAB environment. In such a manner, the finite
element model of the truss structures can be embedded in
a probabilistic model and statistical simulation for drawing
the samples that can be used to quantify uncertainties
encountered in the damage identification.
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(a) Prototype steel truss structure at the structure laboratory of Jackson

State University

(b) Simulation model in OpenSees

FIGURE 1: Simulation model of three-dimensional prototype steel truss structure.

5. Application Example Using
Simulated Measurements

5.1 Simulated Measurements of a Damaged Truss Structure.
The applicability of the proposed framework is examined and
illustrated for identifying damages of truss structures by using
simulated measurements. The prototype truss structure is a
nine-bay steel truss structure as shown in Figure 1(a). The
truss members are hollow steel tubes with thread rods on
both ends. The truss joints are composed of interchangeable
balls with threaded holes that can be used to connect truss
members as shown in Figure 2(a). Table 1 summarizes the
major material and geometrical properties of members of
the truss structure. The acceleration time histories at selected
points of the truss structure were simulated with a detailed
finite element model of the truss structure and used as
simulated measurements.

The finite element model for generating simulated mea-
surements was established by using OpenSees program.

TABLE 1: Material and geometrical properties of the truss members.

Column-beam

Parameter Bolts Balls

elements

Young’s modulus (N/m?) 2.10E11 2.10E11 2.10E11
Area (m®) 3.05E - 4 — —
Density (Kg/m”®) 7850 7850 7850
Mass (Kg) 2.835 0.05 3.868
The Poisson ratio 0.3 0.3 0.3
Moment of inertia I, (m*) 1.31E-7 — —
Moment of inertia I by (m*) 1.31E-7 — —

All truss elements are assumed to be linearly elastic. This
computational model consisted of 36 nodes and 100 truss
elements. In addition, 200 zero-length elements developed
in OpenSees program were adopted between the joint and
the end of each truss element to simulate the complexity
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(a) Details of prototype joint

(b) Finite element model of truss joints

FIGURE 2: Details of prototype joint and finite element model of truss joints.

TABLE 2: Sensor deployment schemes.

Measurement Measurement nodes
Measurement type . ¥

scheme (locations)

Four-sensor  Vertical acceleration 5, 6,15, and 16

5,6,738,15,16,17,and 18

5,6,78,15,16,17,18, 22,
and 31

Eight-sensor ~ Vertical acceleration

Ten-sensor Vertical acceleration

*Node locations can be referred to nodes in Figure 1(b).

of truss joints. The rotational stiffness of the zero-length
element is assigned with the value of 9 x 10° N-m/rad to
simulate the joints that are not purely hinged or fixed. This
computational model is supported at the four corner bottom
joints. Details of the computational model are shown in
Figure 1(b). The connection model around the truss joints is
shown in Figure 2(b).

The simulated damage of truss structure was repre-
sented by the parameters of the stiffness reduction factor
0 of selected truss members. In this simulation, damage is
assumed to occur in four truss elements with the element
numbers 74, 75, 83, and 84 on the top center of the truss
structure (see Figure 1(b)). To simulate the damage extents,
the stiffness parameters « of the element number 74, 75, 83
and 84 truss elements are, respectively, reduced by 15%, 15%,
15%, and 0%, which leads to &« = {0.85, 0.85, 0.85, 1}T.

To obtain simulated vibration measurements of the dam-
aged truss structure, the excitations of the white noises are
applied equally at the four top joints of the truss structure
in the vertical direction. To examine the impact of quantities
of measurements on the accuracy of damage identification,
three different sensor deployment schemes, that is, four-
sensor measurement, eight-sensor measurement, and ten-
sensor measurement (see Table 2), are simulated. The vertical
acceleration responses at selected nodes with duration of
7.5 seconds were taken as the accelerometer measurements.
With a time interval of 0.015 seconds, the number of total
discrete time history data is N, = 500. To simulate sensor

measurement errors, a white noise with 10% of the noise-to-
sign ratio (in the root mean square) is added to the simulated
measurement data of acceleration.

5.2. Probabilistic Inference of Truss Member Damage under
Uncertainties of Joint Model. The proposed computational
framework and its effectiveness are illustrated and examined
through its application for damage identification of the truss
structure using simulated accelerometer measurements as
described above. For addressing uncertainties associated with
the joint model, five different competing model classes were
considered and compared for their accuracy in identifying
truss member damages. For simplicity in the illustration, the
selected five candidate model classes differ from each other
only in modeling truss joints and are described in Table 3.
Among these five competing model classes, the model class
M3 is the same model as that used to generate the simulated
acceleration measurement as described in the above section.
Thus, this model class M3 represents a model class with no
model uncertainties. The model class M1 and model class M2
are simplified models by using either the hinged or the fixed
joint model. Both the model M4 and the model M5 modeled
the complexity of joint configurations but lack the accuracy
of joint property, either underestimating or overestimating
the joint rotational stiffness of the model M4 and model M5.
Thus, those competing model classes represent uncertainties
associated with the model of the truss structure.

The simulated measurements from different sensor
deployment schemes (see Table 1) were used as input data
for damage identification through proposed probabilistic
computational framework. For each given model class, the
uncertain stiffness reduction factor vector & was assigned to
the potentially damaged structural members to parameterize
the extents and locations of damages in the truss structure.
Besides, there is another uncertain parameter of the standard
deviation o of the model prediction error. Thus, totally
five uncertain parameters are needed to be updated using
avajlable measurements. Based on prior knowledge and
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TABLE 3: Five competing model classes used for damage identification.

Model Model description

M1 Simple spatial truss structure model with fully pinned/hinge joints

M2 Simple spatial truss structure model but with rigid joint connections

M3 The segment connecting truss members and joints steel ball are represented by zero-length elements
in OpenSees. The rotational stiffness of the zero-length elements is set equal to 9 x 10> N-m/rad

M4 The same model as model class 3 but with the rotational stiffness of 4.5 x 10° N-m/rad

M5 'The same model as model class 3 but with the rotational stiffness of 13.5 x 10° N-m/rad

TABLE 4: Identified damages based on model class M3 with three measurement schemes.

Damage index 6, of different truss members and its COV® Standard deviation of

Number of sensor

measurements® a; (COV) o, (COV) a, (COV) a, (COV) prediction error o* (COV)
Member G74 Member G75 Member G83 Member G84

4-sensor 0.8880 0.9202 0.8612 0.9075 47.861

(nodes 5-8) (11.189%) (16.211%) (11.318%) (9.6544%) (1.0072%)

8-sensor 0.8938 0.8263 0.8884 0.9250 56.838

(nodes 5-8,15-18) (10.827%) (10.120%) (9.785%) (8.692%) (1.016%)

10-sensor 0.8370 0.8527 0.8602 0.9507 37.886

(5-8,15-18, 22, and 31) (71801%) (7.3334%) (8.3060%) (5.8878%) (0.4888%)

True value 0.85 0.85 0.85 1.00 —

Note: a: the measure point is referred to as sensor deployment schemes in Table 2.
b: COV is the coefficient of variation of identified damage index and is listed in parenthesis below.

engineering judgment, the prior PDFs of these four unknown
parameters of stiffness reduction factors are assumed to be
independently and uniformly distributed between 0.7 and
1.05, while o is assumed to be uniformly distributed between
0 and 100, which is about one-half of the mean square of the
“measured” acceleration time history.

For each model class with given set of measurements, the
TMCMC algorithm was run with N = 1000 samples for each
intermediate stage (or level). About 14 stages were needed
to obtain the posterior PDF of uncertain parameters from
the prior PDEF. For vibration measurements of a duration of
75 seconds and a time interval of 0.015 seconds, the total
number of discrete time history data is N, = 500. The
computational framework was executed in the desktop PC
computer with Intel(R) Core(TM) 2 Quad CPU@ 2.40 GHz,
2.96 GB of RAM. The computational time for completing the
damage identification for each model class was around 13 to
18 hours.

5.3. Results from Implementation of Bayesian Inference. The
evolution of the TMCMC samples from the prior PDFs to
the posterior PDFs for the model class M3 is illustrated in
histograms of model parameter samples as shown in Figure 3.
It is noted from Figure 3 that the samples from the prior
PDFs are approximately uniformly distributed in the model
parameter space at the first stage (p, = 0). Through applying
Bayesian inference with TMCMC probabilistic simulations,
the samples eventually populate well in the high probability
region of the posterior PDFs which is close to the true model
parameters at the last stage (¢, = 1).

The impact of measurement quantities on the accuracy
of damage identification is revealed from results of damage

identification based on the model class M3 using three
different sensor deployments as specified in Table 2. Those
results are presented in Table 4 with the damage index in
terms of the mean of stiffness factors, «; (i = 1 to 4) for
potential damaged members G74, G75, G83, and G84 and
their corresponding coefficient of variation (COV), which is
defined as the ratio of the standard deviation to the mean of
samples of each stiffness factors o; (i = 1 to 4), as well as the
squared standard deviation o* of prediction errors between
the measured accelerations and the predicted accelerations
and its coeflicient of variation (COV). Those results show
that the 10-sensor measurements can achieve more accurate
results than 4-sensor measurements in damage identification
and indicate that the accuracy as well as confident level
of the identified damages and the associated uncertainties,
which is defined by difference of the mean value of parameter
and true value, as well as their corresponding coefficient
of variation (COV), can be improved as the number of
deployed sensors increases. Therefore, increasing the number
of effectively-deployed sensors can reduce uncertainties of
identified damages.

The impacts of model uncertainties on the damage iden-
tification are revealed through comparing identified damage
obtained from different candidate model classes. Table 5
presents the identified stiffness factor or damage index «;
(i = 1to 4) of potential damaged members obtained from five
different competing model classes with measurements from
two sensor deployment schemes: 4-sensor measurements and
10-sensor measurements. It reveals that for all five different
competing model classes, the accuracy of the identified dam-
age indexes ov; (i = 1 to 4) is improved, and the corresponding
uncertainties of those damage indexes (represented by VOC)
are reduced as the number of deployed sensors increases.
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‘ABLE 5: Identified damages based on five model classes with two measurement schemes.
T Identified d ges based on fi del cl ith h
Using data from 4 measure points Using data from 10 measure points
Model class ~ Damage parameter  Identified value cov log evidence® Identified value cov log evidence”
(actual value) (actual value)
o 0.9168 (0.85) 8.226% 0.8115 (0.85) 5.040%
Ml a, 0.9540 (0.85) 8.327% _2139.6 0.8378 (0.85) 7.626% _4560.6
oy 0.9128 (0.85) 9.896% 0.7924 (0.85) 7.669%
o, 0.8972 (1.0) 9.042% 0.8373 (1.0) 10.032%
« 0.7688 (0.85) 8.4173% 0.8266 (0.85) 5.707%
M2 «, 0.9961 (0.85) 10.508% ~1903.8 0.8433 (0.85) 6.189% _17233
o, 0.8469 (0.85) 5.8919% 0.9071 (0.85) 7.752%
oy 0.9504 (1.0) 6.3131% 0.9555 (1.0) 5.824%
o 0.8880 (0.85) 11.189% 0.8370 (0.85) 7181%
M3 «, 0.9202 (0.85) 16.211% _1760.5 0.8527 (0.85) 6.662% _13615
oy 0.8612 (0.85) 11.318% 0.8602 (0.85) 8.306%
o, 0.9075 (1.0) 9.654% 0.9507 (1.0) 5.887%
o« 0.8959 (0.85) 6.7123% 0.8954 (0.85) 6.662%
M4 «, 0.8313 (0.85) 10.538% _1752.5 0.8729 (0.85) 9.782% _1543.6
oy 0.9340 (0.85) 8.1471% 0.8848 (0.85) 5.845%
o, 0.8833 (1.0) 6.2183% 0.9320 (1.0) 8.620%
o 0.8221(0.85) 9.107% 0.8744 (0.85) 8.540%
M5 «, 0.8452 (0.85) 8.291% _1760.1 0.8779 (0.85) 7.072% _1375.7
oy 0.9061 (0.85) 5.788% 0.8597 (0.85) 7.188%
o, 0.9537 (1.0) 6.637% 0.9333 (1.0) 8.371%

Note: *log evidence here refers to the logarithm of the model evidence as defined in (5).

Table 5 also reveals the model evidence of each competing
model class in terms of logarithm of the model evidence. With
10-sensor measurements, the model class M3 has the largest
model evidence and presents identified damage index more
accurately. This should be apparent because the model M3
was used to generate simulated measurements and has no
uncertainties associated with the model. However, when the
4-sensor measurements are used for damage identification,
the model class M4, which actually is an inaccurate model,
demonstrates the largest model evidence. This could be
caused by inaccurate measurements, which were simulated
by adding measurement noise. It should be noted that the
solutions in Table 5 are based on mean value of statistic sam-
ples of unknown model parameters from one probabilistic
simulation. Solutions from different probabilistic simulations
may be different from each other. However, stability of those
solutions will comply with the law of large numbers (LLN).
According to the law, the average of the results obtained from
a large number of trials should be close to the expected value
and will tend to become closer as more trials are performed.

With 10-sensor measurements, the identified damages by
using the model class M3 have the most accuracy, while the
identified damages by using the model M1 have the poorest
accuracy. This is because the model class M3 does not have
model uncertainties and the model class M1 did not consider
any extent of rigidity of joints by assuming that joints are
simply hinged. While other model classes approximate the
joint rigidity, they give the identified damage index close to
the simulated damages. While the model classes M2, M4, and

M5 have different model uncertainties, the damage indexes
identified from those models are comparable. The accuracy
of identified damages obtained from five candidate model
classes by using 10-sensor measurement scheme coincides
with the actual extent of model uncertainties among five
candidate model classes.

The model uncertainties among five candidate model
classes and the accuracy of identified damage index 0;
(i = 1to 4) from five candidate model classes described
above can be easily evaluated in terms of model evidence
as defined in (5). The logarithm (log) of model evidence
for each competing model class is obtained during TMCMC
simulation process and tabulated in Table 5. With 10-sensor
measurements, the rank of model classes with larger model
evidence is M3, M5, M4, M2, and M1. This rank coincides
with the rank of model classes with less model uncertainties.
This indicates that the model evidence can be effectively
used as an index of model accuracy in terms of model
uncertainties. With data from four-sensor measurement,
however, the rank of log of model evidence based on results
tabulated in Table 5 does not coincide with the rank of model
with less model uncertainties. This deviation of the rank of
model evidence from the rank of model with less model
uncertainties may be attribute to less information (4-sensor
measurements) taken from the system and may also be due to
that the information could be distorted by the measurement
errors, which is simulated by adding white noise of 10% of the
noise-to-sign ratio (in the root mean square).
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TaBLE 6: Competing model classes and their prior and posterior probabilities.
Competing model classes Prior model probability Posterior model probability
Ml M2 M3 M4 M5 Ml M2 M3 M4 M5 M1 M2 M3 M4 M5
0.20 0.20 0.20 0.20 0.20 0.00 0.00 1.00 0.00 0.00
Ml M2 M4 M5 M1 M2 M4 M5 M1 M2 M4 M5
0.25 0.25 0.25 0.25 0.00 0.00 0.00 1.00
Ml M2 M4 M1 M2 M4 M1 M2 M4
0.33 0.33 0.33 0.00 0.00 1.00
Ml M2 M1 M2 M1 M2
0.50 0.50 0.00 1.00
M2 M4 M2 M4 M2 M4
0.5 0.5 0.00 1.00

It also should be noted that even though the aforemen-
tioned model evidence provides effective index for selecting
better models, it is only a relative index for comparison of
competing models based on the same sets of measurement
data. The model evidence may not provide the solid ground
for comparing models under the different measurement con-
ditions. For example, Table 5 shows that the log evidence for
the model M1 based on data with 4 measuring points is larger
than that with 10 measuring points (—2139.6 > —4560.6). This
could not imply that the model M1 has more accuracy with 4
measuring points than that with 10 measuring points. In this
particular case, the higher model evidence of the model M1
with 4 measuring points may be attributed to the less error
due to comparison of the data from a fewer measurement
points than that with 10 measuring points. Thus, the model
evidence can be only used to compare the models with data
from the same measuring points. In general, however, the
competing model with higher model evidence based on data
from more measurement points may have more accuracy in
prediction than the model with lower model evidence based
on data from less measurement points.

With model evidence available from TMCMC, the rel-
ative probability of model can be evaluated based on (6).
The model probability describes the model probability dis-
tribution relatively among the selected competing model
classes. Thus, the competing candidate model classes must
be defined first. The prior model probability among those
selected candidate model classes usually can be assumed
based on the prior knowledge and engineering judgment.
Without any specific information on those selected candidate
model classes, the uniformly distributed model probability
can be taken; that is, for model classes M; (i = 1,2,...,N,,),
the prior model probability of each model class can be
assumed to be equal to 1/N,,. Then, the posterior model
probability can be calculated based on (6).

When five competing model classes M1, M2,..., M5 are
considered as candidate model classes, Table 6 presents the
prior model probability and posterior model probability
based on the data from 10 measuring points. The prior model
probability for each of five model classes can be assumed to be
0.2. After applying Bayes’ theorem, the posterior model prob-
ability of the model class M3 is 1.0, and the others are near to
0.00. This indicates the model class M3 is the best model class

or the model class with the least model uncertainties among
the selected five candidate model classes. This complies with
the simulated scenario, in which the model class M3 is the
model used to produce the simulated measurements. Thus,
the model class M3 theoretically does not have any model
uncertainties when it is used for the damage identification
through model updating.

When four model classes M1, M2, M4, and M5 are
considered without the model class M3, the prior model
probability for each of the four model classes can be assumed
to be 0.25, the posterior model probability of the model class
MS5 is near to 1.00, and the others are close to 0.00. The truss
joints in the model M5 were modeled as the semirigid joint
with the joint rotation stiffness that is larger than its true value
that was used in the model class M3 to generate simulated
measurements. Even though the model class M4 considers
the semi-rigid joint with rotation stiffness that is half of the
true value, its model probability is near to 0.00. This may be
because the model class M5 has much better performance in
modeling the truss structure than the model class M4.

However, when considering three model classes M1, M2,
and M4 with absence of the models M3 and M5, the prior
model probability for each of three model classes is 0.33, the
posterior probability of model class M4 is equal to 1.00, and
the others are close to 0.00 (see Table 6). This is consistent
with the fact that the model class M4 considers the joint as
semi-rigid and has a closer representation of the “true” truss
structure, while the model classes M1 and M2 simplify the
joint model as either hinged or fixed.

If only two model classes M1 and M2 are considered and
compared, the prior model probability for each of two model
classes is 0.50, and the posterior probability of the model class
M2 is 1.0 (see Table 6). This is consistent with the fact that
the model class M2 considers the rigidity of the joint and is
closer to the “true” truss structure represented by the model
class M3 than the model class M1, whose joints were modeled
as hinges. If the candidate model classes only contain model
classes M2 and M4, the model probability of the model class
M4 is 1.00, which indicates that the model class M4 has much
better representation of the “true” truss structure than the
model class M2. This is because the model class M4 considers
the semirigidity of the joint condition while the model class
M2 has full rigid joint model.
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In summary, the above application example reveals that
the model evidence obtained from Bayesian model updating
and the model probability obtained from Bayesian model
class selection can be effectively used to identify the model
which is most close to the “true” truss structure, when
there are uncertainties associated with truss joint model and
multiple competing candidate model classes are considered.
When the true model class is not among the candidate model
classes, the joint model that is more rigid than the “true”
truss structure usually yields lager model probability than
the joint model which is less rigid than the “true” truss
structure. The accuracy of identified damage index may be
poor if limited measurement data are available. However,
it can be improved by increasing sensor channels. For all
cases examined in the application example, the model with
the largest model probability always much outperforms other
candidate model classes. As a result, the model probability
of the most plausible model class is near to 1.0, while the
probability of other model classes is almost 0.0. In such
cases, if Bayesian model averaging is conducted, the model
averaging is actually predominated only by the most plausible
model class.

6. Limitation of This Study and Future
Research Directions

This paper explores the applicability of proposed probabilistic
framework into damage identification of truss structures
under model uncertainties associated with truss joint details
and measurement noises. However, the measurement data
are numerical simulations obtained from structural finite
element model with simulated damages of a truss structure.
The complexity of joint configurations of the “true” truss
structure is only represented by the semirigid rotational
stiffness. The potentially damaged truss members are lim-
ited to four members. The further examination should be
conducted using the measurement data obtained from the
real physical truss structure with more induced damages
occurring not only in truss members but also in truss
joints. To make the probabilistic computational framework
applicable for field implementation, the research needs and
directions in this area should focus on two major aspects:
one is to improve the computational efficiency of framework
for reducing the computational time for implementation of
the Bayesian probabilistic framework with more uncertain
model parameters and the other is to address the impacts of
environmental variations, such as change of temperature or
humidity, on structural dynamic responses and distinguish
them from those caused by structural damages.

7. Summary and Conclusion Remarks

This paper proposes and illustrates a new perspective for
vibration-based damage identification of truss structures
under model uncertainties associated with truss joints based
on Bayesian model updating and model class selection. The
proposed probabilistic framework integrates the advanced
sampling algorithm of transitional Markov chain Monte
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Carlo (TMCMC) with the finite element model created in
OpenSees program to derive the probabilistic characteristics
of associated uncertainties in terms of statistical samples of
parameters of interest, model evidence, and model prob-
abilities of competing model classes. The effectiveness of
the framework is examined by using simulated measure-
ments. The simulation results demonstrate that the model
evidence obtained from TMCMC can effectively be used to
quantify model probabilities of competing candidate model
classes for assessing model uncertainties associated with truss
joints, while statistical samples drawn from TMCMC can
well approximate the updated probabilistic distributions of
uncertain model parameters that represent damage in truss
structures. It is also indicated that the model probability can
provide effective index for describing the relative plausibility
of the model class and selecting the model with fewer
uncertainties among competing candidate model classes. The
proposed framework can be used to identify the probabilistic
characteristics of damage of truss members under the joint
model uncertainties and measurement noise. The accuracy of
identified damage index can be improved by using measure-
ment data from more sensors.

Further examination of the effectiveness of the proposed
framework should be conducted by using measurement
data obtained from real physical truss structure with more
damages occurring not only in truss members but also in
truss joints. To make the probabilistic framework ready
for practical implementation, the future research should
focus on developing efficient algorithms for reducing the
high computational demands of probabilistic simulation of
large structures and distinguishing the impacts of envi-
ronmental variations from those caused by damages on
the measured structural dynamic response. The research
direction in this regard should include (1) adopting efficient
gradient-based sampling techniques that can replace random
walking algorithm for proposing statistical samples; (2)
implementing spectra-based Bayesian inference of damage
identification based on output-only dynamic response under
ambient vibrations; (3) developing effective surrogate model
or reduced model to represent the computationally-expensive
structure model; and (4) developing effective dynamic fea-
tures that are extracted from the sensor measurements
and are sensitive to structural damage and insensitive to
environment variations for damage identification.
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