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This paper provides a new general stress-strain law for concrete confined by steel, fiber reinforced polymer (FRP), or fiber reinforced
cementitious matrix (FRCM), obtained by a suitable modification of the well-known Sargin’s curve for steel confined concrete.The
proposed law is able to reproduce stress-strain curve of any shape, having both hardening or softening behavior, by using a single
closed-form simple algebraic expression with constant coefficients. The coefficients are defined on the basis of the stress and the
tangent modulus of the confined concrete in three characteristic points of the curve, thus being related to physical meaningful
parameters. It will be shown that if the values of the parameters of the law are deduced from experimental tests, the model is able to
accurately reproduce the experimental curve. If they are evaluated on the basis of an analysis-oriented model, the proposed model
provides a handy equivalent design model.

1. Introduction

Upgrading of reinforced concrete structures in seismic areas
is often required due to the need for a higher performance and
safety level or material deterioration. Increment of deforma-
tion capacity of the structure in critical regions, where large
plastic deformations are expected, is one of the most efficient
strategies in this field. For reinforced concrete (RC) elements,
the simple application of fiber reinforced polymer (FRP)
embedded in epoxy resin and/or fiber reinforced cemen-
titious matrix (FRCM) can dramatically enhance strength
and ductility of concrete columns. Jacketing over the entire
length of the element by FRP or FRCM wraps is often
preferred, due to the favourable properties of this retrofitting
methodology: extremely low weight-to-strength ratio, easy
application, minimal change in the behaviour of the struc-
ture, and protection and prevention of corrosion. In order
to evaluate the effects of such a retrofitting strategy on the
seismic behavior of the structure, stress-strain relationship
of confined concrete is needed to evaluate the moment-
curvature response of the elements [1].

When steel transverse reinforcement as a confining sys-
tem is utilized, as soon as the transversal stress on the
concrete reaches the cracking limit, the lateral strain suddenly
grows and the confining steel hoops yield. From this point, a
nearly constant confining pressure is applied to the column
concrete core, and the concrete behaves as an active confined
material [2]. Therefore, the stress-strain relationship of a
steel-confined concrete member is characterized by a steep
increasing branch up to the yielding of the transversal
reinforcements, followed by a softening branch, with a slope
related to the effectiveness of the confinement.

FRP jackets, as opposed to steel hoops, have an elastic
behavior up to failure and exert a monotonic increasing
confining action. Usually, the stiffness and strength of the
confining jacket is sufficient to ensure the absence of soften-
ing behavior (heavily confined concrete), and the stress-strain
curves feature an ascending bilinear shape. Such behavior has
been detected in most of the experimental tests, performed
on specimens of small scale. In these cases, the thickness of a
single or few layers of FRP is able to confer enough stiffness to
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Figure 1: Experimental stress-strain relationships with different confinement levels: (a) Harries and Kharel [8]; (b) Harries and Kharel [8];
(c) Shahawy et al. [7].

the wrapping to avoid a softening behavior. Lam and Teng [3]
have stressed that for large structural elements, such as piers
of bridges, or when fibers with low strength and low elasticity
modulus are utilized (such as glass or aramid fibers), or when
elements with rectangular cross section are considered, the
lateral pressure cannot always provide enough confinement
to ensure a hardening behavior. Elements confined with
FRCM often exhibit a flat or a descending postpeak branch,
due to the progressive cracking of the binding mortar in the
range of large deformation [4–6].

Thus, depending on the confinement level three different
behaviors in the large strain range have been observed
in experimental tests: a decreasing branch with ultimate
strength lower than the strength of the unconfined concrete
(very lightly confined concrete); a decreasing branch with
gently slope, sometimes terminated with a branch with a
positive stiffness recovering, having in both cases the ultimate
strength greater than the strength of the unconfined concrete
(lightly confined concrete); an increasing branch up to failure
(heavily confined concrete).

In Figure 1, the three shapes of the stress-strain curve
obtained in experimental tests [7, 8] are shown.

In practical application, a reliable design of FRP jackets
requires that the constitutive behavior of the FRP-confined
concrete is accurately modeled. Since the last decade, many
constitutive models have been proposed for the behavior of
RC member wrapped with FRP jacket, and many reviews
are given in the literature [9–11]. The models are classified
in several ways: theoretical (or mechanical) models, derived
by the analysis of the mechanism by which the confining
pressure is activated, are diversified from analytical and
semi-empirical models, that reproduce the results of tests by
analytical expressions, with numerical coefficients deduced
by regression analyses [9]; general models, that are able to
reproduce stress-strain curve of any shape, are diversified by
prefixed-shape models, that are able to reproduce only the
simplified shape of the curve (i.e., bilinear models) or are
not able to reproduce both softening and hardening behavior
[12]; Lam and Teng [3] diversified design-oriented models
and analysis-oriented models; in the first category, stress-
strain curves are given in closed-form expressions, while in
the second, the behavior of confined concrete is predicted by
using incremental iterative procedures. Most of the analysis-
oriented constitutive laws are well based on mechanical
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models and are effective in reproducing stress-strain curves of
any shape, but the use of incremental or iterative procedures
make the models suitable for use in computer analysis
only, such as nonlinear finite element analysis (NLFEA). By
contrast, most of the design-oriented models available in the
literature are able to reproduce only the hardening behavior
of the heavily confined concrete [10] or are obtained by two
different analytical relations in the low and high strain field.

This paper provides a new general design-oriented stress-
strain law, obtained by a suitable modification of the well-
known Sargin curve [13] for steel confined concrete. The
proposed law is able to reproduce stress-strain curve of
any shape, having both hardening or softening behavior, by
using a single closed-form simple algebraic expression with
constant coefficients.The coefficients are defined on the basis
of the stress and the tangentmodulus of the confined concrete
in three characteristic points of the curve, thus being related
to physical meaningful parameters. It will be shown that if
the values of the parameters of the model are deduced from
experimental tests, the model is able to accurately reproduce
the experimental curve. If they are evaluated on the basis of an
analysis-oriented model, the proposed law provides a handy
equivalent design model.

2. Models for Concrete Confined by
FRP Jacket

Several reviews on models for FRP-confined concrete are
available in the literature [9–11]. Most of the models have
been formulated by generalization of an existing stress-
strain relationship derived for steel-confined concrete. Three
expressions have been used most frequently: the general
expression proposed by Sargin [13], the four parameter stress-
strain curve proposed by Richard and Abbot [14], and the
Mander et al. model [15], that had been derived on the basis
of Popovics’ relation [16] for confined concrete.

Sargin’s curve, that will be discussed in the next section,
has been modified by Ahmad et al. [17] for modeling the
behavior of concrete spirally confined by fiberglass filament.
The tests conducted by the cited authors showed a descending
branch of the stress-strain curve in the postpeak region, due
to the small stiffness and strength of the confining filament.
Therefore, this model conserves the main limitation of the
Sargin model that is not able to reproduce the characteristic
hardening behavior of the FRP heavily confined concrete.
Other researches had proposed a modified version of Sargin’s
curve for modeling the stress-strain in the low strain range
and different equations in the high strain range: Toutanji
[18] and Saafi et al. [19] used separate equations for axial
stress and strain both of which are functions of the lateral
strain; Miyauchi et al. [20], Lillistone and Jolly [21], and Jin
et al. [22] used a straight line to represent the second portion
of the stress-strain curve. The major drawbacks of these
models are the use of two different analytical expressions for
modeling the entire range of the constitutive curve and the
ineffectiveness for lightly confined element, in modeling the
possible stiffness recovering for high strain values.

In order to obtain a single relation for modeling stress-
strain curve with an almost linear behavior in the high strain

range, Richard and Abbot [14] proposed to describe the
elastic-plastic constitutive law by the following four param-
eter curve:
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where 𝜎 and 𝜀 are the current stress and strain, 𝑓
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is the stress

at the intersection of the linear branch of the curve in the
high strain range with the reference 𝜎 axis, 𝐸

1
and 𝐸

2
are the

initial and the plastic module, respectively, and 𝑛 is a shape
parameter controlling the transition from the two portions
of the curve. The models proposed by Samaan et al. [23],
Xiao and Wu [24], and Moran and Pantelides [25] are the
most popular ones that were derived on the basis of (1). The
formulation of Samaan et al. [23], calibrated with the results
of tests on 30 small diameter concrete-filled FRP tubes, is
not able to represent post-peck decreasing stress-strain curve,
while the formulation of Moran and Pantelides [25] requires
an incremental iterative procedure and thus does not possess
the necessary simplicity for design application.

Several models, able to represent stress-strain curve of
different shapes, have been obtained by using the following
well-known stress-strain relationship for unconfined con-
crete proposed by Popovics [16]:
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is the strength at the corresponding strain 𝜀
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for the

unconfined concrete, 𝑟 is the parameter that controls the non-
linear descending branch, and 𝑥 = 𝜀

𝑐
/𝜀
𝑐0
is the normalized

strain. Equation (2) has been utilized byMander et al. [15] for
modeling the behavior of steel-confined concrete, assuming
that the confinement pressure has the constant value given by
the yielded steel transversal reinforcements, and evaluating
the correspondent peak strength of the confined concrete
by regression of experimental results. Saadatmanesh et al.
[12] were the first that extended to FRP-confined concrete
members the Mander’s model [15], still assuming a constant
value of the confinement pressure given by the FRP jacket at
the rupture condition. Spoelstra and Monti [26] recognized
that, for FRP materials that apply on the concrete core, a
continuously increasing pressure,Mander’s model [15] can be
extended only if the continuous increment of the confining
pressure is considered in the model; this goal has been
obtained by regarding the resulting stress-strain curve as
a curve crossing a family of Mander’s curves, each one
pertaining to the level of confining pressure corresponding
to the current lateral strain. Fam and Rizkalla [27] and
Harries and Kharel [28] also used Mander’s model [15],
evaluating the lateral strain by different tools: the first ones
proposed an equation representing the change of secant
Poisson’s ratio with confining pressure; the latter proposed an
empirical relationship based on the results of experimental
tests, modifying also the exponent in (2) by a curve-fitting
factor. These two models, as well as the Spoelstra and Monti
[27] one, require also an incremental iterative procedure for
evaluation of the stress-strain curve.
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Figure 2: Variation of stress-strain relationship of Sargin [13] with the variation in the 𝐴 and𝐷 parameters.

3. Modified Sargin’s Model for Lightly and
Heavily Confined Concrete

Several attempts of extending Sargin’s model for steel-
confined concrete to FRP-confined concrete were formulated
[17–22], but none of them succeeded in obtaining a general
model, able to represent with a unique analytical expression
in all the deformation range of the behavior of both lightly
or heavily confined concrete. To reach this aim, let us firstly
summarize the procedure by which Sargin’s analytical expres-
sion has been derived and discuss its analytical properties.

3.1. Sargin’s Model. Sargin’s model [13] was formulated for
reproducing the stress-strain curve of concrete confined with
steel reinforcements under axial compression. The curve is
characterized by the attainment of the peak strength at the
yielding of the transversal reinforcement, with consequent
vanishing tangent elasticity modulus. The postpeak region
is characterized by a falling branch, with variable slopes
that depend on the confining pressure furnished by the
transversal steel reinforcements. Sargin proposed to model
such a behavior by the following simple analytical expression:
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concrete at the strain 𝜀
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, and 𝐷 is a parameter which affects

mainly the slope of the softening branch. Equation (3) has
been derived by approximating the results of experimental

tests by the following general expressions:

𝑓
󸀠

𝑐
=

𝑎 + 𝑏𝑥 + 𝑐𝑥
2

1 + 𝑑𝑥 + 𝑒𝑥
2
. (4)

If the boundary conditions

𝑓
󸀠

𝑐
= 0 at 𝜀 = 0, (5a)

𝑑𝑓
󸀠

𝑐

𝑑𝜀

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝜀=0

= 𝐸
𝑐
, (5b)

𝑓
󸀠

𝑐
= 𝑘
3
𝑓
󸀠

𝑐0
at 𝜀 = 𝜀

𝑐0
, (6a)

𝑑𝑓
󸀠

𝑐

𝑑𝜀

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝜀=𝜀
𝑐0

= 0 (6b)

are substituted, (4) is reduced to (3). While 𝑘
3
is a scaling

parameter that reflects the increment of the maximum
strength due to the confining reinforcement (often set equal
to the unity in Sargin’s papers), the variation of the parameters
𝐴 and 𝐷 generates different shapes of the stress-strain
relationship. Higher values of 𝐴 give greater nonlinearity to
the constitutive law in the pre-peak region; higher values of𝐷
represent more ductile behavior up to collapse. La Mendola
and Papia [29] stressed that in order to make (3) physically
admissible, the curve must not change its concavity in the
range 0 ≤ 𝑥 ≤ 1; to this aim, the parameters 𝐴 and 𝐷 must
be defined in the ranges 1 − 𝐴 ≤ 𝐷 ≤ (𝐴 − 1)

2. If 𝐴 = 1 and
𝐷 = 0 are set, (3) represent Hooke’s law 𝑓
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if 𝐴 = 2 and 𝐷 = 0 (3) are reduced to Hognestad’s parabola
for the unconfined concrete, while if𝐷 leads to∞, the rigid-
plastic behavior 𝑓󸀠
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3
is obtained. Intermediate values

of 𝐷 allow one to reproduce the behavior of elements with
variable amount of confining reinforcement. In Figure 2,
the curves obtained varying the parameters 𝐴 and 𝐷 are
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shown. In details,𝐷 = (𝐴 − 1)
2 and𝐴 = 4 have been assumed

in Figure 2(a) and Figure 2(b), respectively. All curves show
the ability of Sargin model to reproduce several softening
shapes. In relation to the values of the parameters 𝐴 and 𝐷,
(3) can be affected by singularities for one or two distinct
values of 𝑥; it can be demonstrated that this occurrence is not
physically meaningful because it may occur only for 𝑥 < 0,
or when 𝐷 < 1 for an 𝑥 value greater than the strain value
at which the curve intersects the strain reference axis. Let us
stress that, due to the boundary condition (6b) imposed for
reducing (4) to (3), Sargin’s model is not able to represent the
hardening behavior of elements heavily confined with FRP
jackets.

3.2. Modified Sargin’s Model. To the aim of obtaining an ana-
lytical expression able to represent the behavior of concrete
with both hardening and softening behavior, the order of the
numerator of (4) is increased up to the third order, obtaining
the following general expression for the normalized stress-
strain relationship:
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The coefficients in (7) are now derived, as done by
Sargin, by imposing the boundary condition; to this aim,
three characteristic points of the stress-strain relationship are
considered, namely, the normalized strain axis origin 𝑥 = 0,
the normalized strain value at which the unconfined concrete
reaches its peak strength 𝑥 = 1, and the collapse normalized
strain of the confined concrete 𝑥 = 𝑥

𝑢
. Let us emphasize that

the stress and the tangent elasticity modulus at these strain
characteristic values are able to characterize the behavior of
the confined concrete in all the strain range.

When the element is not loaded, that is, 𝑥 = 0, the
influence of the confining FRP jacket on the concrete stiffness
is negligible, and the elasticity modulus of the confined and
unconfined concrete are almost coincident.The experimental
evidence shows also that the confining FRP or FRCM jacket
is not able to significantly affect the concrete behavior; before
that the transversal deformation has produced the cracking of
the concrete [23], that is, when 𝑥 < 1. At the end of this first
branch, the FRP or FRCM jacket-confining action became
effective, and the stress-strain curve slope is determined by
the transversal concrete to confining jacket relative stiffness;
therefore the tangent elasticity modulus for 𝑥 = 1 is related
to the effective stiffness of the confining system. Lastly,
stress, strain, and elasticity modulus at the ultimate condition
provide the necessary information on the strength and strain
capacity of the confined members at the collapse, taking into
account the mechanism that activates the failure.

Thus, the six coefficients appearing in (7) are determined
by imposing the boundary conditions at the previously men-
tioned three characteristic points by means of the following
procedure:

(i) firstly, the four coefficients 𝑎, 𝑐, 𝑑, and 𝑔 are evaluated,
as functions of the other two parameters 𝑏 and 𝑓, by

imposing following conditions:
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where 𝑘
1
and 𝑘
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are the normalized strength of the

confined concrete at the strain 𝜀
𝑐0
and at the failure,

and 𝐴
0
is the tangent elasticity modulus at the strain

𝜀
𝑐0
of the confined concrete, normalized with respect

to the correspondent secant elasticity modulus of the
unconfined concrete 𝐸sec0. Thus, 𝑎 = 0, and the three
following expressions of the coefficients 𝑐 = 𝑐(𝑏, 𝑓),
𝑑 = 𝑑(𝑏, 𝑓), and 𝑔 = 𝑔(𝑏, 𝑓) are obtained:
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𝑢
+ 𝑓𝑘
𝑢
𝑥
𝑢
− 𝑥
𝑢
𝑏(𝑥
𝑢
− 1)
2

𝑥
2

𝑢
[(𝑥
𝑢
− 1)𝐴

0
+ 𝑘
0
− 𝑘
𝑢
]

+

−𝑥
2

𝑢
[𝐴
0
(𝑓 + 1) (𝑥

𝑢
− 1) + 𝑘

0
(3 + 2𝑓 − 2𝑥

𝑢
− 𝑓𝑥
𝑢
)]

𝑥
2

𝑢
[(𝑥
𝑢
− 1)𝐴

0
+ 𝑘
0
− 𝑘
𝑢
]

,

(11)

(ii) then, the expressions of the two 𝑏 and 𝑓 coeffi-
cients are obtained by imposing that the stress-strain
curve has prefixed values of the normalized tangent
elasticity modulus 𝐴 and 𝐴

𝑢
at the axis origin and

the failure condition, respectively. Thus, (9) through
(11) are substituted in (7), and the following boundary
conditions are imposed:

𝑑𝑓
󸀠

𝑐

𝑑𝜀

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝜀=0

= 𝐴𝐸sec0,
𝑑𝑓
󸀠

𝑐

𝑑𝜀

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝜀=𝜀
𝑐𝑢

= 𝐴
𝑢
𝐸sec0, (12)
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Figure 3: Accuracy of modified Sargin’s model (SAm): eee experimental curve; — SAmmodel.

and the following explicit expressions of the 𝑏 and 𝑓

coefficients are obtained:

𝑏 = 𝐴, (13)

𝑓 =

{
𝐴𝑥
𝑢[𝑘𝑢+𝑥

2

𝑢(𝐴𝑢−2𝑥𝑢−𝑘𝑢+𝐴𝑢𝑥𝑢)]

−2𝑘
2

𝑢
−2𝑘
2

0
𝑥
3

𝑢

}

𝑥
2

𝑢
{

𝑘
2

𝑢
+𝑘
2

0
𝑥
2

𝑢
+𝐴
0(𝑥𝑢−1)

2

(𝑘𝑢−𝐴𝑢𝑥𝑢)

−𝑘
0
[𝑘
𝑢(𝑥
2

𝑢
+1)−𝐴𝑢𝑥𝑢(𝑥𝑢−1)

2

]
}

+

𝐴
0
(𝑥
𝑢
− 1)
2

{
𝑥
𝑢[𝐴+𝐴𝑢(1+𝑥𝑢)]

−𝑘
𝑢(𝑥𝑢+2)

}

𝑥
2

𝑢
{

𝑘
2

𝑢
+𝑘
2

0
𝑥
2

𝑢
+𝐴
0(𝑥𝑢−1)

2

(𝑘𝑢−𝐴𝑢𝑥𝑢)

−𝑘
0
[𝑘
𝑢(𝑥
2

𝑢
+1)−𝐴𝑢𝑥𝑢(𝑥𝑢−1)

2

]
}

+

𝑘
0
{
𝑥
𝑢(𝑥𝑢−1)[𝐴(1+𝑥𝑢)+𝐴𝑢(1+𝑥𝑢−2𝑥

2

𝑢)]

+2𝑘
𝑢(1+𝑥

3

𝑢)
}

𝑥
2

𝑢
{

𝑘
2

𝑢
+𝑘
2

0
𝑥
2

𝑢
+𝐴
0(𝑥𝑢−1)

2

(𝑘𝑢−𝐴𝑢𝑥𝑢)

−𝑘
0
[𝑘
𝑢(𝑥
2

𝑢
+1)−𝐴𝑢𝑥𝑢(𝑥𝑢−1)

2

]
}

.

(14)

Once the values of the 𝑏 and 𝑓 coefficients obtained
by (13) and (14) are introduced in (9) through (11), all the
six coefficients of the modified Sargin (SAm) stress-strain
relationship are obtained in explicit form, as functions of
the stress and tangent elasticity modulus values at the three
characteristic strain values 𝜀 = 0, 𝜀 = 𝜀

0
, and 𝜀 = 𝜀

𝑢
.

In most of the cases, the curves obtained by introducing
the six values of the coefficients obtained by (9)–(11), (13)
and (14) in (7) are able to represent the behavior of the
FRP- or FRCM-confined concrete with large accuracy, as it
is shown in Figures 3(a1) and 3(a2), where the normalized
stress-strain and the normalized tangent elasticity modulus
versus axial strain curves obtained by an experimental test
[8] are compared with those provided by the modified Sargin
model, where the parameter values 𝑘

1
, 𝑘
𝑢
, 𝐴, 𝐴

0
, 𝐴
𝑢
, 𝑥
𝑢
are

evaluated by means of the results of the test itself. Unluckily,
two circumstances can make the coefficient values obtained
by (13) and (14) unsuitable for uses in the modified Sargin
model: (a) the stress-strain relationship is affected by one or
two singularities for 𝑥 values that are comprised in the range
[0, 𝑥
𝑢
]; (b) the correspondent curve of the tangent elasticity

modulus exhibits a maximum in the range 0 < 𝑥 < 1,
that is, the stress-strain curve changes its concavity in the
same range. It can be demonstrated that the first circumstance
occurs if one of the following conditions hold:

𝑓
2
> 4𝑔 ∉ [0 ≤ 𝑔 ≤

1

𝑥
2

𝑢

∩ −

1

𝑥
𝑢

− 𝑔𝑥
𝑢
≤ 𝑓 ≤ −2𝑔𝑥

𝑢
]

for 𝑔 ≥ 0,

−

1

𝑥
𝑢

− 𝑔𝑥
𝑢
≤ 𝑓 ≤ −2𝑔𝑥

𝑢
for 𝑔 < 0.

(15)
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Moreover, the stress-strain curve has to reproduces the
loss of stiffness of the confined concrete in the first branch up
to the strain 𝜀

𝑐0
, that is, the curve cannot change its concavity

in the range 0 < 𝑥 < 1. Due to the condition imposed at the
boundary of this interval, this circumstance is not verified if
the second derivative at the origin is positive.

Therefore, the values of the three 𝑏, 𝑐, and 𝑓 coefficients
derived by (11), (13), and (14) are also not suitable for the
stress-strain law representation if they satisfy the following
condition:

𝑑
2
𝑓
󸀠

𝑐

𝑑𝜀
2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝜀=0

> 0 󳨐⇒ 𝑏 − 𝑐/𝑓 > 0. (16)

Thus, when at least one of (15), or (16) holds, a different
procedure for determination of the coefficients 𝑏 and 𝑓 has
to be considered, that solves the two previously mentioned
drawbacks, by imposing that the two singularities of (7) are
outside the range [0, 𝑥

𝑢
], and the second derivative at the axis

origin is not positive. To these aims, any stress-strain curve
can be approximated by assuming that the second derivative
vanishes at the axis origin, that is, (16) is satisfied as equalities.

Consider

𝑑
2
𝑓
󸀠

𝑐

𝑑𝜀
2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝜀=0

= 0 󳨐⇒ 𝑏 (𝑓) =

𝐴
0
𝑘
𝑢(𝑥𝑢−1)(1+𝑥𝑢+𝑓𝑥𝑢)

+𝑘
0[𝑘0𝑥

3

𝑢(2+𝑓)+𝑘𝑢(1+𝑓𝑥𝑢−3𝑥
2

𝑢
−2𝑓𝑥
2

𝑢)]

𝑥
𝑢
[

(𝑥𝑢−1)(1+𝑥𝑢+𝑓𝑥𝑢)𝐴0

+𝑘
1(1+𝑥𝑢+𝑓𝑥

2

𝑢)−𝑘𝑢𝑥𝑢(𝑓+2)
]

.

(17)

The equation system (9), (10), (11), and (17) allows one
to express the five coefficients 𝑎 = 0, 𝑏, 𝑐, 𝑑, and 𝑔 as
functions of the characteristic stress-strain law parameters
𝑘
1
, 𝑘
𝑢
, 𝑥
𝑢
, and 𝐴

0
, and the sixth coefficient 𝑓, but none

of the equations employed for their derivation imposes any
condition on the derivatives at the axis origin and at the
failure and on the deformation values for which (7) is affected
by singularities. Therefore, the sixth condition is obtained
by using the least square method in order to minimize the
error in the representation of the tangent elasticity modulus
at the axis origin and at the failure, with the condition that the
singularities in (7) lie outside the stress interval [0, 𝑥

𝑢
]. Thus,

the mean square error function is now defined as follows:

𝑆
2
(𝑓) = (

(1/𝐸sec0) (𝑑𝑓
󸀠

𝑐
/𝑑𝜀)

󵄨
󵄨
󵄨
󵄨
󵄨𝑥=0

− 𝐴

𝐴

)

2

+ (

(1/𝐸sec0) (𝑑𝑓
󸀠

𝑐
/𝑑𝜀)

󵄨
󵄨
󵄨
󵄨
󵄨𝜀=𝜀
𝑢

− 𝐴
𝑢

𝐴
𝑢

)

2

,

(18)

and the 𝑓 value is determined by minimizing (18), satisfying
also the following condition ensuring that any singularity lies
in the interval [0, 𝑥

𝑢
]:

𝑓 > −(

1

𝑥
𝑢

+ 𝑔 (𝑓) 𝑥
𝑢
) = −(1 +

1

𝑥
𝑢

) . (19)

An explicit approximate solution for the least square
method satisfying (19) can be obtained if the derivatives of (7)

appearing in (18) are transformed in a linear form by a series
expansion about the value 𝑓

𝐴
for which (7) is affected by the

target value 𝐴 of the elasticity modulus at the origin, and the
solution is searched in the range 𝑓 > 𝑓

𝐴
. It can be easily

demonstrated that the latter condition implies that (19) is also
satisfied and lead to the following approximate solution:

𝑓
𝑙
= 𝑓
𝐴
−

𝑚
𝑢
𝐴
2
(ℎ
𝑢
− 𝐴
𝑢
)

𝑚
2
𝐴
2

𝑢
+ 𝑚
2

𝑢
𝐴
2
, (20)

where

𝑓
𝐴
=

𝑘
1(𝐴𝑥𝑢+3𝑘𝑢𝑥

2

𝑢
+𝐴𝑥
3

𝑢
−𝑘
𝑢)

−𝐴
0(𝑥
2

𝑢
−1)(𝑘𝑢−𝐴𝑥𝑢)−2𝑥

2

𝑢(𝐴𝑘𝑢+𝑘
2

0
𝑥
𝑢)

𝑥
𝑢
[
𝐴𝑘
𝑢
𝑥
𝑢
+𝑘
2

0
𝑥
2

𝑢
+𝐴
0(𝑥𝑢−1)(𝑘𝑢−𝐴𝑥𝑢)

+𝑘
0(𝑘𝑢−𝐴𝑥𝑢−2𝑘𝑢𝑥𝑢)

]

, (21a)

𝑚 = −

[
𝐴𝑘
𝑢
𝑥
𝑢
+𝑘
2

0
𝑥
2

𝑢
+𝐴
0(𝑥𝑢−1)(𝑘𝑢−𝐴𝑥𝑢)

+𝑘
0(𝑘𝑢−𝐴𝑥𝑢−2𝑘𝑢𝑥𝑢)

]

2

(𝐴
0
− 𝑘
0
) (𝑥
𝑢
− 1)
2

(𝑘
𝑢
− 𝑘
0
𝑥
𝑢
)
2
,

(21b)

𝑚
𝑢
= −

2[
𝐴𝑘
𝑢
𝑥
𝑢
+𝑘
2

0
𝑥
2

𝑢
+𝐴
0(𝑥𝑢−1)(𝑘𝑢−𝐴𝑥𝑢)

+𝑘
0(𝑘𝑢−𝐴𝑥𝑢−2𝑘𝑢𝑥𝑢)

]

3

(𝐴 − 𝑘
0
)
3

𝑥
3

𝑢
(𝐴
0
− 𝑘
0
) (𝑥
𝑢
− 1)
3

(𝑘
𝑢
− 𝑘
0
𝑥
𝑢
)
2
,

(21c)

ℎ
𝑢
=

−𝐴
0(𝑥𝑢−1)(𝑘𝑢−𝐴𝑥𝑢)

2

+𝑘
2

0
𝑥
2

𝑢
[
𝑘
𝑢(𝑥𝑢−3)+

2𝐴𝑥
𝑢

]

+𝐴𝑘
𝑢
𝑥
𝑢
[
𝐴𝑥
𝑢(𝑥𝑢+1)−

2𝑘
𝑢

]+𝑘
0
[
𝑘
2

𝑢(3𝑥𝑢−1)−𝐴
2

𝑥
2

𝑢(𝑥𝑢+1)

−2𝐴𝑘
𝑢
𝑥
𝑢(𝑥
2

𝑢
−1)

]

(𝐴 − 𝑘
0
)
2

(𝑥
𝑢
− 1) 𝑥

3

𝑢

.

(21d)

In Figures 3(b1) and 3(b2), it is shown a case [7] in which
the representation of the stress-strain curve by SAm with
coefficients evaluated by means of (9) through (11), (13) and
(14) fails because a singularity is founded in the range [0, 𝑥

𝑢
].

Figures 3(c1) and 3(c2), where the coefficients evaluated by
(9) through (11), (17) and (20) are employed, shows that
the approximate solution also leading to reproduce both the
stress-strain curve and the tangent elasticity modulus with
great accuracy, with the only exception of the elastic modulus
at very low strain values.

4. Applications

The effectiveness of the SAm model of transforming anal-
ysis design models, that require cumbersome incremental
procedure, in handy equivalent design models is proved by
comparison of the stress-strain curve carried out by the three
models mentioned in Section 2: Spoelstra and Monti (SM)
[26], Moran and Pantelides (MP) [25], and Samaan et al.
(S) [23]. In order, to define different levels of confinement,
the following notations are introduced for FRP- or FRCM-
confined columns: 𝑡 = thickness of the reinforcing fiber, 𝐷
diameter of confined concrete core; 𝐸

𝑓
the elastic modulus

of the fiber, 𝜌
𝑓

= 4𝑡/𝐷; and 𝐸
𝑙
= 𝜌
𝑓
𝐸
𝑓
/2, 𝐾
𝑙
= 𝐸
𝑙
/𝑓
󸀠

𝑐0

the so-called “confinementmodulus” of the FRP jacket.Three
different values of the “confinement”modulus are considered,
namely, 𝐾

𝑙
= 𝐸
𝑙
/𝑓
󸀠

𝑐0
= 1.25, 5, 10 and 15. The SAm model

coefficients are evaluated on the basis of the parameters
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Figure 4: Stress-strain relationship: comparison of analytical results of Spoelstra and Monti [26] (a), Moran and Pantelides [25] (b), and
Samaan et al. [23] (c) models with results of SAm.

provided by the same model that have to be approximated.
The results shown in Figure 4 prove that the SAm model is
able to reproduce the stress-strain curve for both very lightly
confined (𝐾

𝑙
= 1.25), lightly confined (𝐾

𝑙
= 5), and heavily

confined (𝐾
𝑙
= 15) members.

Now it will be shown that, if the values of the parameters
𝐴, 𝑘
0
,𝐴
0
, 𝑥
𝑢
, 𝑘
𝑢
and𝐴

𝑢
are deduced from experimental tests,

the model is able to accurately reproduce any experimental
curve.

In Figure 5(a) through Figure 5(f), the stress-strain
law deduced by experimental test performed by Harries
and Kharel (HK) [8] for specimens having FRP jacket and
concrete characteristics shown in Table 1 are compared with
those obtained by the proposed model, while in Figure 6(a)
through Figure 6(c), the same comparison is shown for the
results of test performed by Shahawy et al. (SH) [7]. In
Table 1, each specimen is identified by an acronym, in which
the first two letters identify the author of experimental test
(HK for a specimen tested by Harries and Kharel [8], SH
for a specimen tested by Shahawy et al. [7], and the third
identifies the type of the fiber (C for carbon fiber, G for
glass fiber)). The geometric and mechanic parameters of

the reinforcing fiber and the concrete varies in wide
ranges, such as the unconfined concrete strength (19.4,
33.5, 49.0MPa) or the fiber modulus (82700MPa, 15700
N/[mm∗ply]) and the thickness of each fiber (0.50 ÷

3.00mm). Therefore, the stress-strain curves pertain to both
lightly confined and heavily confined members. The curves
show that, when the coefficients of the SAm are evaluated on
the basis of the experimental tests, themodel reproduces with
very good accuracy the results of the experimental curve,
even if the curve exhibits a decreasing branch at the high
strain values (see Figures 5(a), 5(c), and 5(d)).

In order to evaluate numerically the effectiveness of the
models in reproducing the experimental stress-strain curve,
two performance indexes are defined as follows:

𝑃
𝑖
=

∫

𝜀
𝑐𝑢

𝜀
𝑐0

[sign (𝑓󸀠
𝑐
− 𝑓
󸀠

𝑐,exp)]
𝑖−1

(𝑓
󸀠

𝑐
− 𝑓
󸀠

𝑐,exp) 𝑑𝜀

∫

𝜀
𝑐𝑢

𝜀
𝑐0

𝑓
󸀠

𝑐,exp 𝑑𝜀

× 100 (𝑖 = 1, 2) .

(22)
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Figure 5: Stress-strain relationship: comparison of analytical results of Sargin’s modified models (SAm) with experimental results.

In (22), 𝑓
󸀠

𝑐
is the stress value provided by the model,

while 𝑓
󸀠

𝑐,exp and 𝜀
𝑐𝑢,exp are the stress and the ultimate

strain of the experimental tests, and sign() is the function
“signum.” Therefore, 𝑃

1
measures the normalized integral of

the error of the model in predicting the experimental stress-
strain curve, while 𝑃

2
measures the normalized integral of

the absolute value of the error of the model in predicting the
experimental stress-strain curve. In Table 1, for each one of
the 15 experimental tests considered, the values of indexes
evaluated by the proposed SAm are shown, all the indexes for
each specimen are close to zero, proving the effectiveness of
the proposed model.
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Table 1: Mechanical and geometrical characteristics of specimens considered in Figures 5 and 6 and evaluation of error 𝑃
𝑖
(%) of SAm in

prediction of curve 𝑓󸀠
𝑐
− 𝜀
𝑐
with experimental data.

Code 𝑓
𝑓

𝐸
𝑓 plies 𝐾

𝑙
𝑃
1
(%) 𝑃

2
(%)

N/mm ∗ ply kN/mm ∗ ply
HK-C1 174 15.7 1 3.2 −0.3 0.3

HK-C2 174 15.7 2 6.4 1.7 1.7

HK-G4 75 4.9 2 2.0 0.0 0.0

HK-G5 75 4.9 3 3.0 −0.2 0.2

HK-G6 75 4.9 6 6.0 0.5 0.5

HK-G7 75 4.9 9 9.0 −0.7 0.8

HK-G8 75 4.9 12 12.0 −1.1 1.1

Code 𝑓
𝑓

𝐸
𝑓

𝑡
𝑓

𝐾
𝑙

𝑃
1
(%) 𝑃

2
(%)

MPa GPa mm
SH-C4 2275 82.7 2.5 69.3 −1.8 1.8
SH-C5 2275 82.7 1.0 11.1 2.1 2.1
SH-C6 2275 82.7 1.5 16.6 2.7 2.7
Mean −0.6 2.1
𝐷 = 152mm for HK,𝐷 = 152.5mm for SH. 𝑓󸀠

𝑐0
= 32.1MPa for HK, 𝑓󸀠

𝑐0
= 19.4MPa for SH-C1/C4, and 𝑓󸀠

𝑐0
= 49.0MPa for SH-C5/C6.
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Figure 6: Stress-strain relationship: comparison of analytical results of Sargin’s modified models (SAm) with experimental results.
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5. Conclusions

By modification of the well-know Sargin’s stress-strain rela-
tionship, a new law for representation of the constitutive
behavior of FRP-confined members by a simple direct ana-
lytical expression has been proposed. The analytical model
is able to reproduce the behavior of both very lightly con-
fined members with softening behavior and heavily confined
memberswith hardening behaviorwith accuracy greater than
those of the most popular iterative analysis-oriented models
available in literature. The numerical coefficients that char-
acterize the model have been expressed by direct analytical
relation as a function of the stress and the tangent elasticity
modulus in three characteristic point of the stress-strain
curves. Therefore, they can be easily evaluated either on the
basis of experimental tests or by an analysis-oriented model
that can now be represented by the proposed relationship, in
order to obtain a unique general reliable law for every level of
confinement.
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