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Saturated total dissolved gas (TDG) is recently considered as a serious issue in the environmental engineering field since it stands
behind the reasons for increasing the mortality rates of fish and aquatic organisms. The accurate and more reliable prediction of
TDG has a very significant role in preserving the diversity of aquatic organisms and reducing the phenomenon of fish deaths.
Herein, two machine learning approaches called support vector regression (SVR) and extreme learning machine (ELM) have been
applied to predict the saturated TDG% at USGS 14150000 and USGS 14181500 stations which are located in the USA. For the
USGS 14150000 station, the recorded samples from 13 October 2016 to 14 March 2019 (75%) were used for training set, and the
rest from 15 March 2019 to 13 October 2019 (25%) were used for testing requirements. Similarly, for USGS 14181500 station, the
hourly data samples which covered the period from 9 June 2017 till 11 March 2019 were used for calibrating the models and from
12 March 2019 until 9 October 2019 were used for testing the predictive models. Eight input combinations based on different
parameters have been established as well as nine statistical performance measures have been used for evaluating the accuracy of
adopted models, for instance, not limited, correlation of determination (R?), mean absolute relative error (MAE), and uncertainty
at 95% (Uy;). The obtained results of the study for both stations revealed that the ELM managed efficiently to estimate the TDG in
comparison to SVR technique. For USGS 14181500 station, the statistical measures for ELM (SVR) were, respectively, reported as
R? 0f 0.986 (0.986), MAE of 0.316 (0.441), and U, of 3.592 (3.869). Lastly, for USGS 14181500 station, the statistical measures for
ELM (SVR) were, respectively, reported as R* of 0.991 (0.991), MAE of 0.338 (0.396), and Uy of 0.832 (0.837). In addition, ELM’s
training process computational time is stated to be much shorter than that of SVM. The results also showed that the temperature
parameter was the most significant variable that influenced TDG relative to the other parameters. Overall, the proposed model
(ELM) proved to be an appropriate and efficient computer-assisted technology for saturated TDG modeling that will contribute to
the basic knowledge of environmental considerations.

1. Introduction

Water encounters substantial volumes of air and bubbles
during the flood discharge and is transferred down the
watershed to the deep-water basin. Since the pressure in the
quenching basin not only increases with increasing depth of
water but also with kinetic pressure, and subsequently, the

air and bubbles are under much greater pressure than the
surface atmosphere. Consequently, a significant amount of
air dissolves in the water and the total dissolved gas (TDG) is
supersaturated [1]. The average dissolved gas content in
water is often controlled by two parameters, the water
temperature and the barometric pressure. Many essential
gases, such as oxygen, nitrogen, argon, and carbon dioxide,
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are known to contribute significantly to TDG formation [2].
The formation of the TDG is highly complex and depends on
several variables in which it may be triggered by a mech-
anism affected by human or natural conditions. Subse-
quently, it can be divided into the following: first, physical
and chemical processes where the air bubbles are produced
and transferred from the dam to the spillway; and second,
mixing and interaction with the involvement of mass
transfer equations between water and bubbles [3].

Saturated TDG is recently considered as a serious issue in
the environmental engineering field since it could cause in-
creased mortality rates in fish and aquatic organisms [4]. The
phenomena take place when fish consumes water with a high
level of saturated TDG, and the dissolved gases flow into the
bloodstream and balance with the external pressure of water.
The problem begins to be drastically worse once fish sink in
depths of the river; at this moment, the difference in pressures
can be clearly observed resulting in bubble construction in the
tissues of fish and bloodstream which lead to gas bubble
trauma. In addition, the potential harmful environmental
impacts of saturated TDG% beside its effects on fish and other
marine species, the concentration of TDG% level in water may
have an impact on the water quality and dissolved oxygen.

Based on the forgoing, prediction of TDG is vital due to
its effects on water quality, sediments, hydrology, and
economy [5-7]. Early attempts to model TDGs downstream
are based on laboratory, field, and data fitting studies [8].
However, one downside of this technique is that the derived
TDG analytical results are limited to the geometry and range
of measures required to attain the model parameters. Weber
et al., who solved tailrace hydrodynamics using Reynolds-
averaged Navier-Stokes (RANS), made the first attempt to
use a computational fluid mechanics (CFD) model to both
forecast the hydrodynamics and TDG [9]. A scalar transport
equation was used for the TDG with the gas volume fraction
and source-term function as model parameters. For eval-
uating the two model parameters, the TDG field data
measured in the river of Columbia were used. Feng et al.
recently employed an averaged 2D model in a deep reservoir
to simulate TDG. They used a scalar transport equation to
model TDG with a bubble dissolution and mass transfer in
the free surface as source term. The dissolution of the bubble
was calculated using an interfacial area of the bubble dis-
sipation coeflicient [10]. Polydisperse dual phase flows and
unstable 2-phase 3D flow approaches have been used by
Politano et al. to develop TDG models 3, 11]. Later, in order
to estimate the concentration of TDG, Fu et al. developed a
two-phase 3D flow model, using feedback on the velocity,
pressure, and volume of air involved in the supersaturation
of gas under uncontrolled release conditions for the Gez-
houba project in China [12]. Several algorithms have
therefore been developed using various numerical, fluid
mechanical, and hydrodynamic equations, which have
shown that the TDG mechanism is precisely simulated
[2, 13-18]. Previous research has typically focused on the
application of data-driven approaches to solve a variety of
environmental challenges. However, less attention is at-
tributed to the modeling of TDG utilizing data-driven
models [19].
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Recently, the revolution of Artificial Intelligence (AI) has
conquered almost all fields of science and engineering [20]
including environmental applications [21-27]. Lately, sev-
eral environmental problems have been solved using robust
Al modeling approaches including Extreme Learning Ma-
chine (ELM) and Support Vector Machine (SVM) [28-30].
The ELM modeling approach is considered one of the most
beneficial Al tools due to its ability to avoid problems such as
overfitting, which can be seen in other forms of iterative
learning algorithms, in addition to the slow learning and
local minimization issues. Compared to standard neural
network learning algorithms, the ELM model can complete
the training of a given dataset reasonably quickly. The ELM
model requires only one iteration of the learning process.
The ELM model can also be used for kernel SLFNs such as
Radial Basis Functions (RBF) in which the kernel function of
the ELM model is a nonlinear, integrable function [24]. On
the contrary, the SVM, a mathematical learning tool that can
be used to solve classification and regression issues, is also
considered as a highly robust AI system due to its gener-
alization capability, highly scalable, global optimization, and
statistical analysis skill. Therefore, a fast, precise, and
powerful model can describe the SVM model. Due to the
ability of the kernel model to gain expert knowledge, this
approach can better describe complex nonlinear relation-
ships than other models [31, 32]. SVM is often used as a
kernel model and selection is a priority for maximum ef-
ficiency. The kernel can be formed using space and nonlinear
boundaries. The radial basis function (RBF) is extensively
used along with others, such as linear, polynomial, or sig-
moid, due to its small or no error advantage in testing and
validation [33].

As regards, using Al modeling techniques to predict
TDG, Heddam utilized generalized regression neural net-
work (GRNN) for predicting TDG concentration based on
several variables including, temperature of water, barometric
pressure, dam spill, sensor depth, and average flow. The
GRNN model outperforms the multiple linear regression
(MLR) model [2]. Later, the same researcher used Adaptive
Neuro-Fuzzy Inference System (ANFIS) and Dynamic
Evolving Neural-Fuzzy Inference System (DENFIS) to
predict the DTG based on data generated by the dam from
spell (SED) [19]. Keshtegar et al. developed four models to
predict TDG including high-order response surface meth-
odology (HRSM), least squares support vector machine
(LSSVM), M5 model tree (Mb5Tree), and multivariate
adaptive regression splines (MARS). The data used in their
study was collected from four United States Geological
Survey (SGS) stations at Columbia River. It was reported
that the HRSM with five variables demonstrated the best
performance with regard to predicting TDG among the
other models used in their study, where the HRSM recorded
0.911 coefficient of correlation [34].

Establishing modern and robust AI models is very ef-
fective in developing early warning systems [21, 32, 35] that
can track saturated TDG% anomalies. Predicting one hour
ahead of saturated TDG% may give more information about
TDG% concentrations in water to the decision maker. This
information is very important and may help to maintain the
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safer level of TDG% concentration by switching off the
hydropower station for several minutes. To the best of our
knowledge, up to date, the studies involving Al technologies
in predicting TDG are still limited. Based on the foregoing,
this study attempts to develop two robust modeling ap-
proaches to predict the DTG utilizing data derived from
historical dataset of Willamette River and North Santiam
River. Extreme learning machine (ELM) and support vector
regression (SVR) were employed for the first time in
building a prediction model for TDG.

2. Case Studies and Data Collection

The historical dataset used for constituting and developing
models was collected from the official website of the United
States Geological Survey (USGS) [36]. The current study
contains two stations, namely, USGS 14150000 at middle
fork Willamette River, near Dexter, Lan County, OR (lati-
tude 43° 56'45"; longitude 122° 50'10"”) and USGS 14181500
North Santiam River, at Niagara, Marion County, OR
(latitude 44°45'13.6", longitude 122°17'50.8"). The location
of each reservoir site is illustrated in Figure 1. The obtained
parameters are statistically summarized in Table 1, where
Konins Xmaxo> Xmean> Xstd> Cyr and S, denote the minimum,
maximum, average, standard deviation, variation coefficient,
and skewness coefficient, respectively. Five variables mea-
sured at hourly time step were used in this study including,
discharge (D), barometric pressure (BP), water temperature
(T), gage height (GH), and percent of saturated total dis-
solved gas (TDS%). These variables were used for estab-
lishing an AI model to predict one hour ahead TDG. The
measured samples covered a long period of time from 13
October 2016 to 13 October 2019, where 25,667 samples
were countered for station USGS 14150000 while for station
USGS 14181500 the data obtained was 18,210 samples to
cover the period from 9 June 2017 to 10 October 2019.

3. Methodology

3.1. Extreme Learning Machine Forecasting Model.
Extreme learning machine (ELM) is a novel learning al-
gorithm that generally has a simple structure consisting of
three layers, namely, input layer, hidden layer, and output
layer. The hidden layer is one of the most important layers in
the structure of ELM including numerous numbers of
nonlinear hidden nodes. ELM can be primarily character-
ized by the fact which the model’s internal parameters such
as hidden neurons do not require to be tuned. Additionally,
ELM is considered an updated version of traditional ANN
due to its ability to solve regression issues with minimum
time consumption [37-39]. The reason behind is that the
weights linking the input layer with the hidden layer and bias
values in the hidden layer are randomly assigned where the
output weights are optimally calculated using the Moor-
e-Penrose approach [40]. This can lead to improved results
compared to other forecasting models that can be

established using the ANN technique [41-43]. ELM is also
presented as an efficient and alternative approach for con-
ventional modeling techniques such as ANN which com-
monly suffers from several issues such as overfitting, slow
convergence ability, local minimum problems, poorer
generalization, and long time execution, as well as the es-
sential for iterative tuning. Based on the fundamental
structure of ELM, randomly assigned hidden neurons are
tuned, so ELM is powerfully robust to achieve a global
minimum solution, resulting in universal approximation
abilities [44]. Based on the fundamental structure of the
ELM, the randomly assigned hidden neurons are tuned in
such a way that the ELM is powerfully resilient to achieve a
global minimum solution, resulting in universal approxi-
mation capabilities [44]. Figure 2 shows and visualizes the
basic structure of ELM.

ELM model can be mathematically expressed as shown
in the following equation:

L
ZBkgk(ak‘xk'fﬁk):Z“ kzl,...,N, (1)
k=1

where L (number of hidden nodes), g (. - x; + ;) (hidden
layer output function), () and f;) (the parameters of hidden
nodes which are randomly initialized), B, (the weight values
linking the kth hidden node(s) with the output node), and z,
(the ELM target).

The number of hidden nodes is determined by trial and
error which belong to the range from 1 to 25. This current
study used the hybrid tangent sigmoid transfer function to
activate hidden nodes, while the forecasting values of the
ELM model were obtained from the output layer based on
linear activation function [45].

The selection of hidden node parameters in the ELM
forecasting model can be randomly determined, where this
process neither requires any detailed information about
training data nor needs to iteratively tune the hidden layer
neurons according to the lowest sum square error. Thus, for
any randomly assigned sequence {(txk, ﬁk)izl} and any
continuous target function f (x), equation (2) is employed
to approximate and calculate a set of N training sample as
follows [46]:

=0.

L
im ||f (0 - £, = ngnw”ﬂx) =Y Bigi (o %+ )
k=1

(2)

The main merits of the nontuned ELM forecasted model
are that the hidden layer weight values are randomly
attained. This can reach a zero error, providing the op-
portunity to the network’s target weight values (B) analyt-
ically for the training dataset. It is very significant to mention
that the value of internal transfer function factors (o and 3;)
are assigned according to a probability distribution. Finally,
Y = GB is considered an equivalent to equation (2) which
can be linearly expressed as explained by [40]
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FiGgure 1: The location site of case studies. (a) USGS 14150000. (b) USGS 14181500.
TaBLE 1: Statistical variables of adopted dataset for both stations.
Station Dataset Unit Xmin X nax X nean X C, S,
D kefs 3.50 20.30 11.26 4.34 0.39 0.25
BP mmHg 1160.00 14400.00 2784.69 1933.69 0.69 2.58
USGS 14150000 T °C 2.76 9.41 3.91 1.16 0.30 1.71
GH feet 723.00 762.00 747.31 4.80 0.01 -0.49
TDS% — 96.00 119.00 102.81 511 0.05 1.12
D kefs 957.00 10200.00 2056.95 1329.40 0.65 2.13
BP mmHg 710.00 747.00 733.67 4.44 0.01 -0.32
USGS 14181500 T °C 3.70 17.10 8.73 2.98 0.34 0.11
GH feet 2.82 7.61 3.71 0.86 0.23 1.39
TDS% — 96.00 132.00 104.55 6.37 0.06 1.54

kefs: cubic feet per second; mmHg: millimeters of mercury; °C: degrees in Celsius.
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FIGURE 2: Extreme learning machine (ELM) structure.
9 (xk) gi(ay-x + By gr(ag by, x) HB=Y. (5)
The lowest norm square of equation (4) can be calculated
Gla,Bx)=| - = . ) as
B=HY, (6)
Lg(x,) gi(an - xy +By)s-- o> grag, b, x;) g
3) where H represents the Moore-Penrose generalized inverse
of Hussain matrix which is employed to calculate the output
'BT ] weights of the ELM model. Singular Value Decomposition
(SVD) method is mainly used as an efficient approach for the
B ELM learning process.
'T 3.2. Support Vector Machine Regression Model. Support
L B; | (4) Vector Machine (SVM) is a sort of Al technique introduced
—YlT 7 by Cortes and Vapnik in 1995 [47], dealing with classifi-
cation issues based on Structural Risk Minimization (SRM)
and Statistical Learning Theory (SLT). This approach has
Y= > been increasingly applied in different kinds of sectors for
. solving issues related to prediction and regression. The
yT design of SVM density approximation uses the principle of
L N -

where G is the output matrix of the hidden layer and T'is the
transpose matrix, and equation (3) can be summarized as

SRM which has illustrated much efficient performance and
accuracy compared to classical Empirical Risk Minimization
(ERM) principle which mainly utilizes traditional learning
algorithms such as neural network systems. SRM aims at



minimizing the upper and lower bounds on the general-
ization error, while ERM employs to minimize the total error
on the training dataset. For that reason, SVM is more ef-
ficient in several statistical applications especially when it
comes to constituting a predictive model [48]. Recently,
SVM has been applied to carry out many tasks related to
machine learning in numerous areas of research since it is a
reliable and effective tool [49-53].

Given dataset points, D = {(x;, y;)} € R* R, i=1: n.

Here, the main principle is to identify and discover a
function f in a Hilbert space based on SRM, constituting a
certain relationship between variable x and the grandeur to
obtain the model y, where y = f(x) based on the mea-
surement data D:

f(x)=(wx)+b, beR, (7)

(%) = (w3 (x)) +b. (8)

Both equations (7) and (8) can define the function f (x)
for linear and nonlinear regression issues, respectively.
Suppose the nature of the issue or the data does not belong to
the linear relationship in its input space; in that case, that
data can be derived to a higher dimension feature by ap-
plying a specific kernel function. The aim is to calculate the
optimal weight values (w) and bias (b) and define the criteria
to determine the best set of weight values. This task can be
carried out using two stages. The first stage is to apply the
Euclidean norm method (i.e., minimize w?) for smoothing
the weight values. The second stage is to minimize the
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empirical risk function by reducing the generated error
values to the lowest level as possible. Finally, it can be
summarized that the regularized risk function R, (f), as
illustrated below, should be minimized by
1
Rieg () = Remp () + Sl (9)
The empirical error is mathematically expressed as
follows:

N
Remp (f) = C% Y L(x yi f (x: W), (10)
1

where L(-) is the cost function to be derived. There are two
common cost function which can be utilized: the first one is
the e-insensitive loss function presented by Vapnik, as
shown in Figure 3, and the second is called the quadratic loss
function which is usually related to least squares support
vector machine (LSSVM) [54].

“C” indicates regularization constant which calculates
the balance between the regularization term and the em-
pirical risk. Additionally, ¢ is the size of the tube, denoting
the accuracy of the function should be approximated. Ac-
cepted errors within a certain range made the problem more
feasible. To consider the errors, the slack variables, ; and ¢,
are commonly presented. The main formulation of the
optimization problem is as shown in the following
equations:

1 L .
min fwl* +C Y (& +&), (11)
i=1
yi—wd(x)-b<e+i,
under the constraints { y; —w@ (x)-b > -e-¢, V,e{l,...,n}, (12)
§ & 20

For optimally minimizing the regularized risk and ef-
ficiently calculating the optimal weight values, the quadratic
programming problem is applied (utilizing the e-insensitive
loss function) based on Lagrange multipliers and using

n n

optimality constraints (further details can be seen in [55]);
then, Lagrange multiplier «; and «,i = 1ton, can be de-
termined by minimizing the following equation:

min L(a;, 0] ) = — Zyl(oc—oc +52)’1(“+“ +%ZZ(X—(X)((X —(x)K(X X) (13)

= i=1

with the constraints
0<a,a <C,i=1,...,n,

(14)

-

I
—

(o, — ) = 0.

1

i=1 j=1

The regression function can be mathematically intro-
duced by

< ) i( ~ta DK(X,X;) +b7, (15)

i=1
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FIGURE 3: SVM regression with e-insensitive loss function.

where K(x,-,xj) = (x;) * D(x;) is known as the kernel
function, and its value is represented as the scalar product of
both vectors x; and x jin the feature space & (x;) and & (x j).

The selection of the proper kernel function is a signif-
icant task and mainly depends on Mercer’s conditions;
therefore, any function that satisfies these conditions can be
applied as a kernel function for SVM approach. This current
study adopted Radial Basis Function (RBF) which is
mathematically expressed below since it can handle and map
the nonlinear relationships between labels and features

(56, 57]:
2
K(x,-,xj) :exp<—w>, (16)

where ¢ is the bandwidth of the RBF kernel.

It is worth mentioning that the most important pa-
rameters of the SVM model such as C, ¢, and ¢ have been
optimized by using a sequential minimal optimization
(SMO) algorithm. Figure 4 shows the stage of prediction
saturated TDG using the SVM model.

3.3. Preprocessing Dataset. The preprocessing stage is one of
the most significant stages in developing a predictive model
due to its great effect on the accuracy of the model. This step
includes two stages which are selecting the input combi-
nations and data normalization and choosing the proper
input variables which play an important role to obtain re-
liable and eflicient predictive modes. Artificial Intelligent
(AI) models generally considered robust techniques usually
employing nonlinear functions for mapping input to their
responses. 'These sophisticated methods have recently
achieved great successes in many fields and outperformed
the traditional approaches. Therefore, the selection of best
input variables for a certain AI model is a difficult task and
probably cannot be carried out by using common ap-
proaches such as linear relationships between predictors and
their response. Additionally, each AI modeling technique

has a specific structure and methodology, consequently,
selecting the best input parameters for a target might im-
portantly vary from one model to others. This paper adopted
different kinds of input combinations for both stations, as
shown in Table 2, and introduced each combination to Al
models (support vector machine and extreme learning
machine) to predict hourly saturated TGG based on pre-
viously measured data points. Moreover, the employed
procedure is very crucial to highlight the relative importance
of the five variables, and we carried out different scenarios
including several variables combinations for getting detailed
information about affecting each of these factors to the
saturated TDG concentration as well as conducting further
cooperation for the responses of each input combination.

The data normalization stage is a very essential process in
developing the Al models during training and testing phases
because it maintains the stability of AI model performances
[58] and reduces the time required to learn the model
[59, 60]. Generally, there are two reasons for normalizing
data before presented to the modeling approach. First, the
process of normalization data ensures all available variables
during the learning phase which take equal attention. Sec-
ond, preprocessing is very essential for increasing the ac-
curacy of models by improving the efficiency of the training
algorithm. In this study, all data variables were rescaled with
range from -1 to 1 based on

Xoew =-14+ X = Xonin

new
Xmax - Xmin

* 2, (17)

where X, is the scaled value, X is the current data point,
and X and X . are the maximum and minimum records
in the dataset, respectively. Besides, the normalization
process also ensures to control the values of each recorded
sample within a certain range where the minimum values
were kept to —1, whereas the highest values became +1. The
normalization pattern was selected because this type of
scaling data is centered on zero which can enhance the
quality of predictive models.
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TaBLE 2: Input combination set of several forecasting models.

No. of combinations ELM SVM Input variables Target
Combl ELM1 SVMI TDS_, TDS,,
Comb2 ELM2 SVM2 [TDS_,, D_,] TDS,,
Comb3 ELM3 SVM3 (TDS_,, BP_, ] TDS,,
Comb4 ELMz4 SVM4 [TDS_,, T_,] TDS,,
Comb5 ELMS5 SVM5 (TDS_,, GH_,] TDS,,
Comb6 ELM6 SVM6 [TDS._,, D_;, BP_,] TDS,,
Comb7 ELM?7 SVM7 (TDS_,, D_,, BP_,,T ] TDS,,
Comb8 ELMS SVMS [TDS_,, D_,, BP_,,T_,,GH_,] TDS,,

It is a general practice to split the raw dataset into two-
phases: training and testing phase; then, these data separately
recalled according to equation (17) before introducing to
machine learning models. In this study, for both stations,
75% of the available data were used for the model consti-
tution, and the reset was used for the testing phase. Figure 5
illustrates the methodology of the TDG prediction model
using ELM and SVR models. For the station USGS 14150000,
the record samples from 13 October 2016 to 14 March 2019
(822 days) were used for training set and the rest from 15
March 2019 to 13 October 2019 (273 days) were used for
testing the accuracy of AI models. It can be pointed out that,
about 19,251 hourly measured sample points were employed
for the learning stage and 6416 hourly records used for the
testing set. The first set of data that was utilized to train the
Al model for the station USGS 14181500 including 640 days
(13,658 samples measured hourly) covered the period from 9
June 2017 till 11 March 2019, while 213 days (4552 sample
points measured hourly) were used for testing the accuracy
of predictive models.

3.4. Model Performance Measures. Generally, the accuracy of
the predictive modeling approach is evaluated by carrying
out a comparison between observed responses and com-
puted output. In this study, the forecasting of each model
performance is assessed using ten statistical criteria in-
cluding, root mean square error (RMSE), correlation of
determination (R?), mean absolute error (MAE), mean
absolute relative error (MARE), root mean square relative
error (RMSRE), relative root mean square error (RRMSE),
maximum absolute relative error (erMAX), relative error
(RE%), and uncertainty at 95% (Uy;).

In environmental modeling, the RMSE criterion is fre-
quently used to measure the performance of forecasting
models, while the MAE index is considered as a vital in-
dicator to evaluate the error in time series analysis. Fur-
thermore, the value of MAE is very important to determine
how well the model’s output matches the actual values.
However, the other statistical measures such as RE% try to
fill the gaps left because it provides additional and detailed
information about the capabilities of forecasting models. The
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mean absolute relative error (MARE) is an absolute
mathematical error for the code (the difference between the
actual points and the predicted points). The MARE pa-
rameter is called the mean absolute percentage relative error
(MARE) when the percentage is defined. The mean square
error for relative root (RRMSE) is possible to measure the
mean of actual data points by splitting RMSE criteria. This
parameter is very critical for a model’s accurate evaluation.
The model is called outstanding: if RRMSE <10%, good, if

R =1

RRMSE ranged between 10 and 20%, fair, and if ranged
between 20 and 30%, the model can be considered unac-
ceptable with RRMSE >30% [61, 62]. Finally, in the selection
of an effective prediction model among different models, the
uncertainty is very effective criteria at 95 percent (Uys),
whereas Ugys; contains very valuable knowledge on a model
deviation. Formulae for determining (R?), RMSE, MAE, RE,
MARE, RMSRE, RRMSRE, erMAX, and U, are expressed as
follows:

_ 21 (TDG (obser), — TDG (sim), )’

Y (TDG(obser)t - TDG(sim)t)Z’

n

RMSE =

S| =

t=1

n

Z (TDG (obser), — TDG(sim)t)z,

1 .
MAE = Y |TDG (obser), - TDG (sim),|,

t=1

TDG (obser), — TDG (sim),

TDG (obser), ] ’

(18)

1 i|TDG (obser), — TDG(sim)t|
=l
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TDG (obser), ¥
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TDG (obser),

RMSE

|TDG(0bser)t - TDG (sim)t|

(1/1’2) Z:l:l TDG(obser)t’

RE =100 * [
MARE = -
n =
1
RMSRE = \|-
ni3
RRMSRE = \j
erMAX = <|

TDG (obser),

)

(1/2)

Uss = 1.96(SD” + RMSE?) ",
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TABLE 3: Statistical criteria of each predicted models for USGS 14181500 station during the training set.
Model MAE RMSE MARE RMSRE RRMSE R? erMAX Uys
ELM-M1 1.4311 1.9436 0.0132 0.0173 1.8625 0.9827 1.2733 63.0982
SVR-M1 8.3559 10.4287 0.0770 0.0926 9.9934 0.2 1.0000 42756.9442
ELM-M2 0.6033 1.0258 0.0056 0.0092 0.9830 0.9824 1.2391 6.8153
SVR-M2 0.4244 0.8826 0.0040 0.0079 0.8458 0.9810 1.2207 4.7401
ELM-M3 0.4764 0.9483 0.0044 0.0084 0.9087 0.9825 1.2349 5.5517
SVR-M3 1.1037 1.5475 0.0102 0.0138 1.4829 0.9828 1.2610 27.1510
ELM-M4 0.3272 0.8571 0.0030 0.0076 0.8213 0.9822 1.2265 42314
SVR-M4 1.3372 1.5625 0.0128 0.0147 1.4972 0.9806 1.2292 20.2709
ELM-M5 0.4599 0.9717 0.0042 0.0086 0.9311 0.9825 1.2366 6.2246
SVR-M5 0.6284 0.9966 0.0059 0.0090 0.9550 0.9824 1.2333 5.8313
ELM-M6 0.3230 0.8462 0.0030 0.0075 0.8109 0.9820 1.2258 4.0191
SVR-M6 2.3503 2.8870 0.0221 0.0265 2.7665 0.9515 1.2317 261.4542
ELM-M7 0.7394 1.2223 0.0068 0.0109 1.1713 0.9815 1.2468 13.1359
SVR-M7 1.1364 1.6076 0.0107 0.0147 1.5405 0.9469 1.1783 45.4376
ELM-M8 0.5822 0.9770 0.0054 0.0087 0.9363 0.9813 1.2184 5.6848
SVR-M8 0.5510 1.0121 0.0051 0.0090 0.9698 0.9826 1.2406 6.8033

where TDG (obser), and TDG(sim), are the actual and
simulated values of saturated TDG, respectively,
TDG (obser), and TDG(sim), are the mean actual and
predicted values of saturated TDG, and # is the total number
of samples.

4. Result and Discussion

In this part of the study, results of SVR and ELM models for
different proposed combinations are presented. The ob-
tained results for both USGS 14150000 and USGS 14181500
stations are also further discussed in this section in order to
select the best predictive model which can provide more
accurate results related to saturated TDG. In general, the
quantitative and visualized analyses show that the trend
ELM models are more stable than SVR models. However, the
SVR approaches sometimes provide an acceptable predic-
tion of TDG.

Table 3 presented the evaluation performance of each
predicted model for USGS 14181500 station during the
training set. The results pointed out that the performances of
both SVR and ELM approaches depended mainly on the
input combinations. For SVR technique, the best accuracy
model was SVR-M2, reporting lowest forecasted error
(MAE =0.4244, RMSE = 0.8826, MARE =0.0040, RMSRE =
0.0079, RRMSE = 0.8458, R? = 0.9810, erMAX = 1.2207, and
Ugs = 4.7401). On the contrary, the ELM-M6 generated the
best performance in comparison with other comparable ELM
models. The ELM-M6 model reported less forecasted error
based on statistical measures indexes (MAE =0.3230,
RMSE =0.8462, MARE = 0.0030, RMSRE = 0.0075, RRMSE =
0.8109, R* = 0.9820, erMAX = 1.2258, and Ugs = 4.0191). The
given results intensively indicated that the SVR models
required fewer input parameters in comparison with ELM
models. Moreover, the most important feature can be seen
that there was a unique superiority in terms of prediction
TDG for the ELM model over SVR during the training
phase.

Table 4 provided detailed information on the perfor-
mances of both predictive models (SVR and ELM) with

different input combinations at USGS 14150000 station
during the training step. In general, the majority of com-
parable models reported excellent predictions of TDG
concentration. In accordance with the presented result, the
most accurate SVR model based on eight different input
combinations was SVR-M6. The proposed model achieved
higher accuracy indexes (MAE=0.296, RMSE=0.503,
MARE = 0.003, RMSRE = 0.005, RRMSE = 0.495, R* = 0.985,
erMAX =1.085, and Uy = 0.492), while the ELM models
provided in general a good accurate predictions, and ELM-
M4 generated the best simulated results of TDG compared
with actual values (MAE=0.309, RMSE 0.566,
MARE =0.003, RMSRE = 0.006, RRMSE = 0.557, R* = 0.981,
erMAX =1.086, and Uys = 0.802). Based on given results,
the SVR technique tended to give greater accuracy with a
relatively higher number of input combinations.

For the selection of the most accurate models, the testing
set is considered the most efficient step since the models in
the training set relying on given input parameters and their
responses target, while in the testing set, the actual per-
formance of each model is easily recognized due to the fact
that only input variable is introduced to the predictive model
[63]. Moreover, in the testing phase, better evaluation of the
accuracy of the model as well as generalization capabilities
can be efficiently revealed. For adequate evaluation, it is
necessary to check out the performances of the models
which provided the most accurate estimations throughout
the training set.

The performances of each model showed in Table 5 during
the testing set at USGS 14181500 station. Generally, the ob-
servable note that both models (SVR-M2 and ELM-M6), which
gave the most accurate predictions during the calibration step,
produced relatively lower performances during the testing set.
The SVR-M2 model provide relatively higher forecasted errors
(MAE =4.005, RMSE = 4.548, MARE = 0.037, RMSRE = 0.041,
RRMSE=4.327,  R*=0.925, erMAX=1.092, and
Ugs = 1271.496). With respect to the ELM-M6 model, this
model did not consider the ideal one during the testing phase;
however, it produced an acceptable level of accuracy
(MAE = 0.538, RMSE = 0.904, MARE = 0.005, RMSRE = 0.008,
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TABLE 4: Statistical criteria of each predicted models for USGS 14150000 station during the training set.
Model MAE RMSE MARE RMSRE RRMSE R? erMAX Uys
ELM-M1 0.374 0.583 0.004 0.006 0.574 0.981 1.086 0.862
SVR-M1 0.293 0.569 0.003 0.006 0.560 0.981 1.086 0.819
ELM-M2 0.328 0.575 0.003 0.006 0.567 0.981 1.087 0.852
SVR-M2 0.319 0.546 0.003 0.005 0.538 0.982 1.086 0.698
ELM-M3 0.326 0.569 0.003 0.006 0.561 0.981 1.086 0.819
SVR-M3 0.296 0.564 0.003 0.006 0.556 0.981 1.086 0.795
ELM-M4 0.309 0.566 0.003 0.006 0.557 0.981 1.086 0.802
SVR-M4 0.280 0.556 0.003 0.005 0.548 0.981 1.086 0.750
ELM-M5 0.344 0.572 0.003 0.006 0.563 0.981 1.085 0.820
SVR-M5 0.271 0.530 0.003 0.005 0.522 0.983 1.086 0.618
ELM-M6 0.369 0.578 0.004 0.006 0.570 0.981 1.084 0.832
SVR-M6 0.296 0.503 0.003 0.005 0.495 0.985 1.085 0.492
ELM-M7 0.367 0.585 0.004 0.006 0.576 0.980 1.089 0.918
SVR-M7 0.288 0.568 0.003 0.006 0.559 0.981 1.086 0.817
ELM-M8 0.439 0.624 0.004 0.006 0.614 0.979 1.092 1.163
SVR-M8 2.810 3.103 0.027 0.030 3.056 0.661 1.073 465.864
TaBLE 5: Statistical indicators of each predicted models for USGS 14181500 station during the testing phase.
Model MAE RMSE MARE RMSRE RRMSE R? erMAX Uss
ELM-M1 1.308 1.804 0.012 0.016 1.716 0.979 1.214 48218
SVR-M1 8.116 10.540 0.074 0.091 10.027 0.008 1.000 47895.737
ELM-M2 0.645 1.054 0.006 0.010 1.002 0.985 1.193 7.309
SVR-M2 4.005 4.548 0.037 0.041 4327 0.925 1.092 1271.496
ELM-M3 0.593 1.027 0.005 0.009 0.977 0.985 1.191 6.948
SVR-M3 19.363 20.324 0.188 0.199 19.335 0.009 1.283 417056.225
ELM-M4 0.316 0.823 0.003 0.008 0.783 0.986 1.181 3.592
SVR-M4 5.229 6.330 0.048 0.056 6.022 0.760 1.048 5579.844
ELM-M5 0.442 0.918 0.004 0.008 0.874 0.985 1.188 5.021
SVR-M5 0.441 0.862 0.004 0.008 0.820 0.986 1.183 3.869
ELM-M6 0.538 0.904 0.005 0.008 0.860 0.986 1.170 4229
SVR-M6 1.416 1.896 0.013 0.017 1.804 0.945 1.152 84.101
ELM-M7 1.119 1.540 0.010 0.014 1.465 0.981 1.207 26.109
SVR-M7 0.904 1.777 0.008 0.015 1.691 0.932 1.128 76.123
ELM-M$ 0.469 0.877 0.004 0.008 0.835 0.985 1.172 4111
SVR-M8 0.719 1.171 0.007 0.011 1.114 0.984 1.198 10.954
RRMSE = 0.860, R? = 0.986, erMAX =1.170, and  and italso provided reasonable and adequate estimations in the

Uys = 4.229). The given results clearly showed that the optimal
models of SVR during the training set were suffering from
overfitting issues (highest accuracy in the training set and
lowest accuracy in the testing set). However, after reviewing the
performances of both models, it is vital to present the most two
efficient models for the same station. In accordance with Ta-
ble 5, the ELM-M4 model is identified as the best model which
can more effectively predict one step ahead of saturated TDG.
The obtained results from the model showed there was a perfect
similarity with the actual values (MAE = 0.316, RMSE = 0.823,
MARE =0.003, RMSRE =0.008, RRMSE = 0.783, R* = 0.986,
erMAX =1.181, and Ug; = 3.592). The second best model
during the testing set was SVR-M5 which also produced fewer
errors (MAE=0441, RMSE=0.862, MARE=0.004,
RMSRE = 0.008, RRMSE = 0.820, R? = 0.986, erMAX = 1.183,
and Uy = 3.869). The given evaluation disclosed that the
performance of ELM-M4 generated more accurate estimations,

training set (see Table 3). On the contrary, the predictability of
SVR-M5 generated higher forecasted errors during the training
set. Consequently, the ELM-M4 was the most efficient model in
estimation of TDG for USGS 14181500 station.

While the ELM approach outperformed SVR techniques for
the estimation of TDG at USGS 14181500 station, it is important
to see the capability of the proposed approach in the prediction
of TDG in USGS 14150000 station. Table 4 exhibited the
predicted results of each predictive model which was established
based on different input combinations during the training set.
Statistical parameters indicated that the SVR-M6 was the most
excellent performance during the calibration step
(MAE =0.296, RMSE = 0.503, MARE = 0.003, RMSRE = 0.005,
RRMSE=0495,  R*=0.985,  erMAX=1085  and
Ugs = 0.8492). In addition, the performance of the ELM-M4
was relatively less accurate compared to SVR-M6 as a result of
generating  higher  computed errors (MAE=0.309,
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TABLE 6: Statistical indicators of each predicted models for USGS 14150000 station during the testing phase.
Model MAE RMSE MARE RMSRE RRMSE R? erMAX Uss
ELM-M1 0.379 0.586 0.004 0.006 0.549 0.991 1.047 0.898
SVR-M1 0.317 0.572 0.003 0.005 0.537 0.991 1.047 0.842
ELM-M2 0.339 0.576 0.003 0.005 0.540 0.991 1.047 0.864
SVR-M2 3.822 4.273 0.037 0.041 4.008 0.723 1.079 2053.114
ELM-M3 0.373 0.577 0.004 0.005 0.541 0.991 1.046 0.851
SVR-M3 8.619 10.380 0.078 0.093 9.736 0.018 1.021 39877.590
ELM-M4 0.338 0.571 0.003 0.005 0.536 0.991 1.047 0.832
SVR-M4 8.799 10.463 0.080 0.094 9.814 0.086 1.018 39559.262
ELM-M5 0.463 0.618 0.004 0.006 0.580 0.991 1.044 0.990
SVR-M5 8.875 10.572 0.081 0.095 9.916 0.054 1.017 41293.085
ELM-M6 0.495 0.639 0.005 0.006 0.599 0.991 1.044 1.080
SVR-M6 3.282 4.321 0.030 0.038 4.053 0.550 1.102 2508.932
ELM-M7 0.517 0.688 0.005 0.006 0.646 0.988 1.055 1.754
SVR-M7 0.396 0.572 0.003 0.005 0.536 0.991 1.047 0.837
ELM-M8 0.513 0.680 0.005 0.006 0.637 0.988 1.052 1.672
SVR-M8 5.034 5.942 0.048 0.057 5.573 0.009 1.116 9694.100
RMSE = 0.566, MARE =0.003, RMSRE = 0.006, to its dangers impact on the ecosystem. However, most
RRMSE = 0.557, R* =0.981, erMAX =1.086, and  SVR models produced less predictability precision com-
Uys = 0.802). pared to the observed TDG. ELM models found to have

Based on the forgoing, the reliable models should pro-
duce better performance in the vital step (testing) as well as
in the training step. Herein, it is crucial to review the
performance of both models SVR-M6 and ELM-M4, which
yielded the best estimated results through the training set,
during the testing set. As shown in Table 6, the performance
of the SVR-M6 was awful and its estimations were extremely
inaccurate and unacceptable (MAE =3.282, RMSE =4.321,
MARE = 0.030, RMSRE = 0.038, RRMSE = 4.053, R* = 0.550,
erMAX =1.102, and Ugs = 2508.932). On the other hand, the
performance of ELM-M4 was excellent and can be con-
sidered the most reliable model during the testing set by
generating the lowest forecasted errors (MAE=0.338,
RMSE =0.571, MARE =0.003, RMSRE = 0.005,
RRMSE=0.536, R>=0.991, erMAX=1.047, and
Uys = 0.832). Similarly, SVR-M7 achieved a good perfor-
mance prediction with lower error measures (MAE = 0.396,

RMSE =0.572, MARE =0.003, RMSRE = 0.005,
RRMSE=0.536, R?>=0.991, erMAX=1.047, and
Uys = 0.837).

According to the presented outcomes, the ELM provided
much more valid and efficient estimations than SVR tech-
niques. It is also obvious from the quantitative analyses that
the SVR suffered from overfitting issues, thereby reducing its
ability to provide reliable prediction of saturated TDG. After
presenting the quantitative assessment, it is necessary to
carry out a visualization assessment to ideally select the best
predictive models. For visually evaluating the predictive
models against actual values of TDG during the testing set,
boxplot and scatterplot diagrams were established.

The capacity of each adopted model has been graphi-
cally compared with actual values as illustrated in the
boxplot diagram at USGS 14181500 station (see Figure 6).
The useful information was that all ELM models were
found to predict TDG more precisely. Moreover, ELM
models managed to efficiently estimate the peak values of
TDG which were considered the most important values due

median and interquartile range (IQR) closer to the ob-
served median and IQR. Dissimilarly, several SVR models’
characteristics (median and IQR) were found farther to the
actual ones. The figures also showed that the efficiency of
SVR models effectively relied upon input combinations. In
general, SVR approaches could give a good prediction in
limited input combinations; however, the ELM has rela-
tively stable performances in all adopted input groups as
well as has less sensitivity when input parameters changed.
Figure 7 represents the boxplot for USGS 14150000 station.
In accordance with Figures 6 and 7, the distribution of
saturated TDG% obtained from the SVR modeling ap-
proach in several cases was very poor and gave poor ac-
curacy prediction. For instance, with respect to USGS
14181500 station, the SVR-M1 and SVR-M3 models gen-
erated the worst estimations. Similarly, in USGS 14150000
station, the four models, SVR-M3, SVR-M4, SVR-M5, and
SVR-MS, gave the worst accuracy compared with others.
The reason behind this might be due to the nature of the
SVR modeling approach which tends to give lower-accu-
rate estimations when using a relatively large number of
input variables. However, it can be observed that the SVR
techniques may encounter some difficulties in developing a
univariate model. Moreover, the structure of the SVR
approach required a larger number of coeflicients in
simulating data including higher numbers of observations;
hence, fluctuating in accuracy of predictions took place
occasionally.

Scatterplots were also prepared for both aforementioned
stations to measure how well-estimated values of TDG relate
to the actual points. The scatterplots, as shown in
Figures 8-11, provided significant visualization information
on the diversion between predicted and actual TDG, as well
as correlation of determination magnitude (R?). In addition,
the line equation can be also presented in the graphs
(y=ax+b) where a and b are representing the slope of the
line and intercept point, respectively. A closer value of a to 1
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FIGURE 6: Boxplot presentation for USGS 14181500 station: (a) ELM and (b) SVR models.

USGS 14150000 station

120

=+ + +F F+ + + F F
1 1 1 1 1
nspo ! ! ! ! ! ! : .
= . | 1 1 |
g 10 g
2
2 105 B
100 I~ 1 1 ; 1 1 1 1 1 1 T
1 1 1 1 1 1 1 1 1
95 -+ -+ -+ -+ -+ -+ -+ -+ -+
Actual ELM-M1 ELM-M2 ELM-M3 ELM-M4 ELM-M5 ELM-M6 ELM-M7 ELM-M8
Models
120
- e i + + I - t
| | ! + + | +
— | +
£ 110 - N + ! i
: - :
= 4 + +
100 ~ 1 1 % !! : ] -
! ! —— —a L I
—+ —+ + % ¥ + —+ 1
Actual SVR-M1 SVR-M2 SVR-M3 SVR-M4 SVR-M5 SVR-M6 SVR-M7 SVR-M8
Models

FIGURE 7: Boxplot presentation for USGS 14150000 station: (a) ELM and (b) SVR models.

and b to zero refer to the best predictive model achieved. In
accordance with Figures 8-11, the ELM-M4 was the best
predictive model for USGS 14150000 and USGS 14181500
stations.

Finally, the most unique observation from the analytical
results of ELM for both stations is that the combination M4
has a more significant influence on TDG than other adopted
combinations. That means the temperature of the water has a
vital effect on the concentrations of the saturated TGD in the
water. Moreover, the ELM algorithm has a perfect advantage
in terms of low computational cost as well as ease of

implementations. However, the SVR technique exhibited a
very slow learning process compared with ELM approaches.
Based on Table 7, the ELM approaches required less time
(seconds) to complete the training process on average of
0.018s and 0.021s for USGS 14181500 and USGS 14150000,
respectively. On the contrary, the algorithm of SVR required
a huge time to complete the calibration process, in average of
1223.991s and 2759.280s for USGS14181500 and
USGS14150000, respectively. Lastly, according to the given
results from the best predictive model (ELM), the input
parameters such as discharge, gage height, and aerometric
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TaBLE 7: The computational time required for the training phase
from each model.

Model Time (s) Model Time (s)
USGS 14181500 station

ELM-M1 0.007 SVR-M1 5486.311
ELM-M2 0.019 SVR-M2 961.291

ELM-M3 0.015 SVR-M3 75.623

ELM-M4 0.004 SVR-M4 1757.157
ELM-M5 0.018 SVR-M5 869.159
ELM-M6 0.024 SVR-M6 397.216
ELM-M7 0.023 SVR-M7 160.172
ELM-M8 0.033 SVR-M8 85.000

Mean 0.018 1223.991
USGS 14150000 station

ELM-M1 0.012 SVR-M1 3472.969
ELM-M2 0.003 SVR-M2 8305.326
ELM-M3 0.008 SVR-M3 267.823
ELM-M4 0.015 SVR-M4 645.349
ELM-M5 0.033 SVR-M5 345.758
ELM-M6 0.049 SVR-M6 7281.479
ELM-M7 0.017 SVR-M7 1446.514
ELM-M8 0.031 SVR-M8 309.020
Mean 0.021 2759.280

pressure has less effect on the saturated TDG for both
stations.

5. Conclusion

Total dissolved gas (TDG) is considered as one of the most
problematic phenomena associated with the expansion of
dams and reservoirs infrastructure which affects the eco-
logical system. Herein, the potential for producing a robust
predictive model utilizing two artificial intelligence meth-
odologies to estimate one hour ahead TDG based on en-
vironmental variables. Eight input combinations were used
as inputs for both types of machine learning, i.e., ELM, and
SVM. The ELM model outperformed the SVM models in all
the statistical measures at the testing phase. The given results
also showed that the temperature has the most significant
influence on the TDG and played a substantial role in in-
creasing the accuracy of prediction. Moreover, several SVR
models provided very low performances with higher fore-
casted errors. In general, the reason behind achieving low
prediction accuracies is that the SVR suffers from overfitting
issues, thereby reducing its ability of generalization when it
comes to deal with huge data sets. Besides, the computation
time of training the SVM algorithm was very huge in
comparison with the ELM, where the average time required
for the training process ranged 0.018s-0.021s and
1223.9915-2759.280s for ELM and SVM, respectively. It is
worth mentioning that the use of Uy gave a great advantage
in specifying the best model especially when other indicators
recorded a close point. Finally, this study successfully
produced a data-driven model to predict TDG based on
machine learning approaches. The current study recom-
mends to increasingly apply the ELM approach to cope with
the environmental issues which contain huge data samples
due to its ability to provide excellent outcomes as well as

Advances in Civil Engineering

requiring less time to complete the training processes. For
future research, (a) prior to learning method, feature se-
lection approach could be used to select the best input
variables; (b) exploring the effectiveness of environmental
and hydro-environmental variables such as PH, DO,
evaporation, turbidity, and suspended sediment load on the
prediction of saturated TDG%; (c) estimation of multihour
ahead TDG% using Al models approaches.
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