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In the asphalt pavement structure design method, the structural analysis and design are generally performed in the form of point
values. However, determining the point value form of design parameters based on the statistical analysis theory cannot fully reflect
the complex properties such as variability and uncertainty of parameters. In order to further improve the reliability and
practicability of pavement design parameters, in this article, we have introduced the interval number representation that can better
reflect the complex nature of parameters; but the interval number algorithm is too complicated and common calculation tools and
software are difficult to adopt, which limit the wide application of interval analysis to some extent. )e article analyzes the
algorithm of interval numbers, focusing on the analysis of interval numbers of unary and binary functions. In this way, the point
number operation can be used to obtain the interval number result of the function consistent with the interval number algorithm,
which avoids the complicated interval number operation process and the interval expansion. )e point numerical function
algorithm of interval numbers is verified by design parameters and the calculation of asphalt pavement structure such as axle load
conversion, cumulative equivalent axis calculation, calculation of foundation layer tensile stress of each structure layer, calculation
of mixture penetration strength, fatigue cracking check of asphalt mixture layer, permanent deformation check, and vertical
pressure strain test of roadbed top surface. In conclusion, this research provides a simple and easy way to implement the
application of mathematical tools for interval analysis, which is suitable for direct use for existing point numerical calculation tools
and software.

1. Introduction

In the current theory and method of pavement structure
design, the pavement structure analysis and design are
carried out with representative values, i.e., point value mode
[1]. Pavement structure design parameters are mostly
expressed in the form of point values, such as traffic load
parameters (axial load spectrum), fatigue equation param-
eters, permanent deformation of the asphalt layer, and so on.
Pavement structure design parameters are generally ob-
tained by means of testing. Due to the representative

problem of sampling of materials, the accuracy and stability
of the test equipment, and the objective existence of test data
measurement error, the point value of parameters is de-
termined according to the statistical analysis theory and
method. It cannot fully reflect the complex nature of pa-
rameters such as volatility and uncertainty.

From the quantum effect and the uncertainty principle,
the “point true value” of the material parameters of the
pavement structure cannot be finalized according to its
nature; however, pavement design specifications, including
asphalt and cement pavement, and design parameters are
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expressed in terms of point values. From the three stages of
pavement engineering design, construction, and acceptance,
some indicators are given a range of intervals in acceptance,
but in the design and construction process, point values are
given. )e link between the two is the use of the statistical
analysis theory. In fact, the design and construction pro-
cesses are generally erratic. )erefore, the introduction to
the interval number representation instead of the point value
is an objective requirement for characterizing the complex
nature of the material parameters of the pavement structure
and is also consistent with the actual situation where the
pavement design deviates and the construction has errors.

Since the emergence of the interval analysis theory, it has
received extensive attention and a large number of books
have been published on it [2–4]. )e articles on interval
analysis are increasing, and interval analysis begins to move
from theory to practice and plays its role in more and more
fields. )e important applications of interval analysis in the
world includematerial mechanics, structural mechanics, and
so on, which began in the 1980s [5–7].

In the field of engineering, Su et al. [8] studied the
reliability analysis method of response surface based on
interval variables; Tang et al. [9] proposed the fatigue crack
checking process of cement-stabilized macadam is ana-
lyzed by using measurement uncertainty and interval
analysis theory in order to improve the efficiency of fatigue
test data; Su et al. [10] incorporated a new uncertainty
analysis method for engineering structures, the interval
analysis method, into the sensitivity analysis of engineering
parameters, obtained a new sensitivity analysis method for
engineering parameters, and further broadened the theory
of interval analysis methods. Application areas: Huang [11]
considered the basic parameters that affect the particle size
improvement of the roadbed thickness as interval variables.
Using interval analysis to study the thickness can better
overcome the complexity of the environment and related
parameters and the problem of limited information; in the
study byWang et al. [12], starting from data processing, the
concept of interval number is given and a multiattribute
decision-making model for interval numbers is proposed.
)e model provides a standardized processing method for
the interval number decision matrix. Wang and Tang [13]
discussed the influence of different subgrade soil param-
eters on the subgrade elastic modulus and analyzed the
subgrade elastic modulus under equilibrium humidity;
Zhang et al. [14] proposed the interval fuzzy evaluation
analysis method of highway subgrade stability in a karst
area; Liu and Han [15] used fuzzy reliability in the reli-
ability design of the pavement structure, which can further
consolidate the performance of the pavement and extend
the service life of the pavement; Yu et al. [16] applied the
interval analysis model to the stability analysis of slopes. By
citing the idea of interval mathematics, the interval limit
equilibriummethod was used to derive the minimum safety
factor interval of the slope, and on this basis, the slope was
nonprobabilistically reliable. Degree analysis: Tang and
Zheng pointed out that there are two kinds of ill-posed
problems in the parameter inversion of the Duncan-Zhang
model of the soil and proposed the concepts of interval

well-defined and interval ill-posed in parameter inversion;
and given the definitions and analysis of interval, the basic
theoretical issues of geotechnical engineering were studied
and the basic theoretical framework of interval analysis soil
mechanics was focused on [17, 18]; Xie et al. [19] intro-
duced the interval analysis method to analyze the fatigue
test and data of semirigid base materials and established the
fatigue strength equation of semirigid materials in the form
of interval parameters; Impollonia and Muscolino [20]
proposed a method of evaluating the static response of
structures of spaced axial stiffness. An interval analysis
method of fatigue crack propagation (FCG) life prediction
was proposed by Long et al. [21]. Liu et al. [22] proposed a
new static response interval uncertainty analysis method.
Sofa et al. [23] proposed an interval finite element analysis
method developed by additional unit intervals in the im-
proved interval analysis framework. Dimarogonas [24]
proposed an interval analysis of the vibration system.
Donald and Chen explored the method of slope stability
analysis [25]. Tonon et al. [26] proposed a stochastic set
theory about the range of parameters in rock engineering.
Giasi et al. [27] studied the fuzzy reliability of the Aliano
slope. Schweiger and Peschl [28] proposed the reliability
analysis of the stochastic finite element method in geo-
technical engineering. For the most part, human factors
and environmental conditions affect the measurement
results of test parameters. When these digital fuzzy pa-
rameters are analyzed in the form of intervals, the accuracy
of the measurement results can be more accurately reflected
from the aspects of influence analysis, model optimization
calculation, and the improvement of the system’s predictive
ability, so as to draw a new solution [29–36].

However, due to the complexity of the interval algo-
rithm, special interval analysis calculation tools and software
are generally used in the calculation of expressions in the
form of interval parameters. Because such computing tools
and software are not popular, the types are too small and
most of them are written by foreign scholars, which greatly
limits the learning and use of domestic scholars. Based on
this, the article deeply analyzes the algorithm of interval
numbers and focuses on the interval number operation of
unary and binary functions. By transforming the function
expression and other methods, the interval number oper-
ation of the function is changed into the upper and lower
endpoint value of the independent interval number. In this
way, the point numerical operation can be used to obtain the
function interval number result consistent with the interval
number algorithm, which avoids the complicated interval
number operation process and the interval expansion. It can
also provide direct application of interval calculation and
analysis for various calculation tools and software that
currently use point numerical algorithms.

2. Interval Number Algorithm

Interval mathematics is a mathematical theory defined on
the set of intervals. A continuous subset X � [X, X] on the
set of real numbers R is called a real interval. X is the lower
endpoint value of the interval number X, and X is the upper
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endpoint value of the interval number X. An important rule
of interval number is X ≤X.

Given X � [X, X], Y � [Y ,Y] ∈ IR. )e following are
the four arithmetic rules of interval number:

Interval addition

X + Y � X +Y , X + Y . (1)

Interval subtraction

X − Y � X − Y, X − Y . (2)

Interval multiplication

X × Y � min XY , XY, XY , XY( , max XY , XY, XY , XY(  .

(3)
Interval division

X÷Y � X ×
1
Y

,
1
Y
�

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦, 0 ∉ Y. (4)

Equation (4) shows that for basic interval operations,
interval division with 0 is not allowed.

Interval arithmetic has its own characteristics. For ex-
ample, to find the trigonometric function Sin[0, π].)e upper
and lower endpoint values of the interval are computed by
point numbers, respectively. Sin(0)� 0, sin(π)� 0, and the
upper and lower endpoint values of the obtained function
value are all 0. Is Sin[0, π]� [0, 0]? Surely not! According to
the interval number algorithm, Sin[0, π]� [0, 1], as shown in
Figure 1. Another example is computing Sin [2.6, 7.2]. Using
the upper and lower endpoint values calculated by the point
numerical algorithm, Sin(2.6) � 0.5155, Sin(7.2) � 0.7937,
and the interval between the upper and lower endpoint values
is [0.5155, 0.7937]. However, according to the interval
number algorithm, Sin[2.6, 7.2] � [− 1, 0.9739] instead of
[0.5155, 0.7937].

In fact, the value of a function of a certain interval
variable is the function value field corresponding to the
interval variable and is not the interval value obtained by the
combination of the endpoint values. For example, the in-
terval variable of Sin[0, π] is [0, π], and the corresponding
range is [0, 1] instead of [0, 0], as shown in Figure 1.

)erefore, it is necessary to deeply analyze the algorithm
of interval numbers in interval analysis, and especially the
interval number algorithm for general functions, because it
has a strong practical significance of the correct use of in-
terval analysis.

3. Point Numerical Operation Method for the
Interval Number of Unary Function

3.1. Calculation Method. Let f(x) � ax + b be a linear one-
time linear function, where the independent variable x is the

interval number, that is, x � [x, x], where x is the lower
endpoint value of the interval number x and x is the upper
endpoint value of the interval number x, x≤x. a, b≠ 0.

For the unary linear function f(x) � ax + b, if both a

and b take the point value and the independent variable x is
the interval number, then although x is a positive interval
(i.e. 0≤ x ≤x), a negative interval (i.e. x ≤x≤ 0), or an
interval containing 0 (i.e. x ≤ 0≤ x), the interval number
result of f(x) can be directly calculated by using the upper
and lower endpoint values of x. It is proved that the de-
rivative f′(x) � a of the linear function f(x) � ax + b of
one variable is monotonic in any given interval. )us,
[f(x), f(x)] is the value range of the interval x � [x, x],
that is, the interval number result of the unary linear
function f(x) � ax + b corresponding to the interval
number x � [x, x] is [f(x), f(x)].

Here, whether or not the interval number [f(x), f(x)]

obtained by the point value calculation based on the upper
and lower endpoint values of the argument x � [x, x] is the
value range of the x � [x, x] correspondence function f(x)

is a key condition. Due to the monotonicity of the unary
function, the number of intervals obtained by the point value
based on the upper and lower endpoint values of x � [x, x]

are the value range of x � [x, x] on the function f(x).

3.2. Calculation Example

Example 1. Let f(x) � 3x + 6, try to calculate the interval
number result of the function f(x) of the interval numbers
x1 � [− 9, − 3], x2 � [− 5, 4], and x3 � [7, 10]. Using the upper
and lower endpoint values, f(− 9) � − 21, f(− 3) � − 3,
f(− 5) � − 9, f(4) � 18, f(7) � 27, and f(10) � 36. )en,
the result of the f(x1) interval corresponding to
x1 � [− 9, − 3] is [− 21, − 3]; the result of the f(x2) interval
corresponding to x2 � [− 5, 4] is [− 9, 18]; and the result of
the f(x3) interval corresponding to x3 � [7, 10] is [27, 36].

It is noted that

(1) When a> 0, the number of intervals obtained by the
upper and lower endpoint values of the independent
variable x � [x, x] is the function interval number
result [f(x), f(x)], that is, the lower endpoint value
of x is calculated by the point value to obtain the
interval number result. )e upper endpoint value of
x is calculated by the point value to obtain the upper
endpoint value of the interval number result.

(2) When a< 0, according to the important rule of in-
terval number expression, the lower endpoint value
must be less than or equal to the upper endpoint

y
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π/2 3π/2π 2π x

y = sin (x)

Figure 1: Graph of sin(x) function.
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value, and then the upper and lower endpoints of the
independent variable x � [x, x] are calculated by the
point number, and the function interval number
result becomes [f(x), f(x)]; that is, the function
value calculated from the endpoint value of the in-
dependent variable is the lower endpoint value f(x)

of the result of the f(x) interval number, and the
function value calculated by the endpoint value x of
the independent variable is the upper endpoint value
f(x) of the result of the f(x) interval number.

Based on the interval number algorithm, the interval
number result of f(x) is obtained, which is consistent with
the number of intervals obtained by combining the upper
and lower endpoint values.

3.3. General Conclusion

(1) A general conclusion is now given. Referring to the
nature of higher mathematics for function deriva-
tives, the monotonicity of functions is defined as
follows:

Definition 1 (see Ref. [37]). Let function f(x) be a one-
variable n-order equation as f(x) � axn + b, n> 0, x ∈ D. If
for any two points x, x ∈ D, when x <x, there is a constant:

(1) f(x)<f(x), the function f(x) is said to increase
monotonically (strictly) in D.

(2) f(x)>f(x), the function f(x) is said to be
monotonically reduced in D (strictly).

Definition 2 (see Ref. [37]): Set function f(x) � axn + b,
n> 0, continuous on [x, x], can be guided in [x, x],

(1) if guided in [x, x], and f′(x)> 0, then function f(x)

monotonically increases on [x, x]

(2) if guided in [x, x], and f′(x)< 0, then function f(x)

monotonically decreases on [x, x]

)e interval number operation of the function
f(x) � axn + b satisfying Definitions 1 and 2 can be
directly calculated by using the upper and lower
endpoints of x to calculate the number of intervals of
f(x). At this time, the number of combined intervals
of the upper and lower endpoint values is the result
of the interval number obtained by the functionf(x)

through the interval algorithm. It is necessary to
consider a> 0 and a< 0, the order of combination of
the upper and lower endpoint values of the number
of intervals calculated by the upper and lower
endpoint values of x is different.

(2) Set f(x) � axn + b to avoid the interval width. Re-
lated literature [17] has proved that when the in-
dependent variable x appears only once in the
expression f(x) on the right side, the interval ex-
pansion of the function f(x) result is the interval
hyperwidth � 0, that is, the interval number of f(x)

is the value range of the independent variable f in the

interval [x, x]. For example, for f(x) � x2 − 2x + 6,
f(x) � x2 + x, etc., the argument x in the right
expression only appears twice, and the interval
number of the function result obtained by taking the
upper and lower endpoint values of the argument
interval is not applicable.

Example 2. Let f(x) � axn + b, try to find the interval
number of function f(x) when the interval variable
x � [0, 2]. First, the upper and lower endpoint values are
calculated:f(0) � 6 and f(2) � 10; therefore, when f(x) is
x � [0, 2], the result of interval number function calculation
is [6, 10], which is consistent with the result of using the
interval number function operation rule directly.

Example 3. f(x) � a × (x0.22/b) � (a/b)x0.22, where
a � 0.09 and b � 1. Try the interval number of f(x) when
the interval variable x � [9949, 10551] calculated with the
upper and lower endpoint values:
0.09 × 99490.22÷1 � 0.6820； 0.09 × 105510.22÷1 � 0.6908.
)e number of intervals in which the upper and lower
endpoint values are combined is [0.6820, 0.6908], which is
consistent with the result of the interval number function
operation. )e calculation code of the interval number
function based on the interval analysis calculation tool
INTLAB is as follows:

>>infsup(0.09∗ infsup(9949, 10551)̂ 0.22/1)
intval� [0.6820, 0.6908]

(3) For other functions such as f(x) � x2 − 2x + 6 and
f(x) � x2 + x, we can transform the expression on
the right so that x appears only once, or we can
directly use the upper and lower endpoint values to
obtain the interval value of the function. If f(x) �

x2 − 2x + 6 is rewritten as f(x) � (x − 1)2 + 5, when
x � [0, 2], x is incremented in [0, 1] and mono-
tonically decreases, x is monotonically increasing in
[1, 2], f(0)� 6, f(1)� 5, and f(2)� 6. When x � [0, 1],
f(x) � [5, 6]. When x � [1, 2], f(x) � [5, 6]. Hence,
if x � [0, 2], then f(x) � [5, 6], and this result is
consistent with the operation result of the interval
number function. Similarly, if f(x) � x2 + x is re-
written as f(x) � (x + (1/2))2 − (1/4), the upper
and lower endpoint values of the independent var-
iable x � [x, x] can be used to directly obtain the
interval number result off(x) according to the point
numerical function; and also for f(x) � axn + b,
when n< 0, the number of intervals is obtained by
directly calculating the upper and lower endpoint
values of the independent variable x � [x, x] and
accordingly the point numerical function needs to be
changed; that is, the function value calculated from
the endpoint value of the independent variable is the
f(x) interval. )e function value calculated by the
upper end value of the independent variable is the
lower end value of the result of interval number
f(x), and the function value calculated by the lower
end value of the independent variable is the upper
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end value of the result of interval number f(x) .
Because an important rule of the interval number is
the interval numerical expression, f(x)<f(x),
here, when n< 0, f(x) is calculated by x from the
point value and f(x) is calculated by x. Obviously,
when n> 0, f(x) is calculated from x by point value
and f(x) is calculated by x.

4. Point Number Operating Method of the
Interval Number of Bivariate Functions
and Applications

4.1. Point Number Operating Method of Interval Number of
Bivariate Function. If X and Y in equations (1)–(4) are
regarded as binary linear functions, and equations (1)–(4)
are the binary-time functions addition, subtraction, multi-
plication, and division, the specific method of calculating the
upper and lower endpoint values is adopted. Investigating
equations (1)–(4), the addition rule is easy to understand and
remember, but the subtraction method is more complicated.
We can calculate the interval number of interval subtraction
according to the following steps:

(1) )e sign of the subtracted number is unchanged
(2) Add a negative sign to the subtraction, according to

the number of intervals, and change the upper and
lower endpoints of the interval of the subtraction,
that is, Y � [Y, Y] becomes − Y � [− Y, − Y]

(3) Calculate the sum of the upper and lower endpoint
values of X and –Y to obtain the number of intervals
that are consistent with the calculation results of the
interval subtraction rule

Focus on interval multiplication and interval division.
Equation (3) is the interval multiplication algorithm, and the
lower endpoint value of the interval multiplication calcu-
lation result is min(X Y, X Y, X Y, XY), and the upper
endpoint value is max(X Y, X Y, X Y, XY). )e upper and
lower endpoint values of the interval multiplication calcu-
lation include a total of four values, namely, X Y, X Y, X Y,
and XY.

(1) First case: X � [X, X], Y � [Y, Y] ∈ IR, 0≤ X ≤X,
0≤ Y ≤Y

Obviously, X Y ≤ X Y, X Y ≤XY; at this time, no
matter if X Y and X Y are big or small; in the four
values X Y, X Y, X Y, XY, the smallest is X Y and the
largest is XY. In this case, when all the interval
parameters are greater than 0, it is very convenient to
use the interval endpoint value to calculate the in-
terval number.

(2) Second case: X � [X, X]Y � [Y, Y] ∈ IR, X ≤X≤ 0,

Y ≤Y≤ 0.
Evidently, when the number of the two multiplied
intervals is a negative interval, XY≤X Y, X Y≤ X Y,
no matter which is X Y and X Y and which is small; in
the four values X Y, X Y, X Y, XY, the smallest is XY

and the largest is X Y. We can directly use the lower
endpoint value of X to multiply the lower endpoint

value of Y in order to obtain the upper endpoint value
of the interval number; multiply the upper endpoint
value of X by the upper endpoint value of Y to obtain
the lower endpoint value of the interval number.

(3) )ird case: X � [X, X], Y � [Y, Y] ∈ IR, X ≤
X, Y ≤Y.
)e value of the four endpoints X, X, Y, and Y is
either positive or negative. Among the four values
X Y, X Y, X Y, XY, the judgment of the size rela-
tionship between them is complicated by the exis-
tence of the sign, such as [− 3, 2]× [− 5, − 4]� [− 10,
15] and [− 3, 2]× [− 5, 4]� [− 12, 15]; that is, XY and
X Y are not necessarily the largest and smallest of the
four values, and it is possible that X Y and X Y are
the largest and lowest of the four values. Because the
third case is too complicated to calculate the interval
number using the endpoint value, it is recommended
to use the INTLAB correlation interval calculation
tool to calculate the result directly.

4.2. Engineering Application Examples. In general, in engi-
neering applications, some of the parameters including the
equations used to fit the series of parameters aremostly positive
intervals. For example, in pavement engineering, the uniaxial
compressive strength, four-point bending strength, and split-
ting strength test results of the cement-stabilizedmacadambase
material can be fitted by an equation containing a natural
logarithmic function, such as the following equation:

Sc � a + b ln(t + c). (5)

In equation (5), Sc is strength, t is age, and a, b, and c are
all fitting parameters. According to the interval four algo-
rithm, the two interval numbers are added together, and the
upper and lower endpoint values can be directly added to
obtain the interval number result. )e interval number
calculation formula of equation (6) is

Sc , Sc  � a, a  + b ln t + c( , b ln(t + c) 

� a + b ln t + c( , a + b ln(t + c) .
(6)

)e key is to check whether [b ln(t + c), b ln(t + c)] can
be the number of intervals in which the upper and lower
endpoint values are calculated to obtain the result.

If f(x) � ln(t + x) is set, then its derivative
f′(x) � 1/(t + x). When f′(x) � 0, that is, x � − t, the
function ln(t + x) has opposite properties on both sides of
x � − t. )erefore, the interval including –t needs to be
decomposed into two intervals, namely, [x, − t] and [− t, x].
)e number of intervals of ln(t + x) can be calculated by
using the upper and lower endpoint values.

For example, ln(7 + [4, 6]) � [ln(7 + 4),
ln(7 + 6)]� [ln 11, ln 13] � [2.3979, 2.5649] is consistent
with the results calculated by the interval analysis calculation
tool INTLAB.

If a, b, and c are positive intervals, [Sc, Sc] can be directly
calculated using the upper and lower endpoint values of a, b,

and c.
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For example, [Sc, Sc] � [1.2, 1.4] + [2.3, 2.6] × ln(90 +

[5.1, 5.3]) � [1.2 + 2.3 × ln(90 + 5.1), 1.4 + 2.6 × ln (90+

5.3)] � [11.68, 13.25], which is consistent with the results
calculated using the INTLAB tool.

Consider a more general case of a binary function: as-
sume f(x, y) � xayb, where x, y> 0 and a, b> 0. Obviously,
f(x, y) in this case—xa and yb are both increasing func-
tions—satisfies the first case of interval multiplication.
)erefore, the upper and lower endpoint values of x, y and
a, b can be directly used to calculate the interval number of
f(x, y), which is

f(x, y), f(x, y)  � xayb, x
a
y

b
 . (7)

In equation (7), it is assumed that x, y> 0 and a, b> 0.
For example,f(x, y) � [2.1, 5.3][0.22,0.24]× [5.2,

6.1][0.08,0.09] � [2.10.22 × 5.20.08, 5.30.24 × 6.10.08] �

[1.3433, 1.7559], which is consistent with the results cal-
culated using the INTLAB tool.

If f(x, y) � xa + yb and x, y> 0, a, b> 0, the number of
intervals of f(x, y) can also be calculated directly by using
the upper and lower endpoint values of x, y and a, b, which is

f(x, y), f(x, y)  � xa + yb, x
a

+ y
b

 . (8)

)e division of the binary function can be changed into
the multiplication of binary function by changing the for-
mula. Referring to the above, the interval number results can
be directly calculated by using the upper and lower endpoint
values. For example, in the early fatigue damage research, the
Miner linear model is an earlier theory, and its basic
structure is as follows (9):

D(N) �
N

Nf

, (9)

where Nf is the fatigue life and N is the number of loads.
Equation (9) is rewritten into equation (10):

D(N) � N ×
1

Nf

, (10)

where [Nf , Nf] of equation (9) is rewritten as

[1/Nf, 1/Nf ] instead of [1/Nf , 1/Nf].

5. Point Number Operating Method of the
Interval Number of Multivariate Functions

For ternary function expressions, let
f(x, y, z, · · ·) � xaybzc, · · · , x, y, z, · · · > 0, a, b, c · · · > 0.
Obviously, in this case, f(x, y, z, · · ·) is an increasing
function, which satisfies the first case of interval multipli-
cation, so the upper and lower endpoint values of
xa, yb, zc, · · · can be directly used to calculate the interval
number of f(x, y, z, · · ·), which is

f(x, y, z, · · ·), f(x, y, z, · · ·)  � x
a
y

b
z

c
, · · · , x

a
y

b
z

c
, · · · .

(11)

If f(x, y, z, · · ·) � xa + yb + zc + · · ·, and
x, y, z, · · · > 0, a, b, c, · · · > 0, you can also directly use the
upper and lower endpoint values of x, y, z, · · · , a, b, c, · · · to
calculate the interval number of f(x, y, z, · · ·), which is

f(x, y, z, · · ·), f(x, y, z, · · ·) � xa + yb + zc + · · · , x
a

+ y
b

+ z
c

+ · · · .

(12)

)e division of multivariate functions can be trans-
formed into the multiplication of multivariate functions by
changing their formulas. Referring to the above, the results
of the interval numbers can be directly calculated by using
the upper and lower endpoints.

6. Examples of Asphalt Pavement Structure
Design and Checking Calculation

)e basic data of asphalt pavement structure design, namely
traffic volume data, are very different from the theoretical
prediction. It is unreasonable to use the point numerical
traffic volume to design the asphalt pavement structure. It is
possible to consider the number of traffic intervals to design
the pavement structure.

6.1. Axle Load Conversion and Accumulated Equivalent Axis
Interval Number Calculation. )e axle load conversion at
each level uses the following equation:

N1 � 

k

i�1
c1c2ni

pi

p
 

4.35

. (13)

N1 is the standard axle load equivalent axle number,
times/day; ni is the converted vehicle axle load action
number at all levels, times/day; p is the standard axle load,
kN; pi is the converted vehicle axle load at all levels, kN; k is
the converted vehicle type; c1 is the axle number coefficient,
c1 � 1 + 1.2(m − 1), and m is axle number. When the shaft
spacing is greater than 3m, the calculation is based on a
single axle load. When the shaft spacing is less than 3m, the
axle coefficient should be considered; c2 is the the wheel
group coefficient, and the single-wheel group is 6.4, the two-
wheel group is 1.0, and the four-wheel group is 0.38.

As we all know, ni, the number of axle loads converted
into vehicles at all levels, is obtained directly from the traffic
flow observation data. Due to the observation of traffic flow,
there are various statistical methods, such as manual,
electronic, and toll stations. )ere are more or less statistical
errors in these statistical methods. )e traditional calcula-
tion of ni in the form of point values cannot fully reflect the
complex characteristics of traffic flow. If the statistical error
of a certain class of axle load traffic (vehicle/day) is ±1%, then
the traffic volume interval parameter
is[ni − ni × 1%, ni + ni × 1%].

According to the point numerical operation method of
the interval number of the unary function in the second
section, equation (13) directly calculates the lower endpoint
value of the equivalent axis sub-N1 interval number of the
standard axle load using the lower endpoint value ni − ni ×
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1% and calculates the standard using the upper endpoint
value ni + ni × 1%. )e upper endpoint value of the number
of equivalent N1 subintervals of the axle load, assuming the
axle number coefficient c1 is 1, the wheel group coefficient c2

is 1, pi is 55.1 kN, p is 100 kN of the standard axle load,
vehicle type k is 1, and ni is 1000 times a day, is calculated as
follows:

N1 � 1 × 1 ×(1000 − 1000 × 1%) ×
55.1
100

 
4.35

, 1 × 1 ×(1000 + 1000 × 1%) ×
55.1
100

 
4.35

 

� [74.07, 75.57] times/day.

(14)

)us, the formula for calculating the number of intervals
for the cumulative equivalent axis Ne is

Ne , Ne  �
(1 + c)

t
− 1  × 365
c

N1 , N1 η. (15)

Ne is the cumulative equivalent axle number; η is the
lane coefficient value according to specifications; t is the
design years; c is the design years, the annual average growth
rate of traffic volume forecast; and N1 is the standard axle
load equivalent axle number, next/day. Now, if
[N1 , N1] � [4780.9, 4877.9], c � 0.055, t � 15, and η � 0.5,

according to the second section, equation (15) can directly
calculate the equivalent axis subrange Ne of the standard
axle load using the lower endpoint value N1 . )e lower
endpoint value of the number is calculated using the upper
endpoint value N1 to obtain the upper endpoint value of the
equivalent axis sub-Ne interval number of the standard axle
load. After calculation, [Ne , Ne] � [1.9551, 1.9949] × 107.

6.2. Interval Number Calculation of Structural Coefficient of
Tensile Strength. )e road grade coefficient Ac is 1.0, the
surface layer is asphalt concrete, the surface type coefficient
As is 1.0, the semirigid base course is 1.0, and the pavement
structure type coefficient Ab is 1.0. For the asphalt concrete
surface, the interval number of the structural coefficient of
tensile strength is calculated as follows:

Ks , Ks  � 0.09 ×
Ne
′ , Ne
′ 

0.22

Ac

.
(16)

)e stable aggregates for inorganic binders:

Ks , Ks  � 0.35 ×
Ne
′ , Ne
′ 

0.11

Ac

.
(17)

For inorganic binder stabilized fine-grained soils:

Ks , Ks  � 0.45 ×
Ne
′ , Ne
′ 

0.11

Ac

.
(18)

In equations (16)–(18), Ne, Ne
′—cumulative equivalent

axes. Among them, Ne
′ is the cumulative equivalent axis for

calculating the bending and tensile stresses at the bottom of
the semirigid base course. From Section 2, Example 3, we can

see that equations (16)–(18) directly calculate the lower
endpoint value Ks of the equivalent axle number Ks interval
of the standard axle load using the lower endpoint value Ne ,
Ne
′ and calculate the upper endpoint value Ks of the

equivalent axle number Ks interval of the standard axle load
using the upper endpoint value Ne, N′.

6.3. Calculation of the Number of Tensile Stress Intervals in
Each Layer of the Material. )e formula for calculating the
allowable tensile stress of the pavement structural layer
material is

σR �
σs

Ks

. (19)

σR is the allowable tensile stress of pavement structural
layer materials, MPa; ultimate tensile strength of σs is the
structure layer material, MPa, determined by experiment;
and structural coefficient of Ks is the tensile strength.

For the asphalt concrete surface layer, if the tensile
strength structural coefficient is the interval number, then

σR , σR  �
σs

Ks , Ks 
. (20)

For the calculation of equation (20), one thing to note is
since [Ks , Ks] is a divisor, it needs to be rewritten as

σR , σR  � σs ×
1

Ks , Ks 
� σs ×

1
Ks

,
1

Ks

⎡⎣ ⎤⎦. (21)

For the calculation of equation (21), the lower endpoint
value σR of the allowable tensile stress σR interval number
can be directly calculated by using the lower endpoint value
1/Ks and the upper endpoint value σR of the allowable tensile
stress σRinterval number can be calculated by the upper
endpoint value 1/Ks .

σs is the ultimate tensile strength of the structural layer
material. According to the relevant technical regulations of
the test, the tensile strength test results shall be provided in
accordance with the National Standard of the People’s
Republic of China, “Measurement Uncertainty Evaluation
and Expression” (GB/T 27418-2017). )e degree of certainty
report if the result of the tensile strength test including the
uncertainty is the interval number [σs , σs], then equation
(21) becomes
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σR , σR  � σs , σs  ×
1

Ks

,
1

Ks

⎡⎣ ⎤⎦ �
σs

Ks

,
σs

Ks

⎡⎣ ⎤⎦. (22)

Table 1 shows the calculation results of the allowable
tensile stress design interval for each structural layer of a
road surface.

6.4. Interval Number Calculation of Asphalt Mixture Pene-
tration Strength. )e penetration strength of asphalt mix-
ture of inorganic binder stabilized base asphalt pavement,
asphalt binder stabilized subbase asphalt pavement, and
cement concrete base asphalt pavement should meet the
following requirements:

Rτs �
0.31lgNe5 − 0.68

lg Ra  − 13.1lgTd − lgψs + 2.50
 

1.86

. (23)

Specific explanations of the parameters in equation (23)
can be found in formula 5.5.8-1 of Highway Asphalt
Pavement Design Code (JTG D50-2017). If the cumulative
equivalent axis Ne5 is considered as interval number
[Ne5 , Ne5], the formula for calculating the interval number
of penetration strength is as follows:

Rτs , Rτs  �
0.31lg Ne5 , Ne5  − 0.68

lg Ra  − 13.1lgTd − lgψs + 2.50
⎛⎝ ⎞⎠

1.86

.

(24)

According to Section 2, equation (24) can directly cal-
culate the lower endpoint value Rτs of the penetration
strength Rτs interval number using the lower endpoint value
Ne5 and the upper endpoint value Rτs of the Rτs interval
number using the upper endpoint value Ne5.

6.5. Fatigue Cracking Check of Asphalt Mixture Layer.
)e fatigue cracking life of the asphalt mixture should be
calculated according to the pavement structure, and the
bottom strain of the asphalt mixture layer is calculated
according to the following equation:

Nf1 � 6.32 × 1015.96− 0.29β
kakbk

− 1
T1 ×

1
εa

 

3.97 1
Ea

 

1.58

(VFA)
2.72

.

(25)

For a detailed explanation of the parameters in equation
(25), see the road asphalt pavement design specification
(JTG D50-2017) formula B.1.1-1, where εa is the bottom
strain of the asphalt mixture layer, calculated according to
the theory of the elastic layer system. If εa is considered to be
the interval number [εa , εa], the interval [Nf1 , Nf1] of the
fatigue cracking life is calculated as

Nf1 , Nf1  � 6.32 × 1015.96− 0.29β
kakbk

− 1
T1 ×

1
εa , εa 

⎛⎝ ⎞⎠

3.97
1

Ea

 

1.58

(VFA)
2.72

. (26)

At this time, because [εa , εa] is in the molecular position
of fraction, i.e., a divisor, the lower point value Nf1 of the
fatigue crack life interval number cannot be calculated di-
rectly by using the lower point value εa and the upper end

value Nf1 of the fatigue crack life interval number can be
calculated by using the upper end value εa.

According to the interval division calculation rule,
combined with the third section of the article and equation
(10), equation (26) can be rewritten as

Nf1 , Nf1  � 6.32 × 1015.96− 0.29β
kakbk

− 1
T1 ×

1
εa

,
1
εa

⎡⎣ ⎤⎦⎛⎝ ⎞⎠

3.97
1

Ea

 

1.58

(VFA)
2.72

. (27)

At this time, the lower endpoint value Nf1 of the fatigue
cracking life interval number can be directly calculated by
using the lower endpoint value 1/εa and the upper endpoint
value Nf1 of the fatigue cracking life interval number can be
calculated by using the upper endpoint value 1/εa .

6.6. Verification of Permanent Deformation of Asphalt Mix-
ture Layer. According to the rutting test under standard
conditions, the permanent deformation of each layer of
asphalt mixture in rutting test is obtained, and the

permanent deformation of each layer and the total per-
manent deformation of asphalt mixture layer are calculated
according to the formula B.3.2-1 of highway asphalt pave-
ment design code (JTG D50-2017). )e formula for calcu-
lating the permanent is as follows:

Rai � 2.31 × 10− 8
kRiT

2.93
pefp

1.80
i N

0.48
e3

hi

h0
 R0i. (28)

Specific explanations of the parameters in the formula
can be found in formula B.3.2-1 of Highway Asphalt
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Pavement Design Code (JTG D50-2017). If the cumulative
equivalent axis Ne3 is the interval number [Ne3 , Ne3], the
calculation formula for the i-layer permanent deformation
interval number is

Rai , Rai  � 2.31 × 10− 8
kRiT

2.93
pefp

1.80
i × Ne3 , Ne3 

0.48 hi

h0
 R0i.

(29)

According to the second section, equation (29) can di-
rectly calculate the lower endpoint value Rai of the i-layer
permanent deformation amount Rai interval using the lower
endpoint value Ne3 and the upper endpoint value Rai of the
Rai interval number using the upper endpoint value Ne3.

6.7. Vertical Compressive Strain Check on the Top Surface of
the Subgrade. According to the following formula, vertical
compressive strain check on the top surface of the subgrade
is

εz  � 1.25 × 104− 0.1β
kT3Ne4( 

− 0.21
. (30)

Specific explanations of the parameters in equation (30)
can be found in formula B.4.1 of Highway Asphalt Pavement
Design Code (JTG D50-2017). If the cumulative equivalent
axis Ne4 is the interval number [Ne4 , Ne4], the formula for
calculating the allowable vertical compressive strain interval
of the top surface of the subgrade is as follows:

εz  � 1.25 × 104− 0.1β
kT3( 

− 0.21
( Ne4 , Ne4  )

− 0.21
. (31)

Since the index of Ne4, that is, − 0.21, is negative, it needs
to be rewritten as

εz , εz  � 1.25 × 104− 0.1β
kT3( 

− 0.21 1
Ne4

,
1

Ne4

⎡⎣ ⎤⎦⎛⎝ ⎞⎠

0.21

.

(32)

After this, according to the second section, equation (32)
can directly calculate the lower endpoint value εz of the
allowable vertical compressive strain εz interval number of
the top surface of the subgrade using the lower endpoint
value 1/Ne4 and the upper endpoint value of the number εz

of the εz interval using the upper endpoint value 1/Ne4 .
In addition to the penetration strength of the asphalt

mixture, fatigue cracking check, permanent deformation
check, vertical pressure, and strain test of the roadbed top
surface, the new road asphalt pavement design specification
also stipulates subgrade elastic modulus, asphalt surface low
temperature cracking index, antifreeze, design parameters,

and so on and performs indicator checks such as thickness
check and acceptance deflection. )e specific analysis can be
carried out according to the formula. Referring to the
methods described in Sections 2–4, the expression is re-
written or some parameters are simplified, and the design
parameters and the calculation formulas for the calculation
index suitable for directly calculating the interval number of
the upper and lower endpoints of the independent variable
are established.

7. Conclusions

)is paper discusses the transformation of the complex
interval number function algorithm into the point numerical
algorithm and provides a simple and easy interval analysis
process and method for the various calculation tools and
software that generally use the point numerical algorithm.
Taking the calculation and verification of interval parame-
ters of asphalt pavement structure as an example, the theory
and method discussed in the article are verified, and the
following conclusions are obtained:

(1) According to the upper and lower endpoint values of
the function argument x � [x, x], the number of
intervals obtained by the point value operation, if the
independent variable x � [x, x] corresponds to the
value range on the function f(x), then the number
of intervals obtained using the upper and lower
endpoint values of the argument is equal to the
interval number of function obtained by the interval
number algorithm.

(2) In the unary function, if the argument in the right
expression only appears once, and the monotonicity
of the function is consistent within the interval of the
independent variable, the upper and lower endpoint
values of the argument interval can be used to obtain
the interval number of the function.

(3) For a binary function, especially when multiplying
two independent variables, the positive and negative
values of the independent variable interval must be
considered. When the first and second cases in
Section 3 of this paper are satisfied, the number of
intervals can be obtained by calculating the upper
and lower endpoint values of the two independent
variable intervals.

(4) For the multivariate function, the situation is more
complicated, and there are many factors to consider.
We can learn this from the example in Section 4 of
the article.

Table 1: Number of allowable tensile stress design intervals for each layer of pavement.

Material name h (cm) Allowable tensile stress (MPa)
Fine-grained asphalt concrete 4 [0.3826, 0.3899]
Medium granular asphalt concrete 6 [0.2725, 0.2793]
Coarse asphalt concrete 8 [0.2174, 0.2240]
Cement gravel 25 [0.2233, 0.2331]
Lime soil 40 [0.0779, 0.0853]
Soil base — —
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(5) )e division of unary, binary, and multivariate
functions can be multiplied by the change in the
expression, and then the upper and lower endpoint
values are used to calculate the interval number as
described in this paper.

(6) When calculating the interval number of the func-
tion using the upper and lower endpoint values of the
independent variable, if the coefficient or the index
in front of the independent variable is greater than 0,
and the function expression only adds and multiplies
the two operations, the interval number calculation
is relatively simple. However, when the coefficient or
exponent of the independent variable is less than 0,
and the function expression has two operations of
subtraction and division, the interval number cal-
culation is more complicated and needs careful
analysis.

In conclusion, this research provides a convenient and
easy-to-implement process and method for the popu-
larization of interval analysis theory. In the current
analysis and calculation of road mechanics, most of the
parameters involved are positive numbers, that is, greater
than zero. In addition, the mechanical parameter mea-
surement uncertainty report provided by the national
standard “Measurement Uncertainty Evaluation and
Representation” (GB/T 27418-2017) is mostly a positive
interval value. In practical applications, the data pro-
cessing software and various other point numerical cal-
culation tools can be directly used to quickly obtain the
interval number of parameters, thereby avoiding com-
plicated interval algorithm programming. However,
further analysis of the mechanical mechanics of the
pavement involves complex operations such as differen-
tiation, integration, and even matrix, especially numerical
simulation. In future, how to simplify the calculation of
interval numbers in such complex operations is an im-
portant issue to be solved.
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