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The traveling salesman problem (TSP) is one of the most famous problems. Many applications and programming tools have
been developed to handle TSP. However, it seems to be essential to provide easy programming tools according to state-of-the-
art algorithms. Therefore, we have collected and programmed new easy tools by the three object-oriented languages. In this paper,
we present ADT (abstract data type) of developed tools at first; then we analyze their performance by experiments. We also design
a hybrid genetic algorithm (HGA) by developed tools. Experimental results show that the proposed HGA is comparable with the
recent state-of-the-art applications.

1. Introduction

The objective of TSP is to find the shortest tour among a set
of cites. Given the distance matrix 𝐷(𝑑

𝑖𝑗
) where 𝑑

𝑖𝑗
stands

for distance between the city 𝑖 and 𝑗, the problem is called
symmetric TSP (STSP) when 𝑑

𝑖𝑗
= 𝑑
𝑗𝑖
and, otherwise, it is

named asymmetric TSP (ATSP).
Since TSP is NP-Complete, there is no exact algorithm

with time complexity better than an exponential time. It
means that exact algorithms are not practical for the large-
scale instances in reasonable running times, so we have to
use approximate algorithms to find the semioptimal solutions
in acceptable running times. Recently, many approximate
algorithms have been developed to handle TSP instances [1–
4]. The types of metaheuristics like genetic algorithms (GA)
[5–7], simulated annealing [8], swarm based algorithm [9],
artificial bee colony algorithm [10], ant colony algorithms [11,
12], and combination of these algorithms have been applied
to the TSP [13, 14]. However, if we consider the experiment
sections of these references, we observe that almost all of
these algorithms have not been applied to the instances with
size of more than 1000. Among these metaheuristics, surly,
Lin-Kernighan (LK)which is a type of local search algorithms

(LSAs) (in this paper, LS points to the local search) is one
of the best algorithms in which its extended types have been
successfully applied to the large-scale instances with size of
more than 85000 nodes [3, 15]. In addition, in many cases,
these algorithms have been used in other metaheuristics and
have increased their performance [2, 11, 16].

LSAs include 2- and 3-opt and Lin-Kernighan (LK)
algorithms have been based on edges exchange process [1,
3, 15, 17]. GAs are population-based and their efficiency
depends on their operators [4]. To easily use these algorithms,
we have programmed objective tools by three object-oriented
languages which include C++, C#, and Java.These tools allow
the researchers or developers to exploit these metaheuristics
easily and create their own hybrid algorithms (these tools will
be available via email request to esmkha@gmail.com (subject:
TSP Tools)).

Developed tools in this paper mainly focus on types of
genetic operators and LSAs; however, types of ant colony
optimization (ACO) have been implemented separately and
will be available. The implementation of LSAs has been
based on LKH implementation [1, 15, 18] which is one
of the most famous and effective implementations of LK.
In addition, some famous initial-solution constructors like
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Suppose tour 𝑇 with 𝐸
𝑇
edges that is defined on graph G(V, E):

(1) Suppose direction for 𝑇.
(2) If there are not nodes like A, B, C and D with below conditions then go to end.
(i) AB, CD ∈ 𝐸

𝑇

(a) In supposed direction, B and D are right nodes of A and C respectively.
(ii) Cost(AB) + cost(CD) > cost(AC) + cost(BD)

(3) Remove AB and CD form 𝐸
𝑇
and add AC and BD to it (2-opt-move).

(4) Go to (2).
(5) End.

Algorithm 1: General algorithm for 2-opt.

Quick-Boruvka and nearest neighbor (NN) strategy have
been included in these tools.The genetic operators have been
selected from literature. These operators include the PMX
[19], EPMX [20], VGX [21], IGX [5], GX (description of this
operator and its versions can be found in [5, 19, 21, 22]), GSX-
0, GSX-1, GSX-2, DPX [16], and OX [23]. The implemen-
tations of these operators are effective. Experimental results
show that, in almost all cases, the performance (in the terms
of running time and accuracy) of developed operators is even
better than reported results in their references.

This paper is not limited to the developed tools only.
A type of hybrid GA which is proposed in this paper and
uses a two-storey strategy is fast and accurate. Experimental
results show that performance of proposed hybrid algorithm
outperforms one of the recent state-of-the-art algorithms.

With these descriptions, this paper is organized as fol-
lows: in the rest of this paper, we briefly describe LSAs and
the ADT of their programming pack. We review GA, its
operators, and the ADT of their class in the third section.
In Section 4, we combine the LK into the GA and design
a hybrid GA. We put forward experimental results of these
algorithms in Section 5 and finally summarize the paper in
Section 6.

2. LSAs

Majority of LSAs for TSP have been based on the edges
exchange process. The 2- opt, 3-opt, and LK are three
important algorithms that are categorized in LSAs. We have
programmed these heuristics by C++, C#, and Java. In this
section, we review their algorithms briefly, and then we state
ADTs of their programming tools.

2.1. The 2-Opt. The 2-opt is a special case of the 𝐾-OPT. A
tour is named 𝐾-OPT, if it is impossible to decrease the cost
of tour by changing 𝐾 number of edges. The 2-opt converts
an input tour to its possible 2-opt case. Algorithm 1 shows the
general algorithm for the 2-opt.

Instruction 3 in Algorithm 1 is named 2-opt-move or
2-change that is shown in Figure 1. In the 2-opt algorithm
the 2-opt-move occurs when conditions in instruction 2 are
satisfied. Time complexity of running exact 2-opt is high,
so, to improve speed of the 2-opt algorithm, researchers
usually use two important rules which have been proposed
by Bentley.

A B

D C

A B

D C

2-opt-move

Figure 1: 2-opt-move.

(1) For each node A in line 2, we only consider its
candidate nodes. Usually the five nearest neighbors
are selected to make a candidate set of each node.
These sets can be approximately calculated by k-d-tree
[25] in 𝑂 (𝑛 log2𝑛).

(2) In the instruction 2, only the active nodes are consid-
ered. The nodes which have participated in tour cost
reduction in previous iteration are activated for the
next iteration.This heuristic is known as “do not-look
bits” [26].

2.2. 3-OPt. The 3-opt operates like the 2-opt but its condi-
tions to exchanging edges is rather complicated (see [27]).
Algorithm for the 3-opt in each step probes 3 edges to
exchanging, so when three edges are deleted, six considerable
cases appear and probing these cases increases time complex-
ity and algorithm becomes more complicated to implement.

2.3. LK. The types of LK may be the best heuristics that
have been successfully applied to TSP. Furthermore, other
metaheuristics like GAs widely use variant versions of this
heuristic to improve their solutions. For more description
about LK, we recommend readers to refer to [15, 17] but here
we present this algorithm in brief. The LK can be introduced
by the three words: “break,” “link,” and “condition test”. The
LK algorithm is done in some iterations. In each iteration,
it exchanges some edges by another to reduce tour cost.
Appendix A shows a simple algorithm for LK.

2.4. Review ADT of Class for LSAs. To implement LSAs,
we need to define some primitive data structure like graph
and tour at first, because these data structure definitions are
necessary for other parts of program and classes. In the rest
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//nodes indexes start at 0 and go up to graph dimenion− 1

(1) class Graph

(2) {
(3) public:

(4) Graph(char∗ path);

(5) ∼Graph();

(6) int D(int node1,int node2);

(7) int D(int x1,int y1,int x2,int y2);

(8) int Dimension();

(9) double X(int node);

(10) double Y(int node);

(11) };

Algorithm 2: Graph ADT.

(1) class Tour

(2) {

(3) public:

(4) Tour(Graph∗ graph);//tour constructor gives a gaph object pointer as argument

(5) ∼Tour();

(6) int Add Right(int node); //exends uncomlete tour from right

(7) int Add Left(int node); //exends uncomlete tour from left

(8) int Right(int node); // return right neighbour of node in complete tour

(9) int Left(int node); //return left neighbour of node in complete tour

(10) unsigned long long Cost(); //computes and returns cost

(11) void InitiateRandomly();//forms tour by sequence: 0, 1, . . ., dimenion− 1

(12) Tour∗ Copy();

(13) short IsComplete();//if tour is complet, this function returns 1 otherwise 0.

(14) void reset();

(15) };

Algorithm 3: Tour ADT.

of this subsection, we define class for graph and tour at first;
then, we present class for heuristic methods.

2.4.1. Graph Class. Our graph implementation has been
packed in Graph class. It can read .tsp files and compute
distance between nodes. It supports all known TSP formats
like GEO, GEOM, ATT, EU-2D, and CEIL-2D. Algorithm 2
shows Graph ADT. Graph class object should read TSP file
by its constructor as soon as it is created (line 4).

2.4.2. Tour Class. Tour ADT is shown in Algorithm 3. Tour
object is created to belong to Graph object. Tour object is
completed after adding 𝑛 (= dimension) nodes, either adding
to the right (by using function in line 6) or adding to the left
(by using function in line 7).

2.4.3. Heuristics Class. We have packed 2-opt, 3-opt, LK,
Quick-Boruvka, and double-bridge into the Heuristics class.
To manipulate the candidate sets, we have also added some
functions into theHeuristics class. Quick-Boruvka is effective
tour constructor algorithm. Double-bridge is usually used
to mutate. Algorithm 4 shows Heuristics class ADT. The LK
method in Heuristics class has been based on latest version of
LKH, so-called LKH-2, and its source code is in C language
and free for academic use [18].

3. Genetic Algorithm
Genetic algorithm is one of the search algorithms that is
inspired by evolutionary process of nature. In recent years,
researchers have solvedmanyNP-Complete problems byGA,
scheduling [28, 29], routing [30], and assignment [31, 32] and
many other problems have been solved by GA effectively in
recent years. GA works with population of solutions and, in
each step, new solution is created by the crossover operator, or
one or more solutions are changed by the mutation operator.
The crossover operators usually get two solutions from the
population. These two solutions are so-called parents (or the
father and mother). The crossover creates new solution(s)
based on the parents. The new solution is called child or
offspring. There is question in which solutions are suitable
to submit to mutation or crossover operators. There are
some papers answering this question [33, 34]. Crossover and
mutation are two operators of GA which play an important
role in evolution of solutions of GA. Generally, LSAs include
LK extensions such as iterated LK (ILK) [3] and LKHversions
[1, 15] are very powerful in dealing with TSP. However, there
are some effective GA or extensions like Nagata’s one [4]
that uses very efficient crossover operator, so-called edge
assembly crossover (EAX). In this section, we review some
of these crossover operators which have been included in the
developed tools.
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/∗ We implement this class function according to LKH [18] that is free for academic use.∗/

(1) class Heuristics

(2) {

(3) public:

/∗ Heuristic object compute candidate sets as soon as created, second argument in

constructor is the number of candidates in each set.∗/

(4) Heuristics(Graph∗ graph, int NumberOfCandidates);

(5) ∼Heuristics();

/∗ Both of lines (6) and (7) shows the 2-OPT but function in line (6) consider all of nodes

as active but function (7) supposes only nodes in ActiveNodes array are active ∗/

(6) void TwoOpt(Tour∗ tour);

(7) void TwoOpt (Tour∗ tour, int∗ActiveNodes, int NumberOfActiveNodes);

/∗ Both of lines (8) and (9) shows the 3-OPT but function in line (8) consider all of nodes

as active but function (9) supposes only nodes in ActiveNodes array are active ∗/

(8) void ThreeOpt(Tour∗ tour);

(9) void ThreeOpt (Tour∗ tour, int∗ActiveNodes, int NumberOfActiveNodes);

/∗ Both of lines (10) and (11) shows the LK but function in line (10) consider all of nodes

as active but function (11) supposes only nodes in ActiveNodes array are active ∗/

(10) void LinKernighan(Tour∗ tour);

(11) void LinKernighan(Tour∗ tour, int ∗ActiveNodes, int NumberOfActiveNodes);

(12) void DoubleBridge(Tour∗tour);

(13) Tour∗ Q Boruvka();

(14) int SetCandidates(int node, int candidate, int index);

(15) int GetCandidates(int node, int index);

(16) void SetBestTour(Tour∗best tour);

(17) };

Algorithm 4: Heuristics ADT.
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Figure 2: PMX example.

3.1. Genetic Operators Review. Many GA crossover operators
have been invented by researchers because the performance
of GA depends on an ability of these operators. PMX [19]
is one of the first crossovers which have been proposed by
Goldberg and Lingle in 1985. Reference [20] states some
shortcomings for PMX and to overcome them, proposing
extended PMX (EPMX). DPX [16] is another crossover that
produces child with greedy reconnect of common edges in
two parents. Greedy subtour crossovers (GSXs) [24, 35, 36]
family is another group of crossovers that operate fast. GSX-2
[36] is improved version ofGSX-0 [35] andGSX-1 [24]. Order
crossover (OX) proposed by Davis is another one in which its
extensions not only have been applied on TSP [23] but also
solved many other NP-Completes [32, 37].

In this subsection, we represent some of the recent
GA crossovers and introduce them by examples. In these
examples, we use the graph with eight nodes as this set: {1,
2, 3, 4, 5, 6, 7, 8} that its edges weight is as shown in Table 1.

3.1.1. PMX Crossover. Partially mapped crossover (PMX) is
one of the first genetic operators. It produces two children

Table 1: Distance matrix for examples.

1 2 3 4 5 6 7 8
1 0 12 19 31 22 17 23 12
2 12 0 15 37 21 28 35 22
3 19 15 0 50 36 35 35 21
4 31 37 50 0 20 21 37 38
5 22 21 36 20 0 25 40 33
6 17 28 35 21 25 0 16 18
7 23 35 35 37 40 16 0 14
8 12 22 21 38 33 18 14 0

according to two parents by exchanging nodes between two
arbitrary points.

PMX is unable to detect the same nodes from mapped
areas. In Figure 2, it can be easily seen that PMX cannot
determine that node 7 is common in both mapped areas.
PMX is double point crossover and these crossovers are
not suitable to solve TSP. These defects can cause repetitive
children production by this crossover [20].
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(1) Node X← select random node;

(2) Copy X to child;

(3) Node R← X;

(4) Node L← X;

(5) while(true)

(6) {

(7) R← right neighbor of R in father tour;

(8) L← left neighbor of L in mother tour;

(9) if R is in child then break while loop;

(10) if L is in child then break while loop;

(11) Add node R to child right side;

(12) Add node L to child left side;

(13) }

(14) Complete child by remaining nodes (nodes haven’t been copied to child tour yet) in random;

(15) return child;

Algorithm 5: Pseudocodes for GSX-0.
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Figure 3: Examples for GSX-0 and GSX-1.

3.1.2. EPMX Crossover. Reference [20] tries to overcome
PMX’s shortcomings and proposes extended PMX (EPMX).
It selects one arbitrary point and exchanges unique nodes
before this arbitrary point and produces two children. As
example of EPMX, given father = 1-2-3-4-5-6-7-8 andmother
= 1-4-8-6-2-3-5-7, suppose that arbitrary point = 4 so father
= 1-2-3-4|5-6-7-8 andmother = 1-4-8-6|2-3-5-7 are divided to
two sublists. Nodes 2 and 3 from first sublist of father are not
repeated in first sublist ofmother and nodes 8 and 6 fromfirst
sublist of mother are not repeated in first sublist of father so
{(2 ↔ 6), (3 ↔ 8)} form exchanges so children are produced
as child1 = 1-4-8-6-5-3-7-2 and child2 = 1-2-3-4-8-6-5-7.

3.1.3. Greedy Crossovers (GXs). Some versions of GX like very
greedy crossover (VGX) [21] and improved greedy crossover
[5] have been proposed by researchers in recent years. To
review these crossovers, readers can refer to [5].

3.1.4. Improved Greedy Subtour Crossover (GSX-2). GSX-2
[36] is improved version of GSX-0 [35] and GSX-1 [24]. GSX-
0 is first version of GSX family. Algorithm 5 shows GSX-0
algorithm.

Figure 3(a) shows GSX-0 example. In this example, after
node 5 that has been included in child ismet again,GSX-0 fills
remaining places with randomnodes but, same as Figure 3(b)
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Figure 4: DPX example.

(1) class Crossovers

(2) {

(3) public:

(4) CrossoversGraph(Graph∗);

//Original greedy crossover’s function definition.

(5) void GX(Tour∗, Tour∗, Tour∗);

//Another version of greedy crossover’s function definition [17, 21].
(6) void GX 4(Tour∗, Tour∗, Tour∗);

//Function definition of another version of GX [17, 21].
(7) void GX 4 Pool(Tour∗, Tour∗, Tour∗);

/∗ lines (8) to (15) show proposed function definitions of crossovers that proposed in

[3, 5, 16, 20, 21, 23, 24] respectively.∗/
(8) void VGX(Tour∗, Tour∗, Tour∗);

(9) void IGX(Tour∗, Tour∗, Tour∗);

(10) void DPX(Tour∗, Tour∗, Tour∗);

(11) void GSX(Tour∗, Tour∗, Tour∗);

(12) void OX(Tour∗, Tour∗, Tour∗, Tour∗);

(13) void PMX(Tour∗, Tour∗, Tour∗, Tour∗);

(14) void EPMX(Tour∗, Tour∗, Tour∗, Tour∗);

(15) };

Algorithm 6: Crossovers class ADT.
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Figure 5: (a) Average cost error percent. (b) Average of twenty runtimes of each instance.
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Figure 6: (a) Average percent and (b) standard deviation.

that shows GSX-1 example, it fills remaining nodes in order
of one of parents.

In general, GSX-1 operates better than GSX-1 because
it can preserve order of remaining nodes but, in some
cases, it produces repetitive tours; same as Figure 3(b), child
tour is the same as father tour. Reference [36] states some
shortcomings of GSX-0 and GSX-1 and, to overcome these
shortages, proposes GSX-2.

3.1.5. Distance Preserving Operator (DPX). DPX [16] oper-
ates as follows: it detects common subpaths of two parents

at first and then reconnects them greedily and produces
child. Figure 4 shows DPX example that uses presented edges
weight of graph in Table 1.

3.2. ADT of Class for Crossovers. We have packed crossover
operators into the Crossover class. Algorithm 6 shows ADT
of Crossover class. Lines 5 to 14 show definitions of crossovers
functions. Functions in lines 5 to 12 show crossovers which
take two tours as father and mother and produce only one
child, so their functions take three tour-pointers as the input
arguments.The first two arguments are to point to the parent
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Figure 7: (a) Average required runtime and (b) STDEV of required time.

tours and third argument points to the child tour. Lines 12,
13, and 14 show OX, PMX, and EPMX which produces two
children so their functions take four arguments. The first
two arguments point to the parent tours and the second two
arguments point to the two children tours.

The performance of these crossovers, which are based
on speed and accuracy, has been analyzed in [5]. Results in
[5] show that heuristic crossovers like IGX and DPX have

more accuracy than others. These results also show that the
crossovers like GSX family have more diversity than others
which mean that these crossovers can produce wide range of
different solutions.

3.3. Types of Genetic Algorithm. There are two major models
for GA: generational and steady-state GA. The main defer-
ence between generational and steady-state GA is that, in
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(1) List<Node> ActiveNodes;// to implement “don’t-look bits”
(2) void LK(Tour tour)

(3) {

(4) for each node X

(5) Add X to ActiveNodes List;

(6) while(active node is existed)

(7) {

(8) Node N = remove and return first node in ActiveNodes;

(9) if(inner-LK(tour, X) <= 0)

(10) inactive X;

(11) }

(12) }

(1) int inner-LK(Tour tour, Node x)

(2) {

(3) Y← neighbor of X;

(4) int partial-gain = |XY|;

(5) break XY from tour;

(6) Add Y to ActiveNodes List;

(7) for each Z ∈ candidate set of X

(8) {

(9) add YZ to tour;

(10) Add Z to ActiveNodes List;

(11) partial-gain = partial-gain + |YZ|;

(12) if tour is feasible (tour closing up by one edge is possible)

(13) {

(14) if (partial-gain− last added edge cost > 0 then)

(15) {

(16) close up tour;

(17) return partial-gain− last added edge cost;

(18) }

(19) else

(20) {

(21) int g = inner-LK(tour, x);

(22) if (g < 0)

(23) {

(24) break YZ; //test another.

(25) }

(26) else

(27) {

(28) return g;

(29) }

(30) }

(31) }

(32) }

(33) add XY to tour; //breaking XY was unsuccessful.

(34) remove Y from ActiveNodes List;

(35) return 0;

(36) }

Algorithm 7: Abstract pseudocodes for LK.

generational GA, new solutions are added to population and,
after some steps, population size is normalized by removing
worse individuals but, in steady-state GA, the new solution
is replaced by one of old solution of population. In both
algorithms, mutation operation may be applied on one or
more solutions of population periodically.

Recently, researchers add solution improvement func-
tion such as 2- opt, 3-opt, and LK into their GA. These
functions usually are applied to new solutions after they
are created or changed by the crossover or mutation
operations. These GAs are called memetic or hybrid GA
(HGA). Memetic is general concept and points to the
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(1) while (some conditions are satisfied)

(2) {

(3) for (i = 0; i < gen-size; i++)

(4) {

(5) Get father and mother from population;

(6) Child(s)<- crossover(father, mother);

(7) LS may be apply on child tour(s);

(8) Add child to population;

(9) }

(10) Normalized population size by removing some solutions;

(11) }

Algorithm 8: Generational GA pseudocodes.

(1) for (i = 0; i < gen-size; i++)

(2) {

(3) Get father and mother from population;

(4) Child(s)<- crossover(father,mother);

(5) LS may be apply on child tour(s);

(6) index<- get inddex();

(7) population[index]<- child;

(9) }

Algorithm 9: Steady-state GA pseudocodes.

(1) Create population of random tours;

//First storey is GA and increases tours’ quality. It uses IGX as its crossover [5].
(2) Use steady-state GA by heuristic crossover to improve population;

(3) Sort population according to cost in ascendant order;

(4) Tour∗best-so-far← population[0];

//Second storey is HGA and uses GSX as its crossover, Double-Bridge as its mutation and LK

as its LS.

(5) for (i = 1; i <= gen-size; i++)

(6) {

(7) Tour∗child;

(8) int index;

(9) if(rand 01() < crossover-rate)

(10) {

(11) index = linear selection from population;

(12) father← population[index];

(13) index = linear selection from population;

(14) mother← population[index];

(15) crossover(father, mother, child);

(16) Improve child by lk;

(17) }

(18) else

(19) {

(20) child←linear selection from population;

(21) mutate child by double-bridge;

(22) Improve child by lk;

(23) }

(24) Sort population according to cost in ascendant order;

(25) if (i % period == 0)

(26) update candidate set according to edges density in population;

(27) if(best-so-far cost > population[0] cost)

(28) best-so-far cost← population[0];

(29) }
(30) Report best-so-far;

Algorithm 10: Our HGA’s pseudocodes.
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Table 2: (a) 2-Opt performance based on solution costs. (b) 3-Opt performance based on solution costs. (c) LKperformance based on solution
costs.

(a)

Optimum cost Best Average Worst STDEV
Cost Error (%) Cost Error (%) Cost Error (%)

att532 27686 28004 1.149 28271 2.113 28466 2.817 135.82961
rat783 8806 9001 2.214 9030.35 2.548 9079 3.1 24.598406
pr1002 259045 263489 1.716 265864.85 2.633 267891 3.415 1053.8556
rl1889 316536 362397 14.488 366151.5 15.675 370419 17.023 2649.2821
pr2392 378032 388057 2.652 390727.5 3.358 393472 4.084 1552.5029
pcb3038 137694 140534 2.063 141086.6 2.464 141533 2.788 269.47071
fnl4461 182566 186205 1.993 186608.85 2.214 187116 2.492 250.18104
rl5915 565530 612142 8.242 628403.15 11.118 642120 13.543 7820.3035
pla7397 23260728 24613322 5.815 24926239 7.16 25373211 9.082 192676.28
brd14051 469385 480038 2.27 485242.3 3.378 491392 4.688 3402.7965
d15112 1573084 1607543 2.191 1611675.8 2.453 1627080 3.432 4269.2295
d18512 645238 659009 2.134 660992.65 2.442 666349 3.272 1859.8221
pla33810 66048945 69456797 5.16 69879698 5.8 70333800 6.487 281635.59
pla85900 142382641 148589968 4.36 148751673 4.473 148868721 4.555 68119.888
usa115475 6283142 6424750 2.254 6469988.7 2.974 6504607 3.525 18159.159

(b)

Optimum cost Best Average Worst STDEV
Cost Error (%) Cost Error (%) Cost Error (%)

att532 27686 27809 0.444 27869.35 0.662 27984 1.076 46.671613
rat783 8806 8826 0.227 8860.3 0.617 8901 1.079 21.555559
pr1002 259045 261013 0.76 261966.95 1.128 263477 1.711 676.60316
rl1889 316536 353866 11.793 362309.1 14.461 369220 16.644 3502.7353
pr2392 378032 382036 1.059 385028.6 1.851 390991 3.428 2673.4602
pcb3038 137694 138687 0.721 138978.65 0.933 139684 1.445 239.93624
fnl4461 182566 183351 0.43 183628.35 0.582 183918 0.741 163.06514
rl5915 565530 614092 8.587 625596.05 10.621 640140 13.193 7676.6391
pla7397 23260728 24153629 3.839 24466610 5.184 24899249 7.044 212019.08
brd14051 469385 474243 1.035 477311.15 1.689 482885 2.876 2821.3266
d15112 1573084 1581463 0.533 1584579 0.731 1589468 1.042 2568.7097
d18512 645238 649143 0.605 650639.05 0.837 655523 1.594 1533.274
pla33810 66048945 66980982 1.411 68025924 2.993 68519773 3.741 411992.49
pla85900 142382641 144593580 1.553 144680542 1.614 144750832 1.663 45980.685
usa115475 6283142 6334053 0.81 6359277.6 1.212 6395483 1.788 19890.006

(c)

Optimum cost Best Average Worst STDEV
Cost Error (%) Cost Error (%) Cost Error (%)

att532 27686 27712 0.094 27765.2 0.286 27897 0.762 49.990104
rat783 8806 8806 0 8818.95 0.147 8833 0.307 8.9117014
pr1002 259045 260359 0.507 261630.45 0.998 265127 2.348 1434.3942
rl1889 316536 338432 6.917 352930.7 11.498 366537 15.796 6490.877
pr2392 378032 378870 0.222 381562.35 0.934 385833 2.064 1432.2577
pcb3038 137694 138010 0.229 138346.35 0.474 138604 0.661 162.46466
fnl4461 182566 182872 0.168 183035 0.257 183134 0.311 77.290974
rl5915 565530 597425 5.64 616541.85 9.02 629056 11.233 7045.3808
pla7397 23260728 24090910 3.569 24308120 4.503 24588866 5.71 140266.08
brd14051 469385 471566 0.465 474418.05 1.072 479274 2.107 1767.5788
d15112 1573084 1576636 0.226 1577681.8 0.292 1579279 0.394 669.32031
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(c) Continued.

Optimum cost Best Average Worst STDEV
Cost Error (%) Cost Error (%) Cost Error (%)

d18512 645238 646770 0.237 647091.95 0.287 648439 0.496 373.13882
pla33810 66048945 67107824 1.603 67841467 2.714 68576654 3.827 361018.43
pla85900 142382641 144296674 1.344 144528830 1.507 144944342 1.799 220016.09
usa115475 6283142 6283142 0 6325336.4 0.672 6350265 1.068 23558.074

all evolutionary algorithms that incorporate local searches to
improve their solutions.

4. Developing HGA by the Developed
Objective Tools

To show applicability of proposed objective tools, we develop
new model of HGA which differs with another versions in
two main cases (See Appendices).

(1) The proposed HGA is two-storey GA. It means that
the proposedHGA has been formed from two storeys
of GA. First storey of GA uses heuristic genetic
operator such as GX versions. This storey increases
quality of population, so LSA can operate quickly
in second storey. It should be tended that LSAs can
operate quickly on high quality solutions. Therefore,
this storey affects the second storey where LK is
utilized. The LK operates quickly when it is applied
to high quality tour.

(2) The second storey of the HGA is also HGA itself.
Like other HGA algorithms that incorporate LSA to
increase tours quality, proposed HGA also does and
exploits LK as its LSA but

(I) it is updating LK candidates’ sets periodically
while these instructions of storey are executing;

(II) in order to produce wide variety of solutions
it should use quick crossover operator with
high diversity same as classical PMX, GSX-1,
or EPMX instead of heuristic crossovers that
are usually slow. Notice that LK guarantees
solutions’ quality so it is not reasonable to use
time consumer heuristic crossovers.

5. Experiments

In this section, we show objective tools performance. We
divide this section to three subsections. In first subsection,
we focus on LSAs tools, in second subsection, we put forward
experimental results for the crossovers, and, finally, we
exhibit experimental results of HGAdesignated by developed
objective tools.

5.1. Performance of the Developed Tools. To test developed
LS tools including 2-opt, 3-opt, and LK, we apply them on
fifteen TSPLIB instances twenty times. Users may need to

be informed about accuracy and speed of LS tools, so here
we report best, worst, average, and standard deviation of
recorded costs and runtimes for LS tools per each instance in
each of the twenty runs. Table 2 shows average, best, worst,
and standard deviation of twenty solution costs for each
instance achieved by each of the stated heuristics. Moreover,
this table shows error percent of best, average, and worst
solution costs which is calculated by (cost− optimum cost) ×
(100/optimum cost). Please consider that optimum cost for
usa115475 is unknown so we have used best solution cost
(6283142) that is obtained by LK tool.

Table 3 presents runtime information of each heuristic
applying to each instance in twenty runs.Theminimum, aver-
age, maximum, and standard deviation of required runtimes
have been listed in this table.

To make comparison among heuristic tools easy, we
have introduced average error percent column of Table 2 and
average time column of Table 3 by diagrams in Figure 5.

5.2. Performance of the Developed Crossovers’ Tools. To
present crossover performance, we should show effect of
crossover in GA accuracy, convergence speed, and ability of
crossover in generating wide range of various solutions. To
achieve these goals, we have to use generational GA because,
in steady-state GA, generation size is constant but, in gener-
ational GA, the total generated solutions depend on ability
of crossover in generating various solutions; if crossover can
generate different solutions, so it delays generational GA
convergence; then total generations increase. On the other
hand, when generated solutions count is high, it shows that
crossover diversity is high and it can produce wide range
of various solutions. We used each of stated crossovers in
generational GA to solve some instances fromTSPLIB twenty
times and Table 4 shows results of this experiment.

Table 4 shows information about best, worst, average, and
standard deviation of solution costs for each of the twenty
runs by each crossover when solving each instance. Figure 6
summarizes average error percent and STDV columns of
Table 4.

In Figure 6 it can be easily seen that IGX has better
performance in both average error percent and standard
deviation. In average error percent and for kroA100, a280,
lin318, rat783, and pr1002, IGX has first best rank and, only
in att532, it has second minimum error percent. For standard
deviation, also IGX has minimum in dealing with kroA100,
a280, lin318, rat783, and pr1002. In solving att532, IGX has
second minimum STDEV.
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Table 3: (a) 2-Opt runtime results. (b) 3-Opt runtime results. (c) LK runtime results.

(a)

Min time Average time Max time STDEV
att532 0.015 0.02185 0.032 0.0077817
rat783 0.015 0.0187 0.031 0.0063254
pr1002 0.031 0.05075 0.078 0.0122039
rl1889 0.062 0.0803 0.109 0.0136617
pr2392 0.094 0.14515 0.203 0.0291047
pcb3038 0.093 0.12325 0.234 0.03034
fnl4461 0.109 0.18565 0.234 0.0349801
rl5915 0.234 0.3494 0.452 0.0488439
pla7397 0.218 0.2965 0.39 0.0448371
brd14051 0.578 0.93515 1.435 0.2534248
d15112 0.748 1.152 1.81 0.2831689
d18512 0.936 1.2106 1.904 0.2183212
pla33810 6.271 8.16745 12.543 2.2148945
pla85900 7.16 8.84205 10.343 0.8042973
usa115475 9.984 13.1663 20.951 2.6126377

(b)

Min time Average time Max time STDEV
att532 0.015 0.0281 0.047 0.0096185
rat783 0.015 0.0234 0.047 0.0095499
pr1002 0.031 0.04525 0.063 0.0101508
rl1889 0.047 0.07495 0.125 0.0156994
pr2392 0.093 0.1171 0.171 0.0227917
pcb3038 0.093 0.1303 0.156 0.0163453
fnl4461 0.156 0.20675 0.266 0.0258739
rl5915 0.188 0.2404 0.344 0.0380808
pla7397 0.172 0.2434 0.281 0.0255021
brd14051 0.733 0.9384 1.56 0.1754526
d15112 0.967 1.1318 1.248 0.0875338
d18512 0.983 1.1941 1.435 0.1246983
pla33810 1.248 1.65835 2.012 0.2394011
pla85900 3.182 3.66755 4.384 0.3271961
usa115475 9.313 11.47305 15.21 1.6807505

(c)

Min time Average time Max time STDEV
att532 0.109 0.1812 0.296 0.0440438
rat783 0.032 0.0687 0.156 0.0293493
pr1002 0.265 0.3553 0.515 0.0719716
rl1889 0.406 0.5171 0.734 0.0887841
pr2392 0.562 0.954 1.669 0.2803806
pcb3038 0.592 0.86495 1.217 0.1730511
fnl4461 0.671 1.0308 1.622 0.2252083
rl5915 0.921 1.2207 1.544 0.1467128
pla7397 1.295 1.94995 2.839 0.3957677
brd14051 3.666 5.322 6.646 0.7302357
d15112 3.541 4.3859 5.335 0.5414395
d18512 4.68 5.70405 7.909 0.711076
pla33810 12.371 16.43415 23.946 2.7950968
pla85900 23.4 28.04495 34.991 3.1503448
usa115475 37.815 46.1041 54.506 3.7665248
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Table 4: Crossovers performance analysis on solution costs.

Optimum cost Crossover name Best Average Worst STDEV
Cost Error (%) Cost Error (%) Cost Error (%)

kroA100 21282

GSX 21282 0 21282 0 21282 0 0
PMX 21282 0 21282 0 21282 0 0
EPMX 21282 0 21282 0 21282 0 0
OX 21282 0 21282 0 21282 0 0
VGX 21282 0 21282 0 21282 0 0
DPX 21282 0 21282 0 21282 0 0
IGX 21282 0 21282 0 21282 0 0

a280 2579

GSX 2579 0 2579 0 2579 0 0
PMX 2579 0 2579 0 2579 0 0
EPMX 2579 0 2579 0 2579 0 0
OX 2579 0 2579 0 2579 0 0
VGX 2579 0 2579 0 2579 0 0
DPX 2579 0 2579 0 2579 0 0
IGX 2579 0 2579 0 2579 0 0

lin318 42029

GSX 42029 0 42029 0 42029 0 0
PMX 42029 0 42029 0 42029 0 0
EPMX 42029 0 42029 0 42029 0 0
OX 42029 0 42031.7 0.006 42083 0.128 12.075
VGX 42029 0 42029 0 42029 0 0
DPX 42029 0 42032.1 0.007 42091 0.148 13.864
IGX 42029 0 42029 0 42029 0 0

att532 27686

GSX 27686 0 27696.55 0.038 27704 0.065 6.716
PMX 27686 0 27699 0.047 27705 0.069 7.773
EPMX 27686 0 27693.35 0.027 27706 0.072 8.4
OX 27686 0 27696.85 0.039 27706 0.072 7.638
VGX 27693 0.025 27702.1 0.058 27706 0.072 3.432
DPX 27686 0 27697.5 0.042 27847 0.582 35.881
IGX 27686 0 27694.1 0.029 27706 0.072 8.896

rat783 8806

GSX 8807 0.011 8811.7 0.065 8822 0.182 4.342
PMX 8806 0 8810.5 0.051 8826 0.227 4.763
EPMX 8807 0.011 8815.15 0.104 8828 0.25 5.274
OX 8806 0 8810.9 0.056 8818 0.136 3.626
VGX 8808 0.023 8813.8 0.089 8824 0.204 4.324
DPX 8806 0 8810.3 0.049 8815 0.102 2.867
IGX 8807 0.011 8809.25 0.037 8815 0.102 1.997

pr1002 259045

GSX 259045 0 259264.3 0.085 260066 0.394 281.477
PMX 259045 0 259115.8 0.027 260046 0.386 237.75
EPMX 259045 0 259093.5 0.019 259600 0.214 150.998
OX 259045 0 259136.75 0.035 259908 0.333 233.981
VGX 259045 0 259119.35 0.029 259949 0.349 216.241
DPX 259045 0 259134.6 0.035 259588 0.21 134.744
IGX 259045 0 259050.9 0.002 259099 0.021 15.758

Tables 5 and 6 show experimental results information
about required runtime and total generations count in each
of the twenty runs. These tables list best, average, worst, and
standard deviation of required runtime and minimum, aver-
age, maximum, and standard deviation of total generations
count. Average and STDEV columns of both tables have been
introduced in Figure 7.

5.3. HGAPerformance Analysis. Comparing developedHGA
with other state-of-the-art methods is not our purpose here
but we want to show that it is possible to design and develop
new memetic algorithms by our objective tools. Therefore,
to achieve this goal we compare HGA with latest windows
based version of LKH in period of 100000 seconds in solving
pla85900 that is the largest problem in TSPLIB. Diagram in
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Table 5: Required runtime for generational GAwith each crossover.

Best Average Worst STDEV

kroA100

GSX 1.762 2.065 2.839 0.296
PMX 1.623 2.586 3.619 0.531
EPMX 2.137 2.666 3.354 0.368
OX 1.888 2.406 3.042 0.419
VGX 2.464 2.992 4.587 0.589
DPX 1.264 1.755 2.169 0.324
IGX 2.106 2.665 3.916 0.467

a280

GSX 3.229 3.502 4.118 0.301
PMX 3.9 4.289 5.038 0.467
EPMX 3.635 3.928 4.789 0.392
OX 2.621 3.429 4.056 0.314
VGX 4.898 5.242 6.349 0.463
DPX 3.76 4.063 4.82 0.355
IGX 3.635 3.895 4.773 0.292

lin318

GSX 14.18 18.257 23.338 2.206
PMX 16.832 23.554 28.922 3.171
EPMX 15.818 21.304 27.301 3.186
OX 13.588 18.713 26.894 3.262
VGX 18.798 22.938 30.031 2.813
DPX 13.026 17.735 23.743 2.702
IGX 24.351 28.89 34.617 3.172

att532

GSX 32.962 44.434 60.84 7.568
PMX 46.301 63.016 95.753 12.268
EPMX 42.354 56.373 83.382 10.394
OX 33.056 45.853 69.763 7.809
VGX 64.786 79.721 101.447 9.776
DPX 38.891 46.856 64.693 6.75
IGX 50.731 69.304 99.185 13.961

rat783

GSX 37.456 46.628 56.301 4.659
PMX 57.97 75.219 100.823 10.811
EPMX 48.704 64.15 92.259 10.477
OX 36.457 45.407 58.406 5.957
VGX 101.26 130.538 173.285 23.599
DPX 51.355 64.816 81.713 8.804
IGX 50.84 61.569 92.618 9.933

pr1002

GSX 74.443 108.473 148.091 16.73
PMX 137.483 164.007 210.804 20.737
EPMX 121.586 142.91 176.171 16.68
OX 83.429 120.811 180.774 22.516
VGX 247.057 316.199 403.245 40.551
DPX 106.158 127.228 146.437 10.286
IGX 174.814 238.014 279.912 26.608

Figure 8 shows result of this competition.This diagram shows
that HGA produces better tours than LKH during 100000(s)
and its prominence is noticeable.

6. Conclusion

In this paper, we present highlight of our TSP programming
tools that have been based on LKH implementation. In fact,

Table 6: Total generations count.

Min Average Max STDEV

kroA100

GSX 1500 1725 2500 302.403
PMX 500 862.5 1250 206.394
EPMX 750 975 1250 160.181
OX 750 975 1250 197.017
VGX 1500 1850 3000 432.252
DPX 1000 1525 2000 379.577
IGX 1500 1950 3000 394.034

a280

GSX 1500 1625 2000 222.131
PMX 750 825 1000 117.541
EPMX 750 800 1000 102.598
OX 500 775 1000 111.803
VGX 1500 1575 2000 183.174
DPX 1500 1600 2000 205.196
IGX 1500 1550 2000 153.897

lin318

GSX 3000 4025 5500 617.188
PMX 1250 1887.5 2500 319.076
EPMX 1250 1862.5 2500 339.068
OX 1250 1912.5 3000 415.767
VGX 2500 3250 4500 550.12
DPX 2500 3575 5500 693.485
IGX 4000 4875 6000 646.346

att532

GSX 3000 4425 6500 892.586
PMX 1750 2487.5 3750 509.612
EPMX 1750 2512.5 4250 620.245
OX 1500 2337.5 3750 501.806
VGX 4000 5150 7000 812.728
DPX 3500 4375 7500 1024.374
IGX 3500 5250 8000 1208.522

rat783

GSX 3500 4300 5500 571.241
PMX 2000 2925 4250 544.711
EPMX 2000 2687.5 4000 479
OX 1750 2287.5 3000 337.122
VGX 5500 7400 10000 1391.705
DPX 3500 4825 6500 892.586
IGX 3500 4500 7000 842.927

pr1002

GSX 5000 8950 14500 2199.88
PMX 3750 4650 6000 640.723
EPMX 3750 4575 6000 702.907
OX 3500 4887.5 7750 1119.431
VGX 11000 13750 19000 1956.77
DPX 5500 7175 9000 831.533
IGX 10000 14400 17500 1923.538

these tools are source codes in three object-oriented lan-
guages: C++, C#, and JAVA. These tools can help engineers,
researchers, and those who are dealing with TSP to write
and develop their TSP applications more easily by one of
the stated programming languages arbitrarily. Here, we tried
to show our tools’ performance by experiments. In order to
show their applicability, we designed a hybrid algorithm that
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Figure 8: Competition between HGA and LKH during 100000
seconds.

was effective and beat the LKH-2 software in dealing with
largest TSPLIB instance.

Appendices

A.

See Algorithm 7.

B.

See Algorithms 8 and 9.

C.

See Algorithm 10.
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