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The present research work is focussed to develop an intelligent system to establish the input-output relationship utilizing forward
and reverse mappings of artificial neural networks. Forward mapping aims at predicting the density and secondary dendrite arm
spacing (SDAS) from the known set of squeeze cast process parameters such as time delay, pressure duration, squeezes pressure,
pouring temperature, and die temperature. An attempt is also made to meet the industrial requirements of developing the reverse
model to predict the recommended squeeze cast parameters for the desired density and SDAS. Two different neural network based
approaches have been proposed to carry out the said task, namely, back propagation neural network (BPNN) and genetic algorithm
neural network (GA-NN). The batch mode of training is employed for both supervised learning networks and requires huge
training data. The requirement of huge training data is generated artificially at random using regression equation derived through
real experiments carried out earlier by the same authors. The performances of BPNN and GA-NN models are compared among
themselves with those of regression for ten test cases. The results show that both models are capable of making better predictions
and the models can be effectively used in shop floor in selection of most influential parameters for the desired outputs.

1. Introduction

The mechanical properties in castings majorly depend on the
density and secondary dendrite arm spacing. The density and
secondary dendrite structure are significantly influenced by
the operating conditions of the squeeze cast process variables.
In majority of the foundries, industrialists are trying to
establish the input-output relationship through the use of
process simulation software like procast and magmasoft. The
significant effect of process parameters on the temperature
difference in the squeeze casting process was studied using
artificial neural networks and procast simulation software
[1]. Later on, authors extended their research efforts to study
the solidification time (which has direct influence on the
formation of secondary dendrites) with various squeeze cast-
ing conditions by using the combinations of artificial neural
network and procast simulation software [2]. However, simu-
lation software considered being often inefficient, where large

number of process variables need to be examined and large
number of repetitive analysis are required in the selection
of most influential process variables. This will considerably
increase the execution time and computational complexity
[3]. In addition, simulation software also requires knowl-
edge of human expertise to interpret the obtained results.
These limitations made investigators/researchers draw much
attention towards development of an alternate method for
establishing the input-output relationships.

From the past two decades, much of the work has been
reported on the improvement in mechanical and microstruc-
ture properties of the cast product. However, most of the work
was carried out using conventional engineering experimental
and theoretical approach in establishing input-output rela-
tionships and selection of optimum process parameters. The
effects of squeeze cast process variables on the casting density
were studied experimentally by various investigators using



conventional engineering (varying one process parameter
at a time and keeping the rest at the midvalues) approach
[4, 5]. The analytical methods such as gracias virtual and
steady state heat flow model had been utilized by solving the
governing equations to study the effects of solidification time
on the density and other mechanical properties of aluminium
(Al) and zinc (Zn) based alloys [6]. The effects of gap distance
on the cooling rate and secondary dendrite arm spacing were
studied by using the numerical and experimental approaches
[7]. The effects of pouring temperatures and squeeze pres-
sures on the cast structure and tensile strengths of wrought
aluminjum alloy were investigated [8]. Squeeze pressure
effect on secondary dendritic structure was studied for Al
based alloys [9, 10]. The effects of squeeze pressure, die, and
melt temperature were studied on secondary dendrite arm
spacing of LM13 alloy [11]. The following key observations
are made from the above literature. (1) Authors studied
the effects of squeeze cast process variables using classical
engineering experimental approach, wherein a large number
of experiments are required for effective analysis. (2) The
practical guidelines suggested by the authors may not help
the shop floor workers in the selection of the most influential
process parameters, unless the input-output relationship is
expressed in mathematical form. (3) The classical engineering
experimental approach provides the best process parameter
levels (local optimum solution) and are completely different
from those of optimal process parameter setting (global
optimum solution).

Limited research work is carried out to address the clas-
sical engineering experimental approach to study the effects
of various process parameters by modelling, analyzing, and
establishing the input-output relationship. Statistical Taguchi
technique has been successfully implemented to study the
effects of process variables on mechanical properties of
squeeze cast AC2A alloy [12-14]. It is to be noted that
the authors developed mathematical expression representing
the properties as a function of squeeze cast process vari-
ables. Moreover, the effect of most significant time delay
parameter was left out in their analysis. Squeeze pressure,
pressure duration, and die temperature were considered to
study the effects on mechanical properties using statistical
Taguchi technique [15]. Moreover, the authors developed
multivariable linear response equation by neglecting the
effect of pouring temperature and time delay parameters.
More recently, authors employed statistical Taguchi tool to
study the influencing parameters such as squeeze pressure,
filling velocity, die, and pouring temperature on strength
and ductility of AISi9Cu3 alloy [16]. It is to be noted that
the authors did not consider the pouring temperature and
time delay before pressurization. Further, the mathematical
expression representing the input-output relationship of the
squeeze casting system was left out in their analysis. The
following key observations have been made from the authors
attempted statistical Taguchi tool to optimize the squeeze
cast process parameters. (1) Authors measured two or more
responses for the same casting conditions, analysed, and
developed response equation separately. It is of paramount
importance to note that since different responses were mea-
sured for the same casting conditions, the probability of
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the dependency among the outputs was more. Hence, there
is a need to develop an integral multi-input-output system
that could simultaneously estimate the outputs for the same
inputs. (2) The developed response equations were not used
to check the prediction accuracy of the test cases. It is of
paramount importance to check the prediction accuracy.

The most practical requirement in foundries is to know
the process parameter setting that could produce the desired
output that is, backward prediction. The backward predic-
tion might be difficult through conventional statistical tools
because the transformation matrix becomes singular and
might not be invertible always [17]. The problem with reverse
prediction and development of an integrated system that
simultaneously estimates the two or more responses can
be made possible through the use of soft computational
tools like neural network (NN), genetic algorithms, fuzzy
logic, and their different combinations [18]. Artificial neural
networks were successfully applied to carry out the forward
mapping (to predict the output for the known set of inputs)
of various manufacturing processes like pressure die casting
[3, 19], cement-bonded moulding sand system [20] and
permanent mold casting [21], and end milling processes [22].
It is interesting to note that artificial neural network was
successfully applied as forward and reverse modelling tool in
green sand mould system [17], cement-bonded mould system
[23], sodium silicate and CO, gas hardened mould system
[24], and pressure die casting system [25]. To the authors’ best
knowledge, no much work has been reported to carry out the
forward and reverse mappings in the squeeze casting process
using neural network based approaches. The limitations of
the classical engineering, casting simulation, and statistical
Taguchi techniques are addressed through the use of artificial
neural networks and the present work aim for the following
two objectives:

(1) forward mapping: forward mapping deals with pre-
dicting the responses/outputs for the known set of
input conditions. In the present work, density and
secondary dendrite arm spacing are considered as
the outputs, whereas squeeze casting process variables
such as time delay, squeeze pressure, pressure dura-
tion, pouring temperature, and die temperature were
considered as inputs;

@

~

reverse mapping: reverse mapping deals with the
prediction of the input parameters for the desired
output. Here, density and secondary dendrite arm
spacing were considered as the input and squeeze cast
process variables are considered as the output of the
system.

It is to be noted that, to carry out the forward and reverse
mappings, an artificial neural networks trained with back
propagation and genetic algorithm has been employed.

2. Modelling Using Artificial Neural Networks

The method of identifying, analysing, and establishing the
input-output relationship of the physical system is termedas
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TABLE 1: Squeeze casting process parameters and their respective levels.
Process parameters Units Level 1 Level 2 Level 3 Level 4 Level 5
Squeeze pressure, (S,) MPa 0.1 50 100 150 200
Pressure duration, (Dp) S 10 20 30 40 50
Time delay, (T};) S 03 05 07 09 1
Pouring temperature, (P,) °C 630 660 690 720 750
Die temperature, (D,) °’C 100 150 200 250 300
Time delay ~ ——; . |5 Casting density training (input-output) data have been artificially generated
Pressure duration Squeeze casting using response equations:
Sql_leeze pressure process model —)Secondary dendrite
Pouring temperature____ arm spacing
Die temperature

Forward mapping
E———
— e

Reverse mapping

FIGURE 1: Forward and reverse squeeze casting process model.

modelling. The present work is focused on both forward
modelling and reverse modelling of the squeeze casting
process as shown in Figure 1. Squeeze casting process vari-
ables such as time delay, pressure duration, squeeze pressure,
pouring temperature, and die temperature are treated as the
inputs, whereas, density and SDAS are treated as the outputs
in case of forward mapping. In reverse modelling, process
variables are expressed as function of casting density and
SDAS. The process parameters and their respective levels
used for the present study are presented in Table L.

2.1. Data Collection. The supervised learning capability of
artificial neural networks requires huge training data. In
actual practice, huge data collection through real experiments
finds impractical for researchers/investigators. However, the
requirements of huge training data have been fulfilled by
generating artificially (selecting the process parameters cov-
ering entire range) at random using the response equations
derived though real experiments carried out earlier by the
same authors [26, 27].

2.2. Training Data. Huge data requirements for training the
artificial neural networks have been generated artificially,
using the response equations by selecting the process vari-
ables lying within the respective range. It should be noted that
the generated training data covers the entire range with dif-
ferent squeeze casting conditions. Casting density and SDAS
are expressed as a function of squeeze cast process variables,
namely, time delay, pressure duration, squeeze pressure, and
pouring and die temperature in separate response equations.
The response equations casting density and SDAS are shown
in (1) and (2), respectively. It should be noted that 1000 sets of

density = 1.21121 — 0.0120733T; + 8.80233¢ — 05D,

+0.000270477S,, + 0.00354289P, + 0.001781D,
+6.77354¢ — 05T; +4.03295¢ — 06D,
— 1.32509¢ — 07S;, — 2.47673¢ — 06 P;

~3.89751e — 06D},
®

SDAS = 313.45 + 3.71889T,, — 0.318161D,, — 0.120364S,,
—0.632729P, — 0.22336D, — 0.144949T
+ 0.00238712Df, + 0.00019879988?7

+0.000402338P; + 0.000513454D;.
2

2.3. Testing Data. The success of neural network depends on
the prediction accuracy of the test cases. Hence, the network
prediction accuracy has been tested for randomly gener-
ated test cases (which is used during the training process).
The experiments have been performed for ten randomly
generated test cases and the measured values for casting
density secondary dendrite arm spacing (SDAS) are recorded.
Two replicates have been used for density measurements.
Whereas, average value of the SDAS in each casting sample is
determined at three different locations by taking a minimum
of 15 different primary dendrites. It is to be noted that,
the measurements have been carried out for the primary
dendrites containing more than five secondary dendrite arms.
The secondary dendrite arm spacing measurements have
been performed using (3). It should be noted that ten different
test cases are used to check the prediction accuracy of
the network under forward as well as reverse mapping as
shown in (Table 5), where “7” denote index term of measured
dendrite, # is the number of measurement, X; is the dendritic
length of ith term, and m; is the number of dendrite arms

1< X,
SDAS = =) —L.
average nZM (3)

i=1"""
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FIGURE 2: Artificial neural network architecture used for forward mapping.

2.4. Forward Mapping. In the present work, three-layer feed
forward neural network architecture consisting of input,
output, and hidden layer neurons (Figure 2) is used. Five
and two neurons are used for the input and output layer,
respectively. However, the selection of neurons lying in the
hidden layer is determined through the parametric study.
Linear transfer function has been employed for input layer,
whereas nonlinear log-sigmoid transfer function has been
utilized for output layer neurons, respectively (see (4)-(6)).
It is to be noted that the effect of the response SDAS and
density was studied under statistical analysis and it was seen
that the behaviour of the density and SDAS with same inputs
is the opposite for the same casting conditions. So, for the
response SDAS, the modified log-sigmoid activation function
was used (5). However, the same sigmoid transfer function
has been adopted for all the neurons lying in the hidden layer
(7). The term “m” indicates the constant and the value is
determined after performing large number of trials, “x” is the
input neuron, and “a” and “b” transfer function constants of
output layers, respectively,

linear transfer function (y) = mx, (4)

1
log-sigmoid transfer function (y) = 0+ oxp (@)’ (5)
log-sigmoid transfer function (y) = _ (6)

(1 +exp(-bx))’

1
log-sigmoid transfer function (y) (7 exp Con) (7)
2.5. Back Propagation Neural Network (BPNN). The super-
vised learning capability of back propagation algorithm is that
it learns with training. One thousand sets of input-output
data have been generated artificially by using regression
models and passed through the NN. That is, batch mode

of training is adopted to optimize the structure of NN.
The output of the NN is compared with the target values
to determine the error. The BPNN is adaptively trained to
reduce the mean square error and is calculated using (8). It
should be noted that, to avoid numerical fluctuations and to
speed up the training process, the training input-output data
has been normalized between zero and one as follows:

.. 1 JY 2
Minimize Error = m;;(Tﬁ — Oij) . (8)

The term “R” indicates the number of responses, “N”
represents the number of training data, “T};” depicts the target
values, and “O;;” indicates the network output. It should
be noted that the error back propagation algorithm work is
based on the principle of gradient descent method to reduce
the mean square error. Hence, the network weights need to be
updated with learning rate () and momentum parameters
(«) as shown in (9). The learning rate parameter is used to
avoid overfitting and the error vibration, whereas to speed
up the training process when the network stucks with local
optima region, the term momentum constant will be used

OE
AW (t) = -
]k() rlavvjk

(£) + QAW (¢~ 1). )

The term ¢ indicates the iteration number and 0E/0W ), can
be determined using the chain rule of differential equation as
shown in the following equation:

dE _ OE Y, U

AW, Y, 0U, W, 10)

The terms Uj, and Y}, represent input and output of the Kth
neuron lying on the output layer, respectively.
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TABLE 2: BPNN parametric study results of both forward and reverse mappings.
NN parameters Forward mapping Error Reverse mapping Error
Hidden neurons 1 0.017321 18 0.034095
Learning rate-hidden layer, # 0.01 0.008271 0.5885 0.033450
Learning rate-output layer, # 0.5885 0.003099 0.2325 0.033410
Momentum constant, « 0.455 0.003099 0.455 0.033410
Activation constant-hidden layer 2.8 0.002525 5.5 0.033410
Activation constant I-output layer 5.5 0.002525 55 0.033410
Activation constant 2-output layer 8.65 0.001984 5.5 0.033410
Bias 0.0000455 0.001458 0.0000505 0.033410
TABLE 3: GA-NN parametric study results of both forward and reverse mappings.
GA-NN parameters Forward mapping Error Reverse mapping Error
Mutation probability 0.0001447 0.001652 0.0001379 0.03219
Population size 218 0.001534 260 0.02916
Generations number 10000 0.001337 10000 0.02514

2.6. Genetic Algorithm Based Neural Network. Genetic algo-
rithm (GA) is used from the past few decades in many of
the manufacturing applications to obtain the global optimum
solution. It is to be noted that the back propagation algorithm
has the probability to get trapped in the local optimal region
as compared to the GA (since it searches the solution in
huge space). The genetic tuned NN (GA-NN) system works
exactly on the same principle of auxiliary hybrid systems. The
synaptic weights, activation function constants, and the bias
values are supplied by GA-string and the network computes
the expected output. In GA-NN, the hidden number of
neurons is kept same as that of the BPNN obtained under
parametric study. The mean square error is calculated and
used as the fitness value of the GA-string. The GA fitness value
is computed by using (11). Tournament selection, uniform
cross-over, and bit-wise mutations are chosen as the GA
operators to find the best possible solutions as follows:

1 R N

fitness (f) = R NZZ(TU - Oij)z- (11)

i=1j=1

2.7. Reverse Mapping. Reverse mapping has been carried out
to predict the recommended input parameters for the desired
output. Both BPNN and GA-NN have been used to perform
the said task. It is to be noted that two responses and five
process variables are considered as the inputs and the outputs
of the system, respectively.

3. Results and Discussions

Forward mapping has been carried out using both BPNN and
GA-NN to predict the density and secondary dendrite arm
spacing for the known set of process variables of the squeeze
casting process. The performances of the developed models
have been evaluated with the help of ten randomly generated
test cases (Table 5).

3.1. Back Propagation Neural Network (BPNN). It is to be
noted that, 1000 sets of input-output training data is used to
train the network using batch mode. The parametric study
was carried out to optimize the neural network parameters
during training (see Figure 3). The parametric study is carried
out by varying the neural network parameters (such as
hidden neurons number, learning rate, momentum constant,
activation function constants, and the bias value) one at a
time and keeping the rest at their respective midvalues. It
is to be noted that the results of the parametric study are
shown in Table 2. The minimum mean square error at the end
of the training was found to be equal to 0.001458 (Table 2).
Once the training has been completed, the neural network is
used for predicting ten test cases, which are not used for the
NN training. The neural network predictions are compared
with the actual experimental values and the average absolute
percent deviation in prediction is found to be equal to 2.55%.

3.2. Genetic Algorithm Neural Network (GA-NN). As
explained in the previous sections, the back propagation
algorithm has been replaced by population based search
algorithm to search the optimal solutions in huge space.
In the present work, GA is used to optimize the neural
network parameters. In GA-NN system, the performance in
the prediction largely depends on genetic parameters such
as mutation probability, population size, and generation
number. The GA-parametric study has been carried out
to determine the global solutions (Figure 4). The selection
criteria for the optimum GA parameters are decided based
on the minimum mean squared error obtained when
varied between their respective parameter ranges. It is to
be noted that uniform cross-over is used for the cross-over
operation. The optimal mean square error obtained for
different parameters is shown in Table 3. The optimum
parameters obtained at the end of the training, with min-
imum value of mean squared error equal to 0.001337.
Once, the Neural Network parameters are optimised using
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FIGURE 3: Results of parametric study to determine the optimal neural network parameters: (a) error versus number of neurons in the
hidden layer, (b) error versus learning rate-hidden layer, (c) error versus learning rate-output layer, (d) error versus momentum constant, (e)
error versus activation function constant-hidden layer, (f) error versus activation function constant 1-output layer, (g) error versus activation
function constant 2-output layer, and (h) error versus bias value.

GA, the performance of GA-NN in forwarding mapping  3.3. Comparison of BPNN, GA-NN, and Statistical Models
is tested by utilizing the same test cases (i.e., the test  Performances. It is to be noted that the performances of
cases used for BPNN). The average absolute percentage  the developed NN based approaches are compared among
deviation in prediction of the responses is found to be equal ~ themselves and with statistical regression model for ten
to 2.234%. randomly generated test cases.
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FIGURE 4: GA-NN parametric study. (a) Mutation probability, (b) population size, and (c) generation number.

TABLE 4: Average absolute percent deviation in prediction of the responses (forward mapping).

Response

Average absolute percent deviation in prediction

BPNN GA-NN Regression MCFLC [28, 29] ANFIS [28, 29]
Density 0.347 0.290 0.377 0.503 0.289
SDAS 4.758 4178 5.157 8.888 4.571

Figure 5(a) shows the percent deviation in prediction of
the ten test cases using three different models for the response
density. The values of percent deviation in prediction are
found to lie in the range of —0.17% to +0.85%, —0.3% to
+0.86%, and —0.12% to +0.89% for the regression, BPNN, and
GA-NN models, respectively. Similarly, the percent deviation
in prediction of the response secondary dendrite arm spacing
was found to lie in the range of —10.21% to +6.26%, —10.19%
to +7.02%, and -7.27% to +6.04% for regression, BPNN,
and GA-NN models, respectively (Figure 5(b)). It is to be
noted that, for both responses, GA-NN model outperforms
the other two models. Table 4 provides the comparison of
the performances in predictions of soft computing based
approaches (BPNN, GA-NN, MCFLC, and ANFIS) with that
of the statistical regression model in terms of average absolute
percent deviation in prediction of ten test cases for the
response density and SDAS.

Itis to be noted that GA-NN, BPNN, and ANFIS perform-
ances are found to be almost similar and comparable, but
the GA-NN outperforms all the models in prediction of the
responses (Table 4). The better performance of GA-NN might

be due to the nature of error surface, where it is possible for
GA to hit the global optima.

3.4. Reverse Mapping. The reverse mapping has been carried
out with the aim of predicting the process parameters such as
squeeze pressure, time delay, pressure duration, and pouring
and die temperature for the desired density and SDAS. The
NN based approaches (i.e., BPNN and GA-NN) are utilized
to tackle the above-said task and the obtained results are
compared among themselves. The same set of test cases is
used for checking the model performances (Table 5).

The results of the parametric study of both BPNN and
GA-NN models are presented in Tables 2 and 3. The ten dif-
ferent test cases were passed through the optimized network
and the average absolute percent deviation in prediction of all
the responses under BPNN and GA-NN models is found to
be equal to 11.66% and 7.49%, respectively.

Figure 6(a) shows the deviation plots indicating the
percent deviation in prediction for the response time delay.
It is to be noted that the percent deviation obtained by the
BPNN model is found to lie in the range of 0% to 27.27%
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TABLE 5: Summary results of input-output results of the test cases.

Exp. no Squeeze casting process parameters Responses
T, D, S, P, D, SDAS, ym Density, g/cm’
1 11 30 101 671 263 48.43 2.602
2 7 14 110 635 192 49.74 2.622
3 6 37 63 674 236 47.64 2.628
4 5 40 142 731 254 33.78 2.664
5 5 10 71 723 142 46.86 2.626
6 9 33 110 738 261 48.33 2.614
7 9 48 96 637 174 50.63 2.595
8 11 32 172 712 189 44.86 2.618
9 4 21 196 646 213 35.66 2.676
10 23 89 742 284 41.34 2.663
1.0 4 .
Response density A 81 Response SDAS
S 084 A 6
£ 06 g 47
: 5 o2
T 04 - 5
a 3 0
£ 02 \ g 727
5 \bN £ 4]
Z 00 =g g 61
g 12 \é/i ks
—0.21 Test case number \ s 8
S 104
-0.4 A
—-12 4
—=— Regression o GA-NN —a— Regression a-- GA-NN

-o- BPNN
()

-0- BPNN
(b)

FIGURE 5: Comparison of three models in terms of percent deviation in predictions. (a) Density and (b) secondary dendrite arm spacing.

with all points on the positive side. On the other hand,
GA-NN prediction deviations are spread on either side and
the corresponding maximum values are found to vary in
the range of —25% to +18.18%. The average absolute percent
deviation in prediction of the time delay parameter is found
to be equal to 17.45% for BPNN and 11.46% for GA-NN.

The performance in prediction of BPNN and GA-NN
models in terms of percent deviation for the response
pressure duration is shown in Figure 6(b). It is to be noted
that the performances in prediction of both models result in
similar pattern for the response pressure duration. GA-NN
model performs slightly better, compared to BPNN, and the
percent deviation values are found to lie within the range of
—40% to +18.75% for BPNN and —-30% to +12.5% for GA-
NN, respectively. The average absolute percent deviation as
obtained for the BPNN and GA-NN models for the ten test
cases is found to be equal to 19.25% and 10.01%, respectively.

Figure 7(a) compares the performance of the BPNN and
GA-NN models in predicting the squeeze pressure. The
percent deviation for the response squeeze pressure is found
to vary in the similar pattern for both BPNN and GA-
NN models and the corresponding percent deviation range

was found to lie in the range of —25.39% to +10.41% and
—-20.64% to +8.33%, respectively. It is also important to
mention that except for one test case (2) GA-NN model
always tries to predict the response close to the experimental
values (Figure 7(a)). In addition, the computation of average
absolute percent deviation in prediction of the squeeze
pressure is found to be equal to 11.78% and 9.32% for BPNN
and GA-NN, respectively.

Figure 7(b) represents the plot of percent deviation values
in prediction of pouring temperature using BPNN and GA-
NN models. It is interesting to note that both BPNN and
GA-NN follow the same path and prediction made with
respect to the developed BPNN and GA-NN models is found
to vary between —3.46% and +2.9% for BPNN and -3.3%
and +2.1% for GA-NN, respectively. The average absolute
percent deviation values for BPNN and GA-NN models are
found to be equal to 2.33% for BPNN and 2.01% for GA-NN,
respectively.

Figure 8 shows the deviation plots of BPNN and GA-NN
in predicting the response die temperature. The percent
deviation in prediction is found to vary in the range between
—10.34% and +11.86% for BPNN and —8.05% and +6.87% for
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FIGURE 7: Comparison of NN based approaches in predicting the responses. (a) Squeeze pressure and (b) pouring temperature.

GA-NN. The GA-NN model performs better as compared
to BPNN and it is better explained with respect to the
average absolute percent deviation in prediction. The average
absolute percent deviation in prediction of the response die
temperature is found to be equal to 7.51% for BPNN and 4.63%
under GA-NN model, respectively.

The reverse mapping aim is to predict the process param-
eters for the desired density and SDAS. The reverse mappings
meet the stringent requirements of the industry to know
the recommended process parameters to achieve the desired
output by eliminating the trial and error method, simulation
software, and expert advice to interpret the obtained simu-
lation results. The results show the average absolute percent
deviation in prediction of the process parameters for the
desired responses comparable to both BPNN and GA-NN
models (Figure 9). It is also important to mention that the

grand average absolute percent deviation in prediction of
all the responses using BPNN and GA-NN is found to be
equal to 11.66% and 7.49%, respectively. However, through
the exhaustive population based search, GA-NN results in
much improved performance compared to BPNN. Better
performance of GA-NN over BPNN might be due to the
nature of error surface. BPNN is gradient search based
approach, where the solution might be trapped in local
minima.

4. Comparisons with the Earlier Work

The performance of developed NN based approaches has
been compared for the same test cases carried out earlier
by the same authors using fuzzy logic based approaches
[28, 29]. The authors worked earlier on the fuzzy logic based
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approaches, namely, manually constructed FLC (MCFLC)
and automatically evolved adaptive network based fuzzy
interface system (ANFIS), using different membership func-
tions. In the present work, an attempt is made by the authors
to compare the performance of both BPNN and GA-NN
models with that of the above-mentioned work carried out
earlier by the same authors [28, 29]. Table 4 shows the average
absolute percent deviation in prediction of all the models
for predicting the responses density and SDAS via forward
mapping.

It is observed from Table 4 that the average absolute
percent deviation in prediction of the response density is
comparable for both neural network and fuzzy logic based
approaches. However, the GA-NN model outperforms, for
the response, SDAS in terms of prediction accuracy when it
is compared with that of the fuzzy logic based approaches.
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5. Concluding Remarks

An attempt has been made to develop the forward and
reverse process models for the squeeze casting process using
neural network based approaches. Batch mode of training has
employed the training data generated artificially at random
using regression equations derived through real experiments
carried out earlier by the same authors. The detailed para-
metric study has been carried out to optimize the network
parameters in both BPNN and GA-NN approaches. The
mean square error obtained during the training process is
considered as the criterion for optimization.

In forward mapping, the performance of BPNN and GA-
NN models is compared among themselves and with that
of the regression analysis for ten test cases. It is interesting
to note that NN based models are capable of making effec-
tive predictions. However, GA-NN outperformed the BPNN
model for both responses, namely, density and SDAS.

The problem with the statistical regression analysis in
developing the reverse process model has been effectively
tackled by the NN based approaches (i.e., to predict the
process variables for the desired output). The performance
of the developed models, namely, BPNN and GA-NN, is
compared among themselves. It is to be noted that GA-NN
outperforms BPNN model for all the responses. This might
be due to the nature of error surface and the problem of
BPNN solutions getting trapped in local optimum. BPNN
approach uses gradient based search for optimum solutions.
When the error surface is multimodal, the BPNN solutions
may be trapped in local minima. On the other hand, GA
is a population based search, where search starts at many
locations simultaneously. Hence, it is possible for GA to hit
the global minima. It is important to note that the average
absolute percent deviations in prediction of both neural
network based approaches for reverse modelling are not
found to be good enough. This might be due to the fact that
complex relationship exists with the input process variables
for the said responses. In addition, the number of network
input parameters is less than that of the network output in
case of reverse mapping.

The overall performance of the developed NN based
approaches has been compared for forward mapping with
the results of the fuzzy logic based approaches carried out
earlier by the same authors. The results are comparable
for the response density; however, GA-NN shows a slightly
better performance in prediction of secondary dendrite arm
spacing. It is to be noted that the results of the reverse
modelling are considered to be more useful for the foundry
men to achieve the desired output. In addition, the developed
methodology can be implemented to adjust the process
parameters in on-line control of the casting quality.
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