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In operating system the decisions which CPU scheduler makes regarding the sequence and length of time the task may run are not
easy ones, as the scheduler has only a limited amount of information about the tasks. A good scheduler should be fair, maximizes
throughput, and minimizes response time of system. A scheduler with multilevel queue scheduling partitions the ready queue into
multiple queues. While assigning priorities, higher level queues always get more priorities over lower level queues. Unfortunately,
sometimes lower priority tasks get starved, as the scheduler assures that the lower priority tasks may be scheduled only after
the higher priority tasks. While making decisions scheduler is concerned only with one factor, that is, priority, but ignores other
factors which may affect the performance of the system. With this concern, we propose a 2-layered architecture of multilevel queue
scheduler based on vague set theory (VMLQ). The VMLQ scheduler handles the impreciseness of data as well as improving the
starvation problem of lower priority tasks. This work also optimizes the performance metrics and improves the response time
of system. The performance is evaluated through simulation using MatLab. Simulation results prove that the VMLQ scheduler

performs better than the classical multilevel queue scheduler and fuzzy based multilevel queue scheduler.

1. Introduction

In multitasking operating systems, multiple tasks need to
be executed concurrently. Therefore, CPU scheduler plays
a pivot role in operating system as it shares the CPU time
among different tasks. For making the decision of scheduling
next task for CPU, scheduler runs scheduling algorithm.
Hence, the performance of system varies very much with
scheduling algorithm used. Multilevel queue (MLQ) schedul-
ing algorithm is among one of the preferable algorithms by
OS designers [1, 2].

The kernel of operating system divides the CPU time
among different queues depending on its requirement of
I/O and CPU. But this share is fixed; it cannot be changed
dynamically with variations in usage, since kernel is not
aware of the exact parameters of task, like priority of task.
However, in case of MLQ, priority plays a key role in decisions
of scheduler. Recent evolutions in MLQ schedulers have

contributed towards improvement of MLQ approach, but no
significant enhancements to the approach which considers
uncertainty factors [3]. There is one approach in literature
that adapts the variations using fuzzy logic [4].

This paper concentrates on the dealing of uncertainty and
impreciseness of task’s parameters using another approach,
that is, vague logic. Vague logic is an extended formation
of fuzzy logic which becomes a dedicated tool to handle
the imprecise information. With this aim, a vague inference
system is designed inside the scheduler that deals with
the uncertainty and impreciseness of tasks. This work also
focuses on improving the performance of MLQ scheduler.
We are introducing a new vague logic based MLQ scheduler
which performs two main functions. First, it distributes the
CPU time among different queues dynamically and adapts
changes with the variations in usage. Second, it resolves
the starvation problem of lower priority tasks by making
decisions using vague based multilevel queue scheduling



algorithm. With these two functions the VMLFQ scheduler
improves the response time of system as well which makes
the system more responsive.

The paper is organized as follows. Section 2 discusses the
introduction to MLQ scheduling algorithm and the related
work with MLQ. Section 3 gives the brief idea about the vague
set theory and how it is different from fuzzy set theory. In
Section 4, we introduce the 2-layered architecture of VMLQ
scheduler. Section 5, describes the simulation and results in
detail. Finally Section 6 concludes the proposed work and
discusses the future scope.

2. Related Work

MLQ scheduling algorithm has been created where differ-
ent tasks can be classified into different groups. Scheduler
organized the ready queue of system into multiple separate
queues mainly for interactive and background tasks [5]. It
is an extended form of priority scheduling, where scheduler
assigns each task permanently to one queue based on its
priority, type of task, and memory size. Each task has different
response time requirements and may have different schedul-
ing needs. Most operating systems, including Windows,
Linux, and OS X, support a form of multilevel queues [6].
Let us consider two queues of two different types of tasks:
interactive and batch tasks, in which interactive tasks are
having higher priorities over batch tasks. In this type of
system, scheduler schedules the tasks from those two queues
as shown in Figure 1.

However, each queue has its own scheduling algorithm;
usually interactive tasks run round robin scheduling tech-
nique and batch tasks run first come first serve [7]. These
scheduling algorithms must be run between the queues.
Scheduler dispatches the tasks from the highest priority
queue and executes that task either preemptively or nonpre-
emptively. There are two different possibilities to schedule the
tasks between the queues. In fixed priority scheduling all the
tasks from the higher priority queue are executed first. The
lower priority tasks from the batch queue will not be executed
unless the higher priority queue will be empty. In this type of
scheduling, there will be chances of occurrence of starvation
[4].

However in the second type, each queue gets a fixed
amount of CPU time iteratively which is further distributed
amongst its tasks. In the above supposed case, the ready
queue with # is partitioned into 2 smaller ready subqueues,
Q1 and Q2, where QI have the same priority tasks from 1
to j and Q2 have from J + 1 to n. In preemptive priority
scheduling for the multiqueue technique, all tasks from 1 to
j in ready subqueue QI will be completed before any task is
run from ready subqueue Q2 through j + 1 to n. Within the
subqueues the CPU may be allocated using any techniques,
but mainly the high priority Ql using round robin and the
low priority queue, that is, Q2, using FCFS. There are different
static techniques available to share the CPU time across the
subqueues. For example, each subqueue can get the fraction
of CPU time; suppose that 100 seconds of CPU time can be
partitioned statically as 50 seconds among all the tasks or 80%
for Q1 or 20% for Q2 and so on [1].
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FIGURE 1: Multilevel queue technique.

As we have mentioned earlier, there is very limited
literature available for MLQ scheduling algorithm. Shukla et
al. have presented a MLQ scheduling algorithm using Markov
chain model [8]. This scheduler can perform random number
of movements based on different processing states and
waiting states. By adding queue priorities in the scheduling
policy intelligently, this system can perform better. Nasser et
al. have introduced a new packet scheduling algorithm called
dynamic multilevel queue scheduling for wireless networks
[9]. Nasser et al. proposed an algorithm in which the queue
sizes can vary based on the application requirement [9]. Shah
et al. have proposed multilevel hybrid scheduling algorithm
for optimum utilization of processors in grid environment
[10]. But any of this work did not consider uncertainty
and impreciseness of task. For example, the task with lower
priority with small CPU time has always been assigned to
lower level queues using these techniques; but handling the
impreciseness dynamically rather than fixing the queues on
the basis of priority, this task may be assigned to higher
queues and can improve the performance of scheduler.

Professor Zadeh had designed a theory for dealing with
imprecise data that provides the scope of further enhance-
ments [11-14]. Different scheduling algorithms are available
in literature using fuzzy set theory [15-17]. Chahar and Raheja
have explored this scope and introduced a fuzzy based MLQ
scheduling algorithm. We are calling this algorithm FMLQ
scheduling algorithm [4]. They have introduced a dynamic
approach to share the CPU time among different queues
and provided a fuzzy based solution over fixed amount
of CPU time distribution. Undoubtedly, FMLQ scheduling
algorithm brought a solution for imprecise information and
also improved the performance of system. Our present work
explores the scope of further enhancement in development
of techniques dealing with uncertainty and impreciseness in
a much better way. Therefore, this work uses the concept
of vague set theory which is an extended form of fuzzy set
theory.

The significant aspect of VMLQ scheduler is that it
provides a dynamic share of CPU time to queues. It not only
considers the prime factor of MLQ scheduling priority but
also considers the associated uncertainty and impreciseness.
The VMLQ scheduler improves the performance of system
over the MLQ scheduling and FMLQ scheduling algorithm.

In the next section, we will describe the core part of our
work, that is, vague set theory.
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3. Vague Set Theory

In 1965, Professor Zadeh has revolutionized the theory of
logics by introducing fuzzy set theory. In fuzzy set theory
every object has single degree of membership in between
0 and 1. Let X be the universe of discourse, where X =
{xy, %5, .5 X, )

Definition 1 (fuzzy set). A fuzzy set F in X is a set of ordered
pairs {x,pp(x) : x € X}, where pp(x) is the degree of
membership of element x in the set F. The larger the value
of pp(x)means is, the more the element x belongs to the set
F[1].

Well-known extensions of fuzzy set theory have been
proposed such as type-2 fuzzy sets having membership
functions that map from a set X to a type-1 fuzzy set on the
interval [0, 1]. Such type-2 sets are @-fuzzy sets, which map
from X to the set of closed intervals in [0, 1]. Such an interval-
valued fuzzy set is characterized by a membership function
pp(x), x € X, which assigns to each element a grade of
membership over a continuous interval of real numbers in the
range [0, 1], instead of a single value. It also assigns a grade of
membership which is a subinterval of [0, 1] to each element.
This subinterval keeps track of both evidences: evidence for
favour and evidence for opposition. Quinlan introduced two
values, t(P) and f(P), characterizing a proposition P. ¢t(P) is
the greatest lower bound on the probability of P derived from
the evidence for Pand f(P) is the greatest lower bound on ~ P
derived from the evidence against P.

In 1993, Professors Gau and Buehrer had extended
this single membership concept with the two member-
ship concepts, true-membership function #,(x) and false-
membership function fg(x), to record the lower bounds on
pp(x). They addressed the two membership degrees, degree
of favour and degree of opposition individually rather than
single membership value p(x) as in fuzzy set theory. These
membership values even can process the two evidences at
the same time. They had investigated that single membership
degree cannot give more accuracy. Gau and Buehrer have
introduced the interval based theory, that is, vague set
theory, over single membership theory. The two defined
membership functions are true-membership function t; and
false-membership function fr which generalize the pp of
fuzzy set. For Vx, tp(x) < pp(x) < fp(x) [18].

Definition 2 (vague set). A vague set V in X is characterized
by a true-membership function ty, and a false-membership
function fy:

ty: X —[0,1],  fu:X—[0,1], )

where t,,(x) is a lower bound on the grade of membership
of x derived from the evidence for x and f,,(x) is a lower
bound on the negation of x derived from the evidence against
x. There is a higher order check on the two independent
membership values that total amount cannot exceed 1; that
is, ty(x) + fi/(x) < 1. Thus the grade of membership of x in
the vague set V is bounded by a subinterval [ty (x), 1 — fi/(x)]

of [0, 1]. This indicates that if the fuzzy grade of membership
is pp(x), then t,(x) < pp(x) < 1 - fi(x) [18].

Definition 3 (vague value). The interval [ty (x),1 — f,(x)] is
called the “vague value” of x in V. The vague set V is written
as

A= {(x[ty (x), fy (x)]) 1 x € X. (2)

Let us consider a vague value [0.6,0.8] in a vague set V. Here,
ty = 0.6, 1 — f, = 0.8, and 0.2 is the hesitated value that does
not belong to either the true value or the false value. The total
scope of these values is between 0 and 1 [19, 20].

3.1. Deviation of Fuzzy Set towards Vague Set. Let X be a
universe of discourse; suppose collection of static priority of
tasks of OS. Let V be a vague set of all “medium priority tasks”
of X, and let F be a fuzzy set of all “medium priority tasks”
of X. Suppose an expert el advises degree of membership
pp(x) for an object x in fuzzy set F by his expertise. Whereas
at the other side, another expert e2 advises two degrees
of memberships t,(x) and f(x) for the same object x in
vague set V by his expertise. Both experts el and e2 have
their limitation of sensing power, assessment capability, and
working ability with real life situations. In case of fuzzy
set F, there is no further check on degree of membership
pp(x). However, an expert e2 advised degree of memberships
independently but can have a further check by maintaining
the constraint ti,(x) + fi,(x) < 1 [21].

4. Vague Logic Based Multilevel
Queue CPU Scheduler

VMLQ scheduler has the capability of observing, learning,
and holding information about ready tasks. This learning
power makes the scheduler capable enough to respond
dynamically, hence assigning different CPU time among
queues at different situation. Suppose at time t1 that the
CPU time for QI is 65% and for Q2 is the remaining 35%,
though at time ¢2, 75% CPU time can be given to QI and the
remaining 25% to Q2. Traditional scheduler assigns the fixed
share to queues [1]. But our scheduler responds dynamically
depending on the current state of ready queue. VMLQ
scheduler performs mainly two tasks. First, it distributes the
CPU time among different queues dynamically and adapts
changes with the variations in usage. Second, it resolves
the starvation problem of lower priority tasks by making
decisions using vague based multilevel queue scheduling
algorithm.

VMLQ scheduler has two layers as shown in Figure 2.
Lower layer runs vague inference system and upper layer runs
scheduling algorithm. In the next sections we discuss the
working of these layers in detail

4.1. Vague Inference System for VMLQ Scheduler. A vague
inference diagram expresses all the steps from vaguification
to devaguification [21] as shown in Figure 3. Vague inference
system (VIS) maps the crisp inputs into crisp outputs using
vague set theory [22]. This mapping provides a base for the
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FIGURE 2: 2-layered architecture of VMLQ scheduler.
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FIGURE 3: Vague inference system for VMLQ scheduler.

decisions to be made. We considered a VIS for a uniprocessor
system that supports N number of tasks.

Vaguification. Vaguification is a mathematical procedure
which determines the degree of belongingness of input in
form of membership functions. It takes the input v from
the universe of discourse X in crisp form and converts it
into appropriate vague data [ty, 1 — f/|, where t,, represents
true-membership value and fy, represents false-membership
value.

Let us assume universe of discourse P = {P}, P,,..., Py},
where an element of P is denoted by P, and represents the user
priority of ith task.

In the process of vaguification, membership functions ¢
and fp which are defined in (3) are applied on crisp input
P, so that the degree of truth and degree of false Vi can be
determined. It handles the impreciseness by considering the
membership degree with respect to maximum and minimum
values of input, so that imprecise value will be equally
dispersed among all tasks. Hence, this does not affect the final
decision. Consider

R
Vi, tPi — max i ,
Pmax+Pmin+ 1 (3)
P -P .
Vi, fPi = Sql’t <ﬁ> .
max *+ Poin 1

The defined membership functions should follow the four
axioms and all axioms are represented in Figure 4.

Axiom 1. tp < 1.
Axiom 2. fp < 1.
Axiom3. 0<tp<1-fp<1.

Axiom4. 0<tp+ fp <1
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Vague data Vi can be represented as

[tPi’l_fPi]
Pmax_Pi
P +P. +1

max

_ Pi_Pmin (4)
1)m21)('+'1)min+1

Knowledge Base. It acts as the storage for the ready tasks.
All the information associated with tasks like burst time,
user priorities, arrival time, maximum available priority,
minimum available priority, number of active tasks, and so
forth are stored in the system. Consider

P

max

)PN}y
By},

Rule Base. Rule base mainly consists of if-then rules. In our
rule base, we have defined two rules based on the number of
tasks ready in the system. Consider

=max {P,P,,...
(5)
p

 in = min{P,, P,, ...

if N <5 then §; = N = 10,

(6)
it N>5then S; =N =*5.

Vague Inference Engine. It extracts the information Vi, tp,
and 1 — f; from the vaguification process and S from rule
base. After vaguifying the data, system knows the degree of
favour and degree of opposition. Based on the degrees, vague
inference engine evaluates the rules defined in rule base.
Afterward, based on the evaluation, system computes the m
as follows:

Vi, m;=S8;* (tp;+1— fp). (7)

This phase results in fuzzy value which is assigned to each
task. The inference process should follow Axiom 5. The
multiple inputs can be passed to the inference process.

Axiom 5. 0 <m; < 1.

Devaguification. The purpose of devaguification is to find
the crisp value of the output.Generally, the required output
is a single number. However, the vague inference engine
produces the multiple fuzzy values with respect to input
variables. Devaguification process converts the multiple out-
put values into a single number. Hence, the task with the
maximum fuzzy value m is chosen for the output as shown
in Figure 5.

The crisp value for the output CPU share is computed by
multiplying the maximum fuzzy value by 100 as follows:

CPU

=100 * max {m;, m,,...,my}. (8)

share
4.2. Vague Based Multilevel Queue Scheduling Algorithm. In
VMLAQ scheduling algorithm the ready queue is divided into
two subqueues, QI and Q2, as shown in Figure 6. QI is
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FIGURE 4: (a) Axiom 1, (b) Axiom 2, (¢c) Axiom 3, (d) Axiom 4, and (e) Axiom 5.

holding interactive tasks whereas Q2 is holding background
tasks. Since interactive tasks are the highest priority tasks
among all tasks [3], therefore this induces higher priority for
Ql over Q2. The tasks are permanently assigned to each queue
as in MLQ scheduling algorithm. So, task from QI cannot be
moved to Q2 and vice versa.

The CPU time is shared dynamically among QI and Q2.
The CPU time for QI (QI_time) is calculated using the vague
inference system as discussed in Section 4.1. The CPU time

for Q2 (Q2_time) is calculated using the CPU share of Ql.
The tasks of QI are dispatched with CPU only for QI_time.
However, tasks from Q2 get the CPU only when either
Ql_time becomes zero or QI becomes empty. Both queues
have their own scheduling algorithm, as both interactive and
background tasks need different response.

Each queue has its own scheduling algorithm, because
both types of tasks have their different response time require-
ments. Interactive tasks in Ql are scheduled using round
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FIGURE 6: Schematic view of proposed system.

robin (RR) scheduling algorithm [23, 24]; it means that each
task is dispatched to CPU only for given time quantum. After
the expiry of each time quantum, the current running task
will preempt and the next task from Ql will be scheduled
with CPU. This process of switching CPU from one task
to another task is called context switch which is totally an
overhead for system, since no useful work is performed by
the system during context switching [16]. Sometimes burst
time of task is remaining in between 0.1 and 0.5 sec when time
quantum expires, which increases waiting time of task as well
as the number of context switches for system. For reducing
the number of context switches, VMLFQ scheduler will not
preempt the task if the remaining burst time of that task is less
than 0.5 sec.

VMLQ scheduler uses new first come first serve (NFCFS)
scheduling algorithm for all tasks of Q2. NFCFS scheduling
algorithm schedules the task as soon as it arrives in the
system. However, traditional FCFS scheduling algorithm
schedules the next task only after completing the execution of
the first task. In interactive environment, response time is the
major factor to measure performance of scheduler. FCFS is
nonpreemptive type of scheduling algorithm which increases
the response time as well as waiting time for each task [1],
whereas NFCFS is a preemptive scheduling algorithm which
improves the response time as compared to FCFS.

4.2.1. Algorithm

Step 1. Classity task into interactive and background tasks
based on burst time.
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Step 2. Assign 1/0 bound tasks to QI and CPU bound tasks
to Q2:

N1 = number of tasks in QI,
N2 = number of tasks in Q2.

Step 3. Sort QI in ascending order based on burst time.

Step 4. Calculate the percentage of CPU time allocation for
Ql:

Ql_time = CPUg,, . (using (8)).

Step 5. Calculate the CPU time for Q2 (Q2_time):
Q2_time = 100 — Ql_time).

Step 6. Schedule the tasks from QI using RR scheduling
algorithm:

Time quantum (TQ) = Ql_time/N1.

Step 7. If (Ql-time == 0 || N1 == 0) then
schedule tasks from Q2 using NFCFS.

Step 8. After each cycle repeat steps from 1 to 8 until (N2 ==
0).

5. Simulation and Results

The performance metrics must be chosen carefully as they
reflect the characteristics of system. The metrics chosen are
as follows. Response time is defined as the amount of time a
system takes to respond to the user input. It is one of the most
important factors in CPU scheduling algorithms. Another
metric which is considered in our work is waiting time, which
is defined as the amount of time tasks wait in the ready
queue for CPU. In our work, total waiting time is the waiting
time of task in both higher priority queue and lower priority
queue. Next metric is turnaround time, total time consumed
by task from its submission to its completion. The last metric
is normalized turnaround time, relative delay of the task [1].
The reduction in values of all these parameters represents
improvement in the performance of system. We have imple-
mented the proposed VIS-VMLQ using MatLab. To compare
the performance of proposed algorithm with the traditional
MLQ and FMLQ, the following procedure has been taken.

For each N € [4,...,20], multiple sets of random tasks
were considered. Then these three algorithms were used
to schedule the tasks. Results show that VMLQ approach
performs better than other approaches. We are presenting the
three scheduling algorithms MLQ, FMLQ, and VMLQ with
the help of sample task set [] as given in Table 1. Total 16 tasks
are considered, out of these 11 tasks are classified as inter-
active/IO bound tasks and remaining 5 as background/CPU
bound tasks. I/O bound tasks are represented by T and CPU
bound tasks by C. Assume all measures in seconds. Suppose
constant CPU cycle time for each algorithm as 20 seconds.
The scheduling sequence of each algorithm is illustrated with
the help of Gantt charts.



Applied Computational Intelligence and Soft Computing 7
0 7 14 16 20 21 23 26 32 36
Q1 T1 T2 T3 Ql Tl T2 T3 T4 T5
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40 43 47 50 55 56
60 65 70 74
Q1 T5 T6 T7 T8 T9 Q1 To T10 T11
56 60 74 80 80 82 100
Q| c1 Q| C Q| a C2
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FIGURE 7: (a) 1st cycle of CPU (MLQ), (b) 2nd cycle of CPU (MLQ), (c) 3rd cycle of CPU (MLQ), (d) 4th cycle of CPU (MLQ), (e) 5th cycle
of CPU (MLQ), (f) 6th cycle of CPU (MLQ), (g) 7th cycle of CPU (MLQ), and (h) 8th cycle of CPU (MLQ).

TABLE 1: Sample task set.

I/O bound tasks CPU bound tasks

Task Arrival time Priority Burst time Task Arrival time Priority Burst time
T1 0 9 8 Cl 0 3 20
T2 0 8 9 C2 0 2 25
T3 0 7 5 C3 30 3 30
T4 21 6 6 C4 35 2 35
T5 25 5 7 C5 40 3 15
T6 38 7 4

T7 40 8 3

T8 45 6 5

T9 55 6 6

T10 57 8 5

T 60 5 4

Figure 7 shows the scheduling sequence of task set given
in Table 1 for MLQ scheduling algorithm. With the MLQ, the
tasks from QI are scheduled using RR algorithm and from
Q2 using FCFS algorithm. Let us consider the length of static
time quantum as 7s. As discussed in Section 2, assign fixed
80% (16 s) CPU share to QI and the remaining 20% (4s) to
Q2. During first cycle the tasks T1, T2, and T3 are scheduled
until 16 s and Cl is scheduled for 4 s as shown in Figure 7(a).

Till the end of the 2nd cycle tasks T1, T2, T3, and T4
finish their execution as shown in Figure 7(b). Likewise the
tasks from QI and Q2 are scheduled in the 3rd and 4th cycle
as shown in Figures 7(c) and 7(d). After the 4th cycle, Q1
becomes empty. Now the complete cycle of 20s is assigned

to Q2. The scheduling sequence of Q2 tasks is shown in
Figures 7(e), 7(f), 7(g), and 7(h), respectively.

Figure 8 shows the schedule sequence with FMLQ
scheduling algorithm of the same task set. After applying
FMLAQ, it returns the size of time quantum for first cycle as
5sand CPU share for Ql as 65% (13 s) whereas the remaining
35% (7 s) for Q2. The shortest task of Q1 is scheduled first to
CPU as shown in Figure 8(a). Tasks from Q2 are scheduled
as soon as they arrive in the queue; hence Cl and C2 both are
scheduled for 3.5 s each.

During the 2nd cycle, FEMLQ gives the CPU share to Ql as
85% (14 s) and to Q2 as 15% (6 s). Each task in QI is scheduled
for 4 s, time quantum for Q1 as shown in Figure 8(b). Whereas
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FIGURE 8: (a) Ist cycle of CPU (FMLQ), (b) 2nd cycle of CPU (FMLQ), (c) 3rd cycle of CPU (FMLQ), (d) 4th cycle of CPU (FMLQ), (e)
5th cycle of CPU (FMLQ), (f) 6th cycle of CPU (FMLQ), (g) 7th cycle of CPU (FMLQ), (h) 8th cycle of CPU (FMLQ), (i) 9th cycle of CPU

(FMLQ), and (j) 10th cycle of CPU (FMLQ).

for the third and fourth cycle, FMLQ returns size of time
quantum for Ql as 3 s and 4 s, respectively. Likewise, it returns
the CPU share as 70% and 80%, respectively. In FMLQ, if the
remaining burst time is less than or equal to 1, the task will
not preempt rather it finishes its execution as indicated in
Figure 8(c).

Up to the third cycle, all the CPU bound processes have
arrived in Q2 and scheduled once to CPU. In the fourth
cycle task CI has resumed its execution for 4 s as shown in
Figure 8(d).

All the I/O bound tasks have finished their execution up
to the 5th cycle as shown in Figure 8(e). Afterwards the entire
CPU share has been assigned to Q2. We can see the complete
scheduling from Figures 8(f)-8(j).

Figure 9 illustrates the scheduling order of each task using
VMLQ on the same task set. For the first cycle, VIS return
70% (15.8 s) CPU share for Q1 as discussed in Section 4 and
30% (4.2s) for Q2. VMLQ algorithm return time quantum
for Q1 as 5.4 s. Both tasks, T1 and T2, are scheduled for 5.4 s
as shown in Figure 9(a).

Task in Q2 is dispatched in the same way as discussed in
FMLQ. Both tasks, Cl and C2, are scheduled for 2.1s. For the

second cycle, VMLQ returns CPU share for Q1 as 69% (12.6 s)
and time quantum as 3.2 s whereas it returns CPU share for
Q2 as 31% as shown in Figure 9(b).

For the third cycle, Q1 receives 15.3s CPU time and Q2
gets 4.7 s of CPU cycle as shown in Figure 9(c). The tasks T4
and T5 have resumed and finished their execution. Similarly,
the CPU time has been computed for the 4th and 5th cycle
for Ql as 13.9 s and 14.4 s, respectively. Up to the 4th cycle, all
the tasks from QI have dispatched once with CPU as shown in
Figure 9(d). During the 5th cycle Q1 becomes empty as shown
in Figure 9(e). From the 6th cycle onwards all the CPU time
is given to CPU bound tasks as shown in Figure 9(f). We have
represented all cycles after the 5th one in a single Gantt chart.

In addition to the distribution of CPU time among QI and
Q2, we are also interested in the performance improvement
of the system. So, based on the above discussed Gantt charts,
we have calculated the performance metrics, response time,
waiting time, turnaround time, and normalized turnaround
time for all tasks. The respective outputs for all algorithms are
shown in Figures 10, 11, 12, and 13, respectively.

Then we compared the average waiting time, average
response time, and average normalized turnaround time for
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FIGURE 9: (a) Ist cycle of CPU (VMLQ), (b) 2nd cycle of CPU (VMLQ), (c) 3rd cycle of CPU (VMLQ), (d) 4th cycle of CPU (VMLQ), (e)
5th cycle of CPU (VMLQ), and (f) 6th-10th cycles of CPU (VMLQ).
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FIGURE 10: Response time (sample task set). FIGURE 11: Waiting time (sample task set).

all three algorithms as shown in Figure 14. On x-axis, “1”

represents MLQ scheduling algorithm, “2” represents FMLQ  from FMLQ to VMLQ. Dropoff represents the improvement

scheduling, and “3” represents VMLQ scheduling algorithm.  in performance. However, there is slight deviation in average
One can notice from Figure 14 that there is large dropoff ~ waiting time, average turnaround time, and average normal-

in value of average response time from MLQ to FMLQ and  ized turnaround time that is acceptable, as response time is
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FIGURE 12: Turnaround time (sample task set).
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FIGURE 13: Normalized turnaround time (sample task set).

the major considerable factor in multitasking or interactive
systems.

We have repeated this process randomly over multiple
tasks set. Further we have calculated all permformance metics
for each task set. Finally we have compared the results of all
three algorithms as shown in Figures 15, 16, 17, and 18.

Result in Figures 15, 16, 17, and 18 indicates that VMLQ
has an excellent performance over MLQ and FMLQ. Among
all algorithms, VMLQ has the lowest average response time. It
is understandable that performance improvement in relation
to response time can slightly increase the other factors includ-
ing average waiting time and average normalized turnaround
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time as we have discussed in our work. VMLF scheduling
algorithm has better performance mainly by two reasons.

The proposed architecture of VMLQ scheduler is very
effective in highly dynamic environment where CPU time
is shared dynamically among multiple queues and further
among tasks in each queue. It deals with impreciseness in
more better way as compared to fuzzy set theory. In addition
to sharing of CPU time, decreased response time improves
the starvation problem at the lower priority queues since at
least once the task has been scheduled to CPU as soon as it
arrives to the system.
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6. Conclusion

The 2-layered architecture for VMLQ scheduler introduced
in this paper offers solutions for the two basic problems
over classic MLQ algorithm and FMLQ algorithm. Firstly,
it is more appropriate for dynamical allocation of CPU
time among multiple queues because of its capability to
approximate the input parameters, user priority, and number
of tasks. Further, it improves the average response time of
system and consequently solves the starvation in the lower
priority queues. The proposed methodology implements the
vague inference system using MatLab that takes the crisp
input priority and converts it into vague data to handle
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FIGURE 18: Average normalized turnaround time.

the impreciseness of data. Simulation results in Section 5
demonstrate that this algorithm excellently improves the
performance of classic MLQ scheduling algorithm and the
FMLQ scheduling algorithm. In future, VMLQ scheduling
algorithm can be extended for more partitions of ready queue.
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