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This study presents a general control law based on Lyapunov’s direct method for a group of well-known stochastic chaotic systems.
Since real chaotic systems have undesired random-like behaviors which have also been deteriorated by environmental noise, chaotic
systems aremodeled by exciting a deterministic chaotic systemwith awhite noise obtained fromderivative ofWiener process which
eventually generates an Ito differential equation. Proposed controller not only can asymptotically stabilize these systems in mean-
square sense against their undesired intrinsic properties, but also exhibits good transient response. Simulation results highlight
effectiveness and feasibility of proposed controller in outperforming stochastic chaotic systems.

1. Introduction

In last two decades, the problem of control of chaotic systems
has been widely investigated by many researchers due to
the existence of chaos in real practical systems [1–10]. A
chaotic system has some inherent characteristics, such as
excessive sensitivity to initial conditions, fractal properties
of the motion in phase space, and board spectrums of the
frequency response; hence, it is usually difficult to accurately
predict the future behavior of the chaotic system, which can
end up in performance degradation and restriction on the
operating range of dynamic systems.

Considering aforesaid, developing strategies for control-
ling chaos phenomenon based on the features of chaotic
motion is highly important; therefore, many nonlinear tech-
niques for chaos control were proposed, such as feedback
control [1, 2] and sliding mode control [3–5]. To exploit their
advantages, these approaches are integrated as a complex
control algorithm such as adaptive sliding mode [6, 7], adap-
tive fuzzy sliding mode control [8], and predictive feedback
control [9]. However, in practice, real systems are usually
affected by external perturbations which, in many cases, are
of great uncertainty and hence may be treated as random;
therefore, controlling chaos in such concrete systems needs

to be regarded by stochastic concepts. Stochastic chaotic
systems appear in many fields of science and engineering
such as mechanical engineering [10], biology systems [11, 12],
chemistry [13], physics and laser science [14], and financial
systems [15]. For modeling stochastic chaotic systems, an Ito
stochastic differential form is utilized by using the derivative
of aWiener process which creates awhiteGaussian noise [16].

In [17], the sliding mode control is used for controlling
stochastic chaos toward desired unstable periodic orbits of
the deterministic chaotic system but the sliding mode suffers
from the deficiency (chatter), which is caused by the sign
function switch term in the control input. As a result, the
convergence of the stochastic states to the desired equilibrium
point cannot be completely achieved and state variance
converges to a bound around equilibrium point. In other
words, they cannot satisfy asymptotical stability condition for
stochastic chaotic systems in mean-square sense.

According to the above, the main contribution of this
paper is design of a very simple controller for a group of
stochastic chaotic systems on the basis of Lyapunov’s direct
method which guarantees the asymptotically stabilizing of
these systems in mean-square sense. Therefore, by adding
stochastic terms to the generalized form of a well-known
group of chaotic systems, control problem of these systems
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is investigated. The Lyapunov direct method which is a use-
ful tool for designing globally stabilizing control schemes
is utilized in this work. One of the important advantages
of this method is stabilizing systems globally without any
linearization. Numerical simulations show that the proposed
method can easily eliminate undesired characteristics of
chaos phenomenon and stabilize the system.

This paper is organized as follows: general description
of a group of chaotic systems is presented in Section 2. In
Section 3, Lyapunov-based control law is obtained and sta-
bility of the proposed scheme is analyzed. In Section 4,
numerical simulation results are shown. Finally, conclusion
is addressed in Section 5.

Notation. In this paper, 𝐿
2
[0,∞) is the space of square-inte-

grable vector function over [0,∞), ‖ ‖ stands for the usual
𝐿
2
[0,∞) norm, and (Ω,F, {F

𝑡
}
𝑡∈𝑅
,P) is a complete prob-

ability space with a filtration {F
𝑡
}
𝑡∈𝑅

satisfying the usual
conditions (i.e., filtration contains all P-null sets and is right
continuous) [18].

2. System Description

Consider a class of three-dimensional chaotic system de-
scribed as [6]

[

[

�̇� (𝑡)

̇𝑦 (𝑡)

�̇� (𝑡)

]

]

= [

[

−𝛼 0 0

𝑔 (𝑠 (𝑡)) −𝛽 𝜓 (𝑠 (𝑡))

ℎ (𝑠 (𝑡)) −𝜓 (𝑠 (𝑡)) −𝛾

]

]

[

[

𝑥 (𝑡)

𝑦 (𝑡)

𝑧 (𝑡)

]

]

+ [

[

𝑓 (𝑠 (𝑡))

0

0

]

]

,

(1)

where 𝑥(𝑡), 𝑦(𝑡), and 𝑧(𝑡) are state variables and 𝛼, 𝛽, 𝛾 are
nonnegative known constants. All of four functions 𝑓(𝑠(𝑡)),
𝑔(𝑠(𝑡)), ℎ(𝑠(𝑡)), and 𝜓(𝑠(𝑡)) are considered as smooth func-
tions, which belong to R3 → R space and 𝑠(𝑡) = (𝑥(𝑡),
𝑦(𝑡), 𝑧(𝑡)).

Remark 1. Note that, in [6], half of recent published chaotic
systems are organized by (1). Adding financial system, Table 1
illustrates these chaotic models.

Taking the consideration of control input vector 𝑢(𝑡) and
stochastic terms, the system can be expressed by

[

[

�̇� (𝑡)

̇𝑦 (𝑡)

�̇� (𝑡)

]

]

= [

[

−𝛼 0 0

𝑔 (𝑠 (𝑡)) −𝛽 𝜓 (𝑠 (𝑡))

ℎ (𝑠 (𝑡)) −𝜓 (𝑠 (𝑡)) −𝛾

]

]

[

[

𝑥 (𝑡)

𝑦 (𝑡)

𝑧 (𝑡)

]

]

+ [

[

𝑓 (𝑠 (𝑡))

0

0

]

]

+ [

[

𝑢
1
(𝑡)

𝑢
2
(𝑡)

𝑢
3
(𝑡)

]

]

+ [

[

𝑛
1
(𝑠 (𝑡) , 𝑡) �̇�

1

𝑛
2
(𝑠 (𝑡) , 𝑡) �̇�

2

𝑛
3
(𝑠 (𝑡) , 𝑡) �̇�

3

]

]

,

(2)

where 𝑛
𝑖
(𝑠, 𝑡), 𝑖 = 1, 2, 3 : R𝑛 ×R+ → R is a nonlinear and

sufficiently smooth function and 𝜔
𝑖
, 𝑖 = 1, 2, 3, are zero-

mean scalar Wiener process (Brownian motion) on (Ω, 𝐹, 𝑃)
with a natural filtration {F

𝑡
}
𝑡∈𝑅

and �̇�
𝑖
= 𝑑𝜔

𝑖
/𝑑𝑡 are

white Gaussian noise. Here, each white Gaussian noise 𝜔
𝑖
is

independent of other ones. Due to some technicalities and
restrictions used in definition of �̇� [16], system (2) has to be
rewritten as follows:

[

[

𝑑𝑥

𝑑𝑦

𝑑𝑧

]

]

= ([

[

−𝛼 0 0

𝑔 (𝑠 (𝑡)) −𝛽 𝜓 (𝑠 (𝑡))

ℎ (𝑠 (𝑡)) −𝜓 (𝑠 (𝑡)) −𝛾

]

]

[

[

𝑥 (𝑡)

𝑦 (𝑡)

𝑧 (𝑡)

]

]

+[

[

𝑓 (𝑠 (𝑡))

0

0

]

]

+ [

[

𝑢
1
(𝑡)

𝑢
2
(𝑡)

𝑢
3
(𝑡)

]

]

)𝑑𝑡

+ [

[

𝑛
1
(𝑠 (𝑡) , 𝑡) 𝑑𝜔

1

𝑛
2
(𝑠 (𝑡) , 𝑡) 𝑑𝜔

2

𝑛
3
(𝑠 (𝑡) , 𝑡) 𝑑𝜔

3

]

]

.

(3)

Assumption 2. The function 𝑛
𝑖
(𝑠, 𝑡) is assumed to be locally

Lipschitz continuous and satisfies the linear growth condition
as well and

‖𝑁 (𝑠 (𝑡) , 𝑡)‖ ≤ ‖𝐺𝑠 (𝑡)‖ , (4)

where 𝑁(𝑠(𝑡), 𝑡) = [𝑛
1
(𝑠(𝑡), 𝑡) 𝑛

2
(𝑠(𝑡), 𝑡) 𝑛

3
(𝑠(𝑡), 𝑡)]

𝑇 and
𝐺
3×3

is a knownmatrix; therefore, the dynamics (3) possesses
a unique global solution on 𝑡 ≥ 0, for any initial condition
[19–21].

3. Stochastic Chaos Control

In this section, a nonlinear control law is proposed for a group
of stochastic chaotic systems (3) based on Lyapunov’s direct
method. Lyapunov’s direct method design is a systematic
Lyapunov-based control technique, which can be applied to
strict feedback systems, pure-feedback systems, and block
strict-feedback systems. Prior to themove into design control
law, two important definitions should be stated.

Definition 3 (see [22, 23]). The stochastic system (3) is said to
be robustly stable in the mean-square sense if, for any scalar
𝜀 > 0, there exists a scalar 𝜎(𝜀) > 0 such that 𝐸{‖𝑥(𝑡)‖2} < 𝜀,
𝐸{‖𝑦(𝑡)‖

2
} < 𝜀, and 𝐸{‖𝑧(𝑡)‖2} < 𝜀, for all 𝑡 > 0 for any

initial conditions that support sup
𝜏≤0
𝐸{‖𝜙
𝑥
(𝜏)‖
2
} < 𝜎(𝜀),

sup
𝜏≤0
𝐸{‖𝜙
𝑦
(𝜏)‖
2
} < 𝜎(𝜀), and sup

𝜏≤0
𝐸{‖𝜙
𝑧
(𝜏)‖
2
} < 𝜎(𝜀).

Additionally, system (3) is said to be asymptotically stable
in the mean-square sense if lim

𝑡→∞
{‖𝑥(𝑡)‖

2
+ ‖𝑦(𝑡)‖

2
+

‖𝑧(𝑡)‖
2
} = 0 holds for any initial condition.

Definition 4 (Itô formula [18]). Consider an 𝑛-dimensional
stochastic vector process {𝑋(𝑡, 𝜔)}with stochastic differential
𝑑𝑋(𝑡, 𝜔) = 𝐹(𝑡, 𝜔) ⋅ 𝑑𝑡 + 𝑅(𝑡, 𝜔) ⋅ 𝑑𝑊

𝑡
(𝜔) on 𝑡 ≥ 0, where

𝑊
𝑡
(𝜔) is an 𝑚-dimensional Brownian motion defined on

(Ω,F, {F
𝑡
}
𝑡∈𝑅
,P). Let 𝑉 ∈ (R𝑛 ×R+;R+); then

𝑑𝑉 (𝑡) = 𝐿𝑉 (𝑡) 𝑑𝑡 + 𝑉
𝑇

𝑥
𝑅𝑑𝜔, (5)

where 𝐿𝑉(𝑡) is given by

𝐿𝑉 (𝑡) = 𝑉
𝑡
+ 𝑉
𝑇

𝑥
𝐹 +

1

2
tr {𝑅𝑅𝑇𝑉

𝑥𝑥
} , (6)
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Table 1: List of published chaotic models, which belong to the general class.

Number Name Model 𝑓(⋅) 𝑔(⋅) 𝜓(⋅) ℎ(⋅)

1 Chen’s system (𝑥(𝑡)  𝑦(𝑡))∗
{{

{{

{

�̇� = 𝑑𝑦 − 𝑦𝑧 + 𝑐𝑥

̇𝑦 = 𝑎(𝑥 − 𝑦)

�̇� = 𝑥𝑦 − 𝑏𝑧

𝑑𝑦 − 𝑦𝑧 + 𝑐𝑥 𝑎 0 𝑦

2 Liu system
{{

{{

{

�̇� = 𝑎(𝑦 − 𝑥)

̇𝑦 = 𝑏𝑥 − 𝑘𝑥𝑧

�̇� = −𝑐𝑧 + ℎ𝑥
2

𝑎𝑦 𝑏 − 𝑘𝑧 ℎ𝑥 − 𝑧 0

3 Lorenz model
{{

{{

{

�̇� = −𝑎(𝑥 − 𝑦)

̇𝑦 = 𝑟𝑥 − 𝑦 − 𝑥𝑧

�̇� = 𝑥𝑦 − 𝑏𝑧

𝑎𝑦 𝑟 − 𝑧 𝑦 0

4 Lotka Volterra generalized-3D
{{

{{

{

�̇� = 𝑥 − 𝑥𝑦 + 𝑐𝑥
2
− 𝑎𝑧𝑥

2

̇𝑦 = 𝑟𝑥 − 𝑦 − 𝑥𝑧

�̇� = 𝑥𝑦 − 𝑏𝑧

−𝑥𝑦 + 𝑐𝑥
2
− 𝑎𝑧𝑥

2
𝑟 − 𝑧 𝑦 0

5 Lu-Chen system (𝑥  𝑦)∗
{{

{{

{

�̇� = −𝑥𝑦 + 𝑐𝑥

̇𝑦 = 𝑎(𝑥 − 𝑦)

�̇� = 𝑥𝑦 − 𝑏𝑧

−𝑥𝑦 + 𝑐𝑥 𝑎 𝑦 0

6 Nose-Hoover system (𝑥  𝑦)∗
{{

{{

{

�̇� = 𝛼 − 𝑦
2

̇𝑦 = −𝑧 + 𝑥𝑦

�̇� = 𝑦

𝛼 − 𝑦
2

𝑦 0 −1

7 Rossler founded system (𝑥  𝑦)∗
{{

{{

{

�̇� = 𝑎𝑦 − 𝑦
2
− 𝑏𝑥

̇𝑦 = 𝑧

�̇� = −𝑥 − 𝑦

𝑎𝑦 − 𝑦
2

0 −1 1

8 Rucklidge attractor (𝑥  𝑦)∗
{{

{{

{

�̇� = 𝑦

̇𝑦 = 𝜆𝑥 − 𝑥𝑦 − 𝑥𝑧

�̇� = 𝑥
2
− 𝑧

𝑦 𝜆 − 𝑧 𝑥 0

9 Financial system (𝑥  𝑦)∗
{{

{{

{

�̇� = 1 − 𝑦
2
− 𝑏𝑥

̇𝑦 = 𝑧 + (𝑥 − 𝑎)𝑦

�̇� = −𝑦 − 𝑐𝑧

1 − 𝑦
2

𝑦 1 0

∗
𝑥 and 𝑦 are replaced with each other, just to adopt the chaotic systems with the general Model (1).

where 𝑉
𝑡
, 𝑉
𝑥
, and 𝑉

𝑥𝑥
denote the partial derivative on 𝑡, the

gradient of𝑉(𝑡), and the Hessian matrix of𝑉(𝑡), respectively,
and tr{⋅} is the sum of the main diagonal entries.

Theorem5. Stochastic chaotic system (3) is asymptotically sta-
ble in mean-square sense with

[

[

𝑢
1
(𝑡)

𝑢
2
(𝑡)

𝑢
3
(𝑡)

]

]

= −([

[

𝑓 (𝑠 (𝑡)) + 𝑦 (𝑡) ⋅ 𝑔 (𝑠 (𝑡)) + 𝑧 (𝑡) ⋅ ℎ (𝑠 (𝑡))

0

0

]

]

+
1

2
𝐺
𝑇
𝐺[

[

𝑥 (𝑡)

𝑦 (𝑡)

𝑧 (𝑡)

]

]

) .

(7)

Proof. For designing control law in Lyapunov’s direct ap-
proach (without linearization), at first, Lyapunov function is
regarded as

𝑉 (𝑡) =
1

2
(𝑥
2
(𝑡) + 𝑦

2
(𝑡) + 𝑧

2
(𝑡)) . (8)

Notice that 𝐸{𝑉(𝑡)} ≥ 0. Using Itô differential formula
given in Definition 4, the stochastic differential of 𝑉(𝑡) along
the trajectories of the system (3) turns out to be

𝑑𝑉 (𝑡) = 𝐿𝑉 (𝑡) 𝑑𝑡 + 𝑥 (𝑡) ⋅ 𝑛
1
(𝑠 (𝑡) , 𝑡) 𝑑𝜔

1

+ 𝑦 (𝑡) ⋅ 𝑛
2
(𝑠 (𝑡) , 𝑡) 𝑑𝜔

2

+ 𝑧 (𝑡) ⋅ 𝑛
3
(𝑠 (𝑡) , 𝑡) 𝑑𝜔

3
.

(9)

By substituting 𝑉
𝑡
, 𝑉
𝑥
, and 𝑉

𝑥𝑥
in (6), 𝐿𝑉(𝑡) is rewritten as

follows:

𝐿𝑉 (𝑡) = 𝑥 (𝑡) ⋅ 𝑓 (𝑠 (𝑡)) − 𝛼𝑥
2
(𝑡)

+ 𝑥 (𝑡) ⋅ 𝑢
1
(𝑡) + 𝑥 (𝑡) 𝑦 (𝑡) ⋅ 𝑔 (𝑠 (𝑡))

− 𝛽𝑦
2
(𝑡) + 𝑦 (𝑡) ⋅ 𝑢

2
(𝑡) + 𝑥 (𝑡) 𝑧 (𝑡) ⋅ ℎ (𝑠 (𝑡))

− 𝛾𝑧
2
(𝑡) + 𝑧 (𝑡) ⋅ 𝑢

3
(𝑡)

+
1

2
(𝑛
2

1
(𝑠 (𝑡) , 𝑡) + 𝑛

2

2
(𝑠 (𝑡) , 𝑡) + 𝑛

2

3
(𝑠 (𝑡) , 𝑡)) ;

(10)
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in other words, 𝐿𝑉(𝑡) is turned to

𝐿𝑉 (𝑡)

= [

[

𝑥(𝑡)

𝑦(𝑡)

𝑧(𝑡)

]

]

𝑇

× ([

[

𝑓 (𝑠 (𝑡)) − 𝛼𝑥 (𝑡) + 𝑦 (𝑡) ⋅ 𝑔 (𝑠 (𝑡)) + 𝑧 (𝑡) ⋅ ℎ (𝑠 (𝑡))

−𝛽𝑦 (𝑡)

−𝛾𝑧 (𝑡)

]

]

+[

[

𝑢
1
(𝑡)

𝑢
2
(𝑡)

𝑢
3
(𝑡)

]

]

) +
1

2
‖𝑁 (𝑠 (𝑡) , 𝑡)‖

2
.

(11)

Considering Assumption 2, the above equality becomes the
below inequality

𝐿𝑉 (𝑡)

≤ [

[

𝑥(𝑡)

𝑦(𝑡)

𝑧(𝑡)

]

]

𝑇

× ([

[

𝑓 (𝑠 (𝑡)) − 𝛼𝑥 (𝑡) + 𝑦 (𝑡) ⋅ 𝑔 (𝑠 (𝑡)) + 𝑧 (𝑡) ⋅ ℎ (𝑠 (𝑡))

−𝛽𝑦 (𝑡)

−𝛾𝑧 (𝑡)

]

]

+[

[

𝑢
1
(𝑡)

𝑢
2
(𝑡)

𝑢
3
(𝑡)

]

]

) +
1

2



𝐺[

[

𝑥(𝑡)

𝑦(𝑡)

𝑧(𝑡)

]

]



2

(12)

or can be stated as follows:

𝐿𝑉 (𝑡)

≤ [

[

𝑥(𝑡)

𝑦(𝑡)

𝑧(𝑡)

]

]

𝑇

× ([

[

𝑓 (𝑠 (𝑡)) − 𝛼𝑥 (𝑡) + 𝑦 (𝑡) ⋅ 𝑔 (𝑠 (𝑡)) + 𝑧 (𝑡) ⋅ ℎ (𝑠 (𝑡))

−𝛽𝑦 (𝑡)

−𝛾𝑧 (𝑡)

]

]

+[

[

𝑢
1
(𝑡)

𝑢
2
(𝑡)

𝑢
3
(𝑡)

]

]

+
1

2
𝐺
𝑇
𝐺[

[

𝑥 (𝑡)

𝑦 (𝑡)

𝑧 (𝑡)

]

]

) .

(13)

Since 𝐸{𝑑𝑉(𝑡)} = 𝐸{𝐿𝑉(𝑡)𝑑𝑡}, in order to show that the
stochastic chaotic system (3) is asymptotically stable in the
mean-square sense, it is enough to have𝐸{𝐿𝑉(𝑡)𝑑𝑡} < 0. Now,
let control law be introduced as (7). By substituting proposed
control law into (13), it can be obtained that

𝐿𝑉 (𝑡) ≤ − (𝛼𝑥
2
(𝑡) + 𝛽𝑦

2
(𝑡) + 𝛾𝑧

2
(𝑡)) . (14)

So, by applying input vector (7), stochastic chaotic system (3)
is asymptotically stable in mean-square sense.

4. Simulation Results

In this section, the performance of proposed control scheme
is evaluated by applying the method on two different chaotic
systems.The Chen and financial systems are two well-known
chaotic systems which are expressed as

Chen system
{{

{{

{

�̇� (𝑡) = 𝑑
1
𝑦 (𝑡) − 𝑦 (𝑡) 𝑧 (𝑡) + 𝑐

1
𝑥 (𝑡) ,

̇𝑦 (𝑡) = 𝑎
1
(𝑥 (𝑡) − 𝑦 (𝑡)) ,

�̇� (𝑡) = 𝑥 (𝑡) 𝑦 (𝑡) − 𝑏
1
𝑧 (𝑡) ,

(15)

Financial system
{{

{{

{

�̇� (𝑡) = 1 − 𝑦
2
(𝑡) − 𝑏

2
𝑥 (𝑡) ,

̇𝑦 (𝑡) = 𝑧 (𝑡) + (𝑥 (𝑡) − 𝑎
2
) 𝑦 (𝑡) ,

�̇� (𝑡) = −𝑦 (𝑡) − 𝑐
2
𝑧 (𝑡) ,

(16)

where (𝑎
1
, 𝑏
1
, 𝑐
1
, 𝑑
1
) = (35, 3, 28, −7) and (𝑎

2
, 𝑏
2
, 𝑐
2
) = (1,

0.1, 1).

4.1. Proposed Controller for Stochastic Chen System. In this
case, the efficiency of the proposed Lyapunov’s direct method
scheme is verified by an example of control of the stochastic
Chen system. Here, the stochastic Chen system can be
rewritten in the form of (3) as follows:

𝑑𝑥 = (𝑑
2
𝑦 (𝑡) − 𝑦 (𝑡) 𝑧 (𝑡) + 𝑐

2
𝑥 (𝑡) + 𝑢

1
(𝑡)) 𝑑𝑡

+ (2 sin (0.3𝜋𝑥 (𝑡)) (𝑥 (𝑡) + 𝑦 (𝑡))) 𝑑𝜔
1
,

𝑑𝑦 = (𝑎
2
(𝑥 (𝑡) − 𝑦 (𝑡)) + 𝑢

2
(𝑡)) 𝑑𝑡 + (sin (0.2𝜋𝑡) (𝑧 (𝑡))) 𝑑𝜔

2
,

𝑑𝑧 = (𝑥 (𝑡) 𝑦 (𝑡) − 𝑏
2
𝑧 (𝑡) + 𝑢

3
(𝑡)) 𝑑𝑡

+ (2 cos (0.1𝜋𝑦 (𝑡)) (𝑦 (𝑡) + 𝑧 (𝑡))) 𝑑𝜔
3
.

(17)

In the absence of the controller, the stochastic Chen
system (17) exhibits a chaotic behavior as shown in Figure 1.

For this case, it is easy to see that

𝑛
2

1
(𝑠 (𝑡) , 𝑡) = (2 sin(0.3𝜋𝑥(𝑡))(𝑥(𝑡) + 𝑦(𝑡)))2

≤ 4 (𝑥
2
(𝑡) + 𝑦

2
(𝑡) + 2𝑥 (𝑡) 𝑦 (𝑡)) ,

𝑛
2

2
(𝑠 (𝑡) , 𝑡) = (sin (0.2𝜋𝑡) 𝑧 (𝑡))2 ≤ 𝑧2 (𝑡) ,

𝑛
2

3
(𝑠 (𝑡) , 𝑡) = (2 cos(0.1𝜋𝑦(𝑡))(𝑦(𝑡) + 𝑧(𝑡)))2

≤ 4 (𝑦
2
(𝑡) + 𝑧

2
(𝑡) + 2𝑦 (𝑡) 𝑧 (𝑡))

(18)
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Figure 1: The chaotic trajectories of the stochastic Chen system.

and therefore

‖𝑁(𝑠(𝑡), 𝑡)‖
2
≤ [

[

𝑥 (𝑡)

𝑦 (𝑡)

𝑧 (𝑡)

]

]

𝑇

[

[

4 4 0

4 8 4

0 4 5

]

]

[

[

𝑥 (𝑡)

𝑦 (𝑡)

𝑧 (𝑡)

]

]

. (19)

According to (7), input signal is acquired as

[

[

𝑢
1
(𝑡)

𝑢
2
(𝑡)

𝑢
3
(𝑡)

]

]

= −[

[

(𝑐 + 2) 𝑥 (𝑡) + (2 + 𝑎 + 𝑑) 𝑦 (𝑡)

2 (𝑥 (𝑡) + 2𝑦 (𝑡) + 𝑧 (𝑡))

2𝑦 (𝑡) + 2.5𝑧 (𝑡)

]

]

. (20)

The simulation results are illustratedwith the initial condition
[𝜙
𝑥
(0) 𝜙

𝑦
(0) 𝜙

𝑧
(0)]
𝑇
= [5 4 7]

𝑇 in Figure 2. The control
law (20) is applied to the system (17) after five seconds.The left
columnof Figure 2 illustrates the trajectories of𝑥(𝑡),𝑦(𝑡), 𝑧(𝑡)
which shows that the obtained theoretic results are feasible
and efficient for the controlling stochastic Chen system.

4.2. Proposed Controller for Stochastic Financial System. In
this subsection,wewill compare our proposed controllerwith
the sliding based controller which is proposed in [17] on
the financial system (16). Adding stochastic terms and input
vector to the financial system, system (16) can be reformed as

𝑑𝑥 = (1 − 𝑦
2
(𝑡) − 𝑏𝑥 (𝑡) + 𝑢

1
(𝑡)) 𝑑𝑡

+ (0.5 sin (𝜋𝑡) 𝑥 (𝑡)) 𝑑𝜔
1
,

𝑑𝑦 = (𝑧 (𝑡) + (𝑥 (𝑡) − 𝑎) 𝑦 (𝑡) + 𝑢
2
(𝑡)) 𝑑𝑡

+ (cos (2𝜋𝑡) 𝑦 (𝑡)) 𝑑𝜔
2
,

𝑑𝑧 = (−𝑦 (𝑡) − 𝑐𝑧 (𝑡) + 𝑢
3
(𝑡)) 𝑑𝑡

+ (0.25 cos (𝑡) (𝑧 (𝑡) + 𝑥 (𝑡))) 𝑑𝜔
3
.

(21)

The stochastic system (21) exhibits a chaotic behavior without
the controller vector 𝑢(𝑡), which is shown in Figure 3.
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Figure 2: State trajectories of the stabilized stochastic Chen system (a) and input signals (b).
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Each 𝑛
𝑖
(𝑠(𝑡), 𝑡), 𝑖 = 1, 2, 3, satisfies both locally Lipschitz

continuous condition and linear growth condition, and

𝑛
2

1
(𝑠 (𝑡) , 𝑡) = (0.5 sin (𝜋𝑡) 𝑥 (𝑡))2 ≤ 0.25𝑥2 (𝑡) ,

𝑛
2

2
(𝑠 (𝑡) , 𝑡) = (cos (2𝜋𝑡) 𝑦 (𝑡))2 ≤ 𝑦2 (𝑡) ,

𝑛
2

3
(𝑠 (𝑡) , 𝑡) = (0.5 cos (𝑡) (𝑧 (𝑡) + 𝑥 (𝑡)))2

≤ 0.25 (𝑥
2
(𝑡) + 𝑧

2
(𝑡) + 2𝑥 (𝑡) 𝑧 (𝑡)) ;

(22)

therefore,

‖𝑁(𝑠(𝑡), 𝑡)‖
2
≤ [

[

𝑥 (𝑡)

𝑦 (𝑡)

𝑧 (𝑡)

]

]

𝑇

[

[

0.5 0 0.25

0 1 0

0.25 0 0.25

]

]

[

[

𝑥 (𝑡)

𝑦 (𝑡)

𝑧 (𝑡)

]

]

. (23)

Finally, according to (7), our proposed controller is obtained
as follows:

[

[

𝑢
1
(𝑡)

𝑢
2
(𝑡)

𝑢
3
(𝑡)

]

]

= −[

[

1 + 0.25𝑥 (𝑡) + 0.125𝑧 (𝑡)

0.5𝑦 (𝑡)

0.125 (𝑥 (𝑡) + 𝑧 (𝑡))

]

]

. (24)

On the other hand, based on sliding mode scheme proposed
in [17], input vector is obtained as follows:

[

[

𝑢


1
(𝑡)

𝑢


2
(𝑡)

𝑢


3
(𝑡)

]

]

= [

[

−1 + 𝑦
2
(𝑡) + 𝑏𝑥 (𝑡) − 0.1 sgn (𝑥 (𝑡))

−𝑧 (𝑡) − (𝑥 (𝑡) − 𝑎) 𝑦 (𝑡) − 0.1 sgn (𝑦 (𝑡))
𝑦 (𝑡) + 𝑐𝑧 (𝑡) − 0.1 sgn (𝑧 (𝑡))

]

]

.

(25)

It is worth to mention that, in order to design a sliding mode
controller, we have two steps: first constructing a sliding
surface and designing an equivalent control law to have
a desired system dynamics, second developing a switching
control law such that a sliding mode exists on every point of
the sliding surface, and thus any states outside the surface are
driven to reach the surface in a finite time.

The simulation results are illustrated with the initial con-
dition [𝜙

𝑥
(0) 𝜙

𝑦
(0) 𝜙

𝑧
(0)]
𝑇
= [1 0.5 0.75]

𝑇 in Figure 4.
Furthermore, the controllers (24) and (25) are applied to the
financial system after 25 seconds.

The state 𝑥(𝑡) of the system (21) is shown in the left
column of Figure 4, in which the first row shows the effect of
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Figure 4: State trajectories of the stabilized stochastic financial system (a) and input signals (b).

our proposed control law and the second row is related to
sliding based controller.The states𝑦(𝑡) and 𝑧(𝑡) are not shown
here due to space limitations. In the right column of Figure 4,
the input signals are presented in which the first row is related
to Lyapunov’s direct method and the second row is related
to sliding mode strategy. It should be pointed that, in the
last subfigure of Figure 4, the effect of equivalent control
law is from 25th second to 32nd second, and next seconds
are related to switching control law that causes chattering
phenomenon.

It can be seen by using proposed method that not only
would the state 𝑥(𝑡) converge to zero and the transient
response be fast, but also, in comparison with the sliding
based input, the input signal is smooth and chattering-free.

5. Conclusions

In this paper, the control problem of a group of stochas-
tic chaotic systems is studied. Based on Lyapunov’s direct
method and Itô formula, the control law has been designed

to control chaotic systems. It has been shown that, by apply-
ing proposed controller, systems are asymptotically stable
in mean square sense and the transient responses are fast.
Finally, in order to demonstrate the feasibility and effective-
ness, the proposed control scheme is applied to two well-
known chaotic systems.
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