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Continuity of power supply is of utmost importance to the consumers and is only possible by coordination and reliable operation of
power system components. Power transformer is such a prime equipment of the transmission and distribution system and needs to
be continuously monitored for its well-being. Since ratio methods cannot provide correct diagnosis due to the borderline problems
and the probability of existence of multiple faults, artificial intelligence could be the best approach. Dissolved gas analysis (DGA)
interpretation may provide an insight into the developing incipient faults and is adopted as the preliminary diagnosis tool. In the
proposed work, a comparison of the diagnosis ability of backpropagation (BP), radial basis function (RBF) neural network, and
adaptive neurofuzzy inference system (ANFIS) has been investigated and the diagnosis results in terms of error measure, accuracy,

network training time, and number of iterations are presented.

1. Introduction

Power transformer is of prime importance and costly element
of the power system and the reliability of the system then
depend upon its well-being. Close and continuous moni-
toring and maintenance of it restore the service conditions.
Thermal and electrical stresses can cause the incipient faults
which further lead to failure of the equipment. Fault detection
at the early stage can save the equipment. The important tool
to diagnose the faults is DGA. Rogers ratio, Doernenburg
ratio, IEC ratio, and Duval triangle are some of the standards
established for diagnosis. The ratio methods are based on
the single fault prediction but there are the situations of
multiple faults and the diagnosis becomes erroneous. Among
the existing methods for identifying the incipient faults, DGA
is the most popular and successful method [1-3]. When
there is any kind of fault, such as overheating or discharge
fault inside the transformer, it will produce a corresponding
characteristic amount of gases in the transformer oil. This
concept is the underlying principle of DGA. Through the
analysis of the concentrations of dissolved gases, their gassing

rates, and the ratio of certain gases, the DGA method can
determine the type of fault of the transformer. The commonly
collected and analyzed gases are H,, CH,, C,H,, C,H,, C,H,,
CO,, and CO. An ANSI/IEEE standard and IEC publication
599 [4, 5] describes three DGA approaches such as (1) key gas
method; (2) Rogers ratio method; and (3) Doernenburg ratio
method. All three methods are computationally straightfor-
ward. However, these methods, in some cases, provide erro-
neous diagnoses as well as no conclusion for the fault type.
The key gas method based on the determination of the key gas
provides the basis for qualitative determination of fault types
from the gases that are typical or predominant at various
temperatures. Now, if the fault is very severe, then all of the
gas concentrations will be high but yet insufficient to register
a fault when using the values specified in IEEE standard [2].
Also, the gas ratios obtained for the particular transformer
sample may not fall within ANSI/IEEE-specified ranges,
leading to the failure of the ratio methods for transformer
diagnosis [6]. In recent years, many researchers studied the
application of artificial intelligence, such as neural networks
and fuzzy set theory to increase diagnosis accuracy [6-15].



The fuzzy systems, though good at handling uncertainties,
could not learn from previous diagnosis results and, hence,
are not able to adjust the diagnostic rules automatically
[10-13]. To account for uncertainties, the artificial neural
networks (ANNSs) have been proposed to diagnose the trans-
former faults because of their superior learning capabilities
[6-9]. In general, fuzzy systems and neural networks deal
efficiently with two different areas of information processing.
Fuzzy systems are good at various aspects of uncertain
knowledge representation, while neural networks are efficient
structures that are capable of learning from examples. Both
techniques complement each other. The generalized regres-
sion neural network was used in [14] but since this network
is a one-pass network, efficiency is somewhat low for fault
detection. An application of fuzzy clustering and a radial basis
function neural network has been reported [15]; however,
when one type of fault is in the neighborhood of the other
type of fault, the chances of false diagnosis may increase.

In this paper, the investigations on transformer fault
diagnosis using supervised neural networks and ANFIS has
been made. In the initial work the diagnosis was carried out
using backpropagation (BP) and radial basis function (RBF)
neural network, which belongs to the category of supervised
networks and is presented in Section 2 and, at the later stage,
the diagnosis by TSK model of ANFIS in Section 3. Section 4
provides the diagnosis results of investigations by all the
methods listed above.

2. Supervised Neural Networks and
Training Algorithms

2.1. Feed-Forward or Backpropagation (BP) Network. In case
of neural networks like backpropagation or feed-forward
and radial basis function (RBF), training is performed using
supervised approach in which the desired result is known for
the samples in the training data. Backpropagation algorithm
includes batch training in which the samples are presented
in a batch and weight updates are done. In incremental
training, samples are presented at each iteration for weight
updates. Many algorithms, namely, gradient descent, gradient
descent with momentum, conjugate gradient, quasi-Newton,
and reduced memory Levenburg-Marquardt algorithm are
available in the neural network tool box. In this paper on-line
or adaptive Levenburg-Marquardt algorithm which is fast
and consumes less memory is used for feed-forward neural
network learning.

Network design includes selection of input, output, and
hidden layers network topology and weighted connection of
nodes. The corresponding connection weights are also deter-
mined in the process.

Figure 1 presents the artificial neural network used in fault
diagnosis of power transformers and consists of three-layer
feed-forward structure with the input, hidden, and output
layers. Only one hidden layer is shown to understand its
architecture; however the designed network has three hidden
layers. The nodes in each layer receive input signals from the
previous layer and pass the output to the subsequent layer.
The nodes of the input layer receive a set of input signals from
outside system and directly deliver the input data to the input
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FIGURE 1: Structure of FF neural network.

of the hidden layer by the weighted links. Network is designed
for seven inputs as the concentrations of gases and one output
corresponding to the fault. Three hidden layers consisting of
7-7-1 neurons are selected for better design, so as to reveal the
hidden relationship between faults and gas composition.

2.2. Levenburg-Marquardt Algorithm. 'The network proposed
is then trained and tested using Levenburg-Marquardt algo-
rithm. This algorithm needs less memory space and is fast in
operation as compared to gradient descent and other algo-
rithms. The learning steps used in this algorithm are as shown
below. Each learning iteration (epoch) will consist of the
following basic steps:

(1) compute the Jacobian matrix, ] (by using finite differ-
ences or the chain rule);

(2) compute the error gradient
9=J'E M

(3) approximate the Hessian (H);

(4) using the cross product Jacobian
H=]J; )

(5) solve (H + AI)§ = g to find &;
(6) update the network weights w using J;

(7) recalculate the sum of squared errors using the
updated weights;

(8) ifthe sum of squared errors has not decreased, discard
the new weights, increase A using 5, and go to step 4;

(9) else, decrease A using 5 and stop,

where E = vector of network errors, A-damping or scaling
factor, I = identity matrix, and ¢ is the increment at each
iteration.

2.3. Radial Basis Function (RBF) Network. As shown in
Figure 2, network consists of 3 layers (input, hidden, and
output). Input layer is made up of nodes that connect network
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FIGURE 2: Structure of RBF network.

to environment. At input of each neuron (hidden layer), dis-
tance between neuron center and input vector is calculated
applying Gaussian bell function to form output of the neu-
rons. Output layer is linear and supplies response of network
to activation function. Selection of radial basis function width
parameter and number of radial basis neurons in the hidden
layer is an important step. Larger width results in smaller size
network but faster execution of data. Maximum number of
neurons may be the number of inputs but the minimum neu-
rons can be determined experimentally [10]. Network struc-
ture solely depends upon the number of neurons in the hid-
den layer. Training the network with the performance param-
eters specified, yield the number of neurons and the diagnosis
error. Learning strategies includes the centre and spread and
output layer weight learning. Centers can be fixed randomly
or self-organized or supervised selection can be employed.

Clustering also can be performed in self-organized learn-
ing. Supervised learning of RBF network is performed using
least mean square (LMS) algorithm. RBF training with
supervised selection of centers and spread is done by using
the following equations.

Output layer weights (linear weights):

OE
Wy 0n4 1) = Wy ) = ®
Position of centers is given by
OE
t;(n+1) :ti(n)—nz&fgg. (4)
Spreads of centers (hidden layer):
-1
SE (
Y (1) = Z<>—'73 ”) )

8y

where Wis 1 x 1, t is 1 x m weight vector, ZI_ (n)isamxm
matrix, and “m” is the feature dimension. #;, #,, and #; are
the step sizes.

S8E(n)/6W;(n) is the change in error with respect to
weight at each iteration.

SE(n)/6t;(n) is the change in error with respect to the
centre.

For linear combination of the function, F(x) = ) W;-h(x)
is used. Here h(x) is a Gaussian function:

(X—CY]

h(x) = exp [— 2 (6)

where C is centre vector of a region, x is an input vector, and
r is the radius or width of receptive field.

The sum squared error to be minimized between the
actual input and target is given by the following equation:

Z - f (=) )

where “y;” is the desired output and “f(x;)” is the network
output.

In [12] OLS based RBENN is proposed to optimize the
parameters of the network for transformer fault diagnosis.
Authors selected sufficient training exemplars from previous
literature and the performance of the network in terms of
misclassification and hide neurons is presented. A method
based on k-means clustering algorithm and RBF neural
network is proposed in [13] with an accuracy of 82.2% and 78
neurons in the hidden layer with data base from the research
papers. SOM cell splitting algorithm is used for optimal
network architecture of RBF network in fault classification of
power transformers [14].

3. Incipient Fault Diagnosis Using ANFIS

3.1. Fuzzy Inference System (FIS). It is generally difficult to
determine the hidden relationship between the gas concen-
trations and the fault type. Fuzzy set theory can be used to
handle such type of uncertainty. In the proposed methodol-
ogy, the gas concentrations based on the range are selected as
low (L), medium (M), and high (H). The bell shaped member-
ship function is used for all input gases and fuzzy inference
rules are then developed. FIS consists of antecedents (if) and
consequents (then) part and the rules are of the form.

If MH =M and AE = M and EE = L and EM = H, then the
condition K—Rule 1.

Similarly using the same gas ratios with different linguis-
tic variables other than defined in rule 1, many such rules
can be formulated as per the experience of the researcher.
However using the concentration of 5 prominent gases with
assigned linguistic variables and membership functions, var-
ious rules can be generated.

Using the max/min composition, the fuzzy inference, that
is, the antecedent, consists of rules as shown below.

Rule 1 = min{MH = M, AE = M, EE = L,EM = H}.

Rule 2 = min{MH = H, AE = M, EE = L,EM = L}.

Rule n = min{MH = VH, AE = L,EE = H,EM = L}.
The consequent part will specify the fault condition:

Condition K = max{rule 1, rule 2};

Condition N = max{rule r,rule p,...,rule n}.
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FIGURE 3: Fuzzy inference system.

ANFIS combines the best features of fuzzy systems and
neural networks in which the representation of prior knowl-
edge into a set of constraints, that is, network topology to
reduce the optimization search space, is performed by fuzzy
system and adaptation of backpropagation to structured
network to automate fuzzy controller parametric tuning is
done by neural network. Fuzzy inference is the actual process
of mapping from a given input to an output using fuzzy
logic. The process involves membership functions for input
and output, fuzzy logic operators, and if-then rules. The
architecture of fuzzy inference system is shown in Figure 3.

The process involves fuzzification, inference engine or
rules, and defuzzification. The crisp inputs are to be fuzzified
in the range from 0 to 1, using different membership functions
with values of each linguistic label [15]. Using International
Electrotechnical Commission (IEC) Code, Central Electricity
Generation Board (CEGB), and American Standard Test
Method (ASTM) standards to build the fuzzy logic system as
a case study of DGA data of power transformer is proposed
[16], in which crisp logic and fuzzy logic are used to interpret
the fault type.

The input feature selection is based on competitive
learning and neural fuzzy model in which the fuzzy rule base
for the identification of fault was designed by applying the
subtractive clustering method which is very good at han-
dling the noisy input data [17]. Verification of the proposed
approach has been carried out by testing on standard and
practical data and has been shown in the efficient method
which uses radius parameter in subtractive clustering with
96.7% diagnosis accuracy as compared to Rogers ratio and
other neural fuzzy techniques.

The most important methods used in the FIS are Mam-
dani and Takagi-Sugeno-Kang (TSK) method. The main dif-
ference lies in the consequent of fuzzy rules. In the proposed
work, TSK method of FIS has been used in the fuzzy toolbox

of matlab, in which the fuzzy rules are generated from the
input output dataset of 563 power transformer oil samples.

TSK model combines fuzzy sets in antecedents with crisp
function in output:

if x1is A and x2 is B, then y = f(x1, x2);
if X is small, then Y1 = 4;

if X is medium, then Y2 = -0.5X + 4;

if X is large, then Y3 = X — 1.

Here A and B are the fuzzy sets in the antecedent, while
y = f(x1,x2)isacrisp function in the consequent. f(x1, x2)
is the polynomial in the input variables X1 and X2. Small,
medium, and high are the nonfuzzy sets with the membership
functions used in the present work.

In the architecture of TSK ANFIS model, five nodes are
available and can perform the various functions. In layers 1
and 4, the nodes are adaptive and represented by the node
functions. In layers 2, 3, and 5 the nodes are fixed. The overall
output computed as the sum of all incoming signals at node
5 is given by

:Ziwi'fi
Xiw; ’

where w; is the normalized firing strength from layer 3 and f;
is the output of ith rule.

Overall output (Os) (8)

3.2. ANFIS Structure. The details of the network structure
used in the proposed work are as follows.

It uses 7 input gas concentrations with g-bell membership
functions and one output with linear transfer function.
Input-output relationship is developed using fuzzy logic and
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inference regarding the particular fault is obtained. The gen-
erated Sugeno (TSK) FIS structure is as follows.

fisNet =;

name: ANFIS’;

type: ‘Sugeno’;

and method: ‘prod’;
or method: ‘max’;
defuzz. method: ‘wtaver’;
imp. method: ‘prod’;
agg. method: ‘max’;
input: [1x7 struct.];
output: [1x1 struct.];
rule: [1x2187 struct.].

4. Results and Discussion

In Section 2 the architecture, design and algorithms used
for training BP and RBF network are discussed in detail. In
Section 3, the FIS methodology based on the gas ratios or
the concentration of gases is highlighted. Generated FIS with
input, output and rule structure is also presented.

In this diagnosis, eight faulty conditions, namely, arcing,
corona, low energy discharge (D1), high energy discharge
(D2), thermal fault of temperature of 150-300 degrees Cel-
sius, thermal fault of temperature between 300 and 700
degrees Celsius, thermal fault of temperature >700 degrees
Celsius, and corona with solid insulation degradation, and
normal or healthy condition are considered. The incipient
fault conditions are based on the energy and temperature at
which the seven prominent gases such as H,, CH,, C,H,,
C,H,, C,H,, CO and CO, evolved. Generally CO and CO,
are responsible for solid insulation degradation. The chances
of failure of equipment due to solid insulation degradation
are less; hence five gases are enough to make the final
diagnosis. But all the gas concentrations are considered and
the additional combinational fault, that is, corona with solid
insulation degradation is given due consideration.

DGA interpretation is mainly used as the basis in dealing
with all the faulty conditions. Total 563 DGA samples of
power transformer from the reputed ISO certified testing unit
were used in the data base. Out of 563 samples, 40, 30, and
30% were used for training, testing, and model validation,
respectively. The network structure and diagnosis results in
terms of error as the performance measure in diagnosis were
carefully studied and the comparative performance of the
networks is presented.

4.1. Diagnosis by Feed-Forward (Backpropagation) Network.
Figures 4 and 5 show the details of architecture, training,
testing, and validation of model and regression analysis.
Network performs better and the performance at epoch
number 388 during training was 0.0445. However the model
validity is not better. It takes about 5000 iterations to reach the
network performance in terms of mean squared error (MSE)
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FIGURE 4: Network performance, training module, and actual
network used.

to 0.056 and the training time is also in hours as shown in
Figure 4. The accuracy in diagnosis during training, testing,
and validation was 99.55, 99.11, and 94.4%, respectively. The
features revealed during the diagnosis of this 7-7-1 network
are better performance in terms of MSE and less number of
neurons in the hidden layer implying less memory space, but
the execution time is too long during the validation of model.
It indicates that the network is not suitable for the diagnosis
on the given DGA samples.

4.2. Diagnosis by RBF Neural Network. Details of network
structure and algorithm used in training are discussed in
the previous section. Optimum performance of the network
was observed at epoch number 135, where the sum squared
error (SSE) was finally reduced to 0.015 as shown in Figure 8
indicating 98.78% true diagnosis accuracy. Network takes less
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tion.

FIGURE 6: Network training showing SSE and epochs.

time for execution, but the number of neurons in the hidden
layer as finally determined during the experimentation was
135. More numbers of samples in the data base, more numbers
of neurons, and hence better accuracy in diagnosis were
obtained. The network performance seems to be superior for
this problem. Network training for SSE, number of neurons,
and epochs is shown in Figure 6 and the error between actual
network output and target and the performance curve is
shown in Figures 7 and 8.

4.3. Diagnosis by ANFIS. The well designed ANFIS was
trained where the number of epochs was set at 3000 and
the goal was set as 0. ANFIS training on 563 transformer oil
samples was performed using 3 g bell membership functions
for input and a linear function for the output. And method
is used for input and weight average for the output. For
defuzzification, weight averaging is used. The TSK model was
then tested on 40% samples and the testing and validation
were performed on the remaining 30% samples. The trained
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ANFIS provided the diagnosis in terms of root mean squared
error (RMSE) as 0.28, indicating an accuracy of 93.83%,
and the best validation performance was obtained with an
accuracy of 92.33%.

The input membership functions have been shown in
Figure 9. The ANFIS module with 7 inputs, 1 output, and 2187
rules automatically generated by the trained system model is
shown in Figure 10. Since the input parameters are 7 and 3
membership functions which are used, the rules generated
are 37 = 2187. The rule viewer is shown in Figure 11 with
the rules for 7 inputs and the output of the system. Figure 12
shows the performance curve with the root mean square
error (RMSE) and the number of epochs during training. It
has been observed that the trained ANFIS provides better
performance at epoch number 3000. The FIS used in this
work generates more rules and some may be redundant
but the performance is reasonably good. Other membership
functions, for example, triangular, trapezoidal, and sigmoid,
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were also tried but the diagnosis error was too high which is
restricted to inclusion in the present study and only the single
membership function results are presented.

The comparative diagnosis performance of the methods
is shown in Table 3. To overcome the drawbacks of neural
networks as stated earlier, ANFIS could have been the best
choice. The ANFIS is slow in convergence as compared to
RBF and occupies more memory space but since it possesses
the advantages of both least square and gradient descent,
better performance is revealed during the investigation.
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FIGURE 12: Performance curve showing the RMSE and number of
epochs.

TABLE 1: Rogers ratio codes.

Ratio code Range Code
<0.1 5
i >0.1, <1.0 0
>1.0, <3.0 1
>3.0 2
. <1.0 0
J >1.0 1
<10 0
k >1.0, <3.0 1
>3.0 2
<0.5 0
I 0.5, <3.0 1
>3.0 2

4.4. Diagnosis Using Rogers Ratio Method. It uses 4 gas ratios
such as CH,/H,, C,H¢/CH,, C,H,/C,H, and C,H,/C,H,
and has been coded as1i, j, k, and 1, respectively, and the ranges
of ratios are shown in Table 1.

Fault diagnosis suggested based upon the gas ratios is
shown in Table 2.

Matlab codes have been used to match the ratio codes
and the related fault. 55 DGA samples out of the available
563 samples have been used and only 29 samples have been
classified correctly showing an accuracy of 52.73%. This
method is not so accurate and sometimes tends to have no
diagnosis in many cases. It is not able to cover the entire range
of input space.

4.5. Diagnosis Using Duval Triangle. Michael Duval devel-
oped Duval triangle utilizing a data base of thousands of
DGAs of transformers for diagnosis. The Duval triangle is
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TABLE 2: Fault diagnosis based on Rogers ratio codes.

i j k 1 Diagnosis

0 0 0 0 Normal deterioration

5 0 0 0 Partial discharge

1-2 0 0 0 Slight overheating <150°C

1-2 1 0 0 Overheating 150°-200°C

0 1 0 0 Overheating 200°-300°C

0 0 1 0 General conductor overheating

1 0 1 0 Winding circulating currents

1 0 2 0 Core and tank circulating currents, overhead joints
0 0 0 1 Flashover without power following through

0 0 1-2 1-2 Arc with power following through

0 0 2 2 Continuous sparking to floating potential

5 0 0 1-2 Partial discharge with tracking

TABLE 3: Results of diagnosis on transformer oil samples. Total number of DGA samples in database = 563.
Networks Networflljntﬁ)i(;lcofy and Samples in training % training Samples in testing % testing accuracy % validation
neurons/rules accuracy accuracy

RBFNN 275 225 98.78 169 98.81 98.85
BPNN 7x7x1 225 99.55 169 99.11 94.40
ANFIS 1x7,1x1,2187 rules 225 93.83 169 — 92.33

% C,H,

FIGURE 13: Duval triangle.

shown in Figure 13. This method has proved to be accurate but
mainly depends upon the concentration of gases at medium
and low level which affects the diagnosis.

When using Duval triangle for diagnosis, C,H,, C,H,,
and CH, values from the testing laboratory are plotted and a
point that lies within one of the triangle fault zones or rarely
might fall on the borderline between two fault zones will
determine the particular fault.

The percentage of the prominent gases can be determined
as follows:

% C,H, = 100X/X +Y + Z, for X = C,H, in mic-

rolitre/litre;
% C,H, = 100Y/X +Y + Z, for Y = C,H, in mic-
rolitre/litre;
% CH, = 100Z/X +Y + Z, for Z = CH, in mic-
rolitre/litre.

The faults specified are as follows:

PD: partial discharge;

T1: thermal fault less than 300°C;

T2: thermal fault between 300" and 700°C;
T3: thermal fault greater than 700°C;

D1: low energy discharge (sparking);

D2: high energy discharge (arcing);

DT: mix of thermal and electrical fault.

Making use of 55 DGA samples from the 563 available
samples, Duval triangle provides correct diagnosis for 40
samples showing 72.66% accuracy and is better in diagnosis
as compared to Rogers ratio method.

5. Conclusion

A comparison of the diagnosis ability of backpropagation
(BP), radial basis function (RBF) neural network, and adap-
tive neurofuzzy inference system (ANFIS) has been investi-
gated and the diagnosis results in terms of error measure,
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TABLE 4: Diagnosis results of Rogers ratio and Duval triangle method.

Method Number of DGA samples used Number of DGA samples correctly classified % diagnosis accuracy
Rogers ratio 55 29 52.73
Duval triangle 55 40 72.66

accuracy, network training time, and number of iterations are
presented. It has been investigated that BP network performs
better during training but it fails to validate the performance.
RBF network is consistent in its performance during both
training and testing and its validation accuracy is better
than BP network. In the present work, ANFIS provides least
accuracy as compared to BP and RBF network. It is slow in
convergence as compared to RBF and takes more iteration
and occupies more memory space but provides reasonably
good diagnosis results and accuracy during training and
testing on unknown samples also. It is superior in diagnosis
as it uses either backpropagation or a combination of least
squares estimation and backpropagation for membership
function parameter estimation. It overcomes the drawback of
BP network getting struck in local minima. It learns automat-
ically from the input output data. Performance of ANFIS can
be improved further by using various membership functions
and parameters.

The artificial intelligence methods provide better accu-
racy in fault diagnosis as compared to Rogers ratio method
and Duval triangle and the diagnosis results by all the meth-
ods are listed in Tables 3 and 4.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

Authors are grateful to M/S.B.R. Industrial Services for
providing sufficient DGA data of power transformers of
MSETCL. Without the oil samples the work would not have
been completed. Thanks are due to the reviewers for their
constructive criticism which made it possible to incorporate
the changes for better formulation of the paper in true sense.

References

(1] Interpretation of the Analysis of Gases in Transformer and other
Oil-filled Electrical Equipment in service, vol. 599, IEC Publica-
tion, Geneva, Switzerland, 1978.

[2] R. R. Rogers, “IEEE and IEC codes to interpret incipient faults
in transformers using gas in oil analysis,” IEEE Transactions on
Electrical Insulation, vol. 13, no. 5, pp. 349-354, 1978.

[3] M. Duval and A. DePablo, “Interpretation of gas-in-oil analysis
using new IEC publication 60599 and IEC TC 10 databases,
IEEE Electrical Insulation Magazine, vol. 17, no. 2, pp. 31-41,
2001.

[4] M. Dong, Z. Yan, and G. J. Zhang, “Comprehensive diagnostic
and aging assessment method of solid insulation in trans-
former,” in Proceedings of the Annual Report: Conference on

Electrical Insulation and Dieletric Phenomena, pp. 137-140, Xian
Jiao tong University, Xian, China, October 2003.

[5] M. Duval, “Dissolved gas analysis and the duval triangle,” in
Proceedings of the 5th AVO, New Zealand International Technical
Conference, 2006.

[6] H. B. Zheng, R. J. Liao, S. Grzybowski, and L. J. Yang,
“Fault diagnosis of power transformers using multi-class least
square support vector machines classifiers with particle swarm
optimization,” IET Electric Power Applications, vol. 5, no. 9, pp.
691-696, 2011.

[7] M. Y. Cho, T. E. Lee, S. W. Kau, C. S. Shieh, and C. J. Chou,
“Fault diagnosis of power transformers using SVM/ANN with
clonal selection algorithm for features and kernel parameters
selection,” in Proceedings of the Ist International Conference on
Innovative Computing, Information and Control (ICICIC "06),
pp- 60-65, September 2006.

(8] J.P.Lee, D.J. Lee, P. S. Ji, J. Y. Lim, and S. S. Kim, “Diagnosis of
power transformer using fuzzy clustering and radial basis func-
tion neural network;” in Proceedings of the International Joint
Conference on Neural Networks (IJCNN °06), pp. 1398-1404,
Vancouver, Canada, July 2006.

[9] K. E Thang, R. K. Aggarwal, A. J. McGrail, and D. G. Esp,
“Analysis of power transformer dissolved gas data using the self-
organizing map,” IEEE Transactions on Power Delivery, vol. 18,
no. 4, pp. 1241-1248, 2003.

[10] Neural network tool box(Mat lab).

[11] M. Kishan, C. K. Mohan, and R. Sanjay, Elements of Artificial
Neural Networks, Penram International Publishing (India),
1997.

[12] J. Zhang, H. Pan, H. Huang, and S. Liu, “Electric power trans-
former fault diagnosis using OLS based radial basis function
neural network,” in Proceedings of the IEEE International Con-
ference on Industrial Technology (ICIT °08), pp. 1-8, Chengdu,
China, April 2008.

[13] L. Chao, Q. Hong, X.-H. Yang, and J.-H. Ye, “The fault diag-
nosis of power transformer using clustering and radial basis
function neural network,” in Proceedings of the 8th International
Conference on Machine Learning and Cybernetics, pp.1257-1260,
Baoding, July 2009.

[14] Y.-C. Liang and J.-Y. Liu, “Power transformer fault diagnosis
using som-based RBF neural networks,” in Proceedings of the 5th
International Conference on Machine Learning and Cybernetics,
pp. 3140-3143, Dalian, China, August 2006.

[15] C.S. Chang, C. W. Lim, and Q. Su, “Fuzzy-neural approach for
dissolved gas analysis of transformer fault diagnosis,” in Aus-
tralian Universities Power Engineering Conference (AUPEC '04),
Brisbane, Australia, September 2004.

[16] R. Hooshmand and M. Banejad, “Application of fuzzy logic
in fault diagnosis in transformers using dissolved gas analysis
based on different standards,” in Proceedings of World Academy
of Science, Engineering and Technology, vol. 17, pp. 157-161,
December 2006.

[17] R. Naresh, V. Sharma, and M. Vashisth, “An integrated neural
fuzzy approach for fault diagnosis of transformers,” IEEE
Transactions on Power Delivery, vol. 23, no. 4, pp. 2017-2024,
2008.



Advances in k& - - . Journal of

o 0 Industrial Engineerin
. WNultimedia J .

Applied
Computational
Intelligence and Soft
. g nternational Journal of T P - Com tll'lg"
The Scientific Dieenel Qumalof e iR e

World Journal Sensor Networks

Advances in

Fuzzy
Systems

Modelling &
Simulation
in Engineering

e

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Computer Networks
and Communications

Advances in »
Artificial
Intelligence

i ‘ Advances in
Biomedica ‘H'\{'ii Artificial
‘ & NS Neural Systems

International Journal of
Computer Games in
Technology S re Engineering

Intel ional J na
Reconfigurable
Computing

Computational i

Ad S
uman-Computer Intelligence and 2y Electrical and Computer
Interaction Neuroscience Engineering

Journal of

Robotics




