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We consider a class of fuzzy linear systems (FLS) and demonstrate some of the existing methods using the embedding approach
for calculating the solution. The main aim in this paper is to design a class of mixed type splitting iterative methods for solving
FLS. Furthermore, convergence analysis of the method is proved. Numerical example is illustrated to show the applicability of the
methods and to show the efficiency of proposed algorithm.

1. Introduction

Solving fuzzy systems has been considered by many
researchers, for example, [1–9] and the references therein. In
[1, 2] Kandel et al. applied the embedding method for fuzzy
linear system (hereafter denoted by FLS) and replaced the
FLS by a 2𝑛 × 2𝑛 crisp linear system. This model has been
modified later by some other researchers; see [10–16] and the
references therein.

Here, based on mixed type splitting, we introduce a new
iterative method to FLS. The mixed type splitting iterative
method [17, 18] is given for the linear system of equations
𝐴𝑥 = 𝑏, where𝐴 is positive real. Cheng et al. in [19] presented
a class of the mixed type splitting iterative methods based on
[17, 18] and some convergence conditions were given. They
also proposed some sufficient and necessary conditions of
convergence when coefficient matrix of the linear system is
certain matrices such as𝑀-matrix.

In this paper, the mixed type splitting iterative method
for FLS will be established, which is a generalization of
mixed type splitting iterative method for linear system.
Some sufficient conditions for convergence of the mixed
type splitting iterative method will be considered. Moreover,
we will discuss a comparison theorem, which describes the
influences of the parameters on the convergence rates of the
new methods.

2. Preliminaries

In this section we provide some basic notations and defini-
tions of fuzzy number and fuzzy linear system.

Definition 1. An arbitrary fuzzy number is represented, in
parametric form, by an ordered pair of functions (𝑢(𝑟), 𝑢(𝑟)),
0 ≤ 𝑟 ≤ 1, which satisfy the following requirements (see
[2, 3]).

(i) 𝑢(𝑟) is a bounded monotonic increasing left continu-
ous function over [0, 1].

(ii) 𝑢(𝑟) is a bounded monotonic decreasing left continu-
ous function over [0, 1].

(iii) 𝑢(𝑟) ≤ 𝑢(𝑟), 0 ≤ 𝑟 ≤ 1.

A crisp number 𝛼 can be simply expressed as 𝑢(𝑟) = 𝑢(𝑟) =
𝛼, 0 ≤ 𝑟 ≤ 1. The addition and scalar multiplication of
fuzzy numbers 𝑥 = (𝑥(𝑟), 𝑥(𝑟)) and 𝑦 = (𝑦(𝑟), 𝑦(𝑟)) can be
described as follows:

(i) 𝑥 = 𝑦 if and only if 𝑥(𝑟) = 𝑦(𝑟) and 𝑥(𝑟) = 𝑦(𝑟);

(ii) 𝑥 + 𝑦 = (𝑥(𝑟) + 𝑦(𝑟), 𝑥(𝑟) + 𝑦(𝑟));

(iii) for all 𝐾 ∈ 𝑅; 𝐾𝑥 = { (𝐾𝑥,𝐾𝑥), 𝐾≥0,
(𝐾𝑥,𝐾𝑥), 𝐾<0.
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Definition 2. Consider the 𝑛×𝑛 linear system of the following
equations:

𝑎11𝑥1 + 𝑎12𝑥2 + ⋅ ⋅ ⋅ + 𝑎1𝑛𝑥𝑛 = 𝑏1,

𝑎21𝑥1 + 𝑎22𝑥2 + ⋅ ⋅ ⋅ + 𝑎2𝑛𝑥𝑛 = 𝑏2,

.

.

.

𝑎𝑛1𝑥1 + 𝑎𝑛2𝑥2 + ⋅ ⋅ ⋅ + 𝑎𝑛𝑛𝑥𝑛 = 𝑏𝑛,

(1)

where the coefficient matrix 𝐴 = (𝑎𝑖𝑗), 1 ≤ 𝑖, 𝑗 ≤ 𝑛, is a crisp
matrix and 𝑏𝑖 ∈ 𝐸

1, 1 ≤ 𝑖 ≤ 𝑛, is called a FLS.

Definition 3. A fuzzy number vector 𝑋 = (𝑥1, 𝑥2, . . . , 𝑥𝑛)
𝑇,

given by the parametric form 𝑥𝑖 = (𝑥𝑖(𝑟), 𝑥𝑖(𝑟)), 1 ≤ 𝑖 ≤ 𝑛,
0 ≤ 𝑟 ≤ 1, is called a solution of the FLS (1) if

𝑛

∑

𝑗=1

𝑎𝑖𝑗𝑥𝑗 =

𝑛

∑

𝑗=1

𝑎𝑖𝑗𝑥𝑗 = 𝑏𝑖,

𝑛

∑

𝑗=1

𝑎𝑖𝑗𝑥𝑗 =

𝑛

∑

𝑗=1

𝑎𝑖𝑗𝑥𝑗 = 𝑏𝑖.

(2)

Friedman et al. [2, 3], in order to solve the system given by
(2), have solved a 2𝑛 × 2𝑛 crisp linear system as follows:

𝑆𝑋 = 𝐵, (3)

where 𝑆 = (𝑠𝑖𝑗) are determined as follows:

𝑎𝑖𝑗 ≥ 0 󳨀→ 𝑠𝑖𝑗 = 𝑎𝑖𝑗, 𝑠𝑖+𝑛,𝑗+𝑛 = 𝑎𝑖𝑗,

𝑎𝑖𝑗 < 0 󳨀→ 𝑠𝑖,𝑗+𝑛 = −𝑎𝑖𝑗, 𝑠𝑖+𝑛,𝑗 = −𝑎𝑖𝑗,

(4)

and any (𝑠𝑖𝑗) which is not determined by (4) is zero.
Then referring to [2, 3] we have

𝑆 = [
𝑠1 𝑠2

𝑠2 𝑠1
] , 𝑋 = [

𝑥

−𝑥
] , 𝐵 = [

𝑏

−𝑏
]

󳨐⇒ {
𝑠1𝑥 − 𝑠2𝑥 = 𝑏,

𝑠2𝑥 − 𝑠1𝑥 = −𝑏.

(5)

Or

𝑆 = [
𝑠1 −𝑠2

−𝑠2 𝑠1
] , 𝑋 = [

𝑥

𝑥
] , 𝐵 = [

𝑏

𝑏
]

󳨐⇒ {
𝑠1𝑥 − 𝑠2𝑥 = 𝑏,

−𝑠2𝑥 + 𝑠1𝑥 = 𝑏,

(6)

where 𝑠1, 𝑠2 ≥ 0 and 𝐴 = 𝑠1 − 𝑠2.

Definition 4 (see [20]). (a) A matrix 𝐴 = 𝑎𝑖𝑗 is called a 𝑍-
matrix if, for any 𝑖 ̸= 𝑗, 𝑎𝑖𝑗 ≤ 0.

(b) A 𝑍-matrix is an 𝐿-matrix, if 𝑎𝑖𝑖 > 0.
(c) A 𝑍-matrix is an 𝑀-matrix, if 𝐴 is nonsingular and

𝐴
−1
≥ 0.

(d) For any matrix 𝐴 the comparison matrix ⟨𝐴⟩ =
(𝑚𝑖𝑗) ∈ 𝑅

𝑛×𝑛 is defined by

𝑚𝑖𝑖 =
󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 , 𝑚𝑖𝑗 = −

󵄨󵄨󵄨󵄨󵄨
𝑎𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
, 𝑖 ̸= 𝑗, 1 ≤ 𝑖, 𝑗 ≤ 𝑛. (7)

(e) A complex matrix 𝐴 is an 𝐻-matrix if ⟨𝐴⟩ = (𝑚𝑖𝑗) ∈
𝑅
𝑛×𝑛 is an𝑀-matrix.
(f)Matrix𝐴 is called a GeneralizedDiagonally Dominant

Matrix (GDDM) if there exists a positive diagonal matrix
𝑊 such that 𝐴𝑊 is a Strictly Diagonally Dominant Matrix
(𝑆𝐷𝐷𝑀).

Lemma 5 (see [19]). Let 𝐴 be the coefficient matrix of the
linear system 𝐴𝑥 = 𝑏. If 𝐴 is an𝑀-matrix and conditions of
(19) are satisfied, then the mixed type splitting iterative method
is convergent.

Remark 6. For any splitting, 𝐴 = 𝑀 − 𝑁, where 𝑀 is
nonsingular, the iterative method for solving linear systems
of 𝐴𝑥 = 𝑏 is

𝑥
(𝑖+1)
= 𝑀
−1
𝑁𝑥
(𝑖)
+𝑀
−1
𝑏, 𝑖 = 0, 1, . . . . (8)

This iterative process converges to the unique solution 𝑥 =
𝐴
−1
𝑏 for initial vector value 𝑥0 ∈ 𝑅𝑛 if and only if the spectral

radius 𝜌(𝑀−1𝑁) < 1, where 𝑇 = 𝑀−1𝑁 is called the iteration
matrix [20]. For example, suppose diag(𝐴) = 𝐼 and 𝐴 = 𝐼 −
𝐿 − 𝑈, where 𝐿 and 𝑈 are strictly lower and strictly upper
triangular part of𝐴, respectively.Then for classical AOR (see;
[10]) we have

𝑀𝑟,𝑤 =
1

𝑤
(𝐼 − 𝑟𝐿) ,

𝑁𝑟,𝑤 =
1

𝑤
((1 − 𝑤) 𝐼 + (𝑤 − 𝑟) 𝐿 + 𝑤𝑈)

󳨐⇒ 𝑙𝑟,𝑤 = 𝑀
−1

𝑟,𝑤𝑁𝑟,𝑤

= (𝐼 − 𝑟𝐿)
−1
((1 − 𝑤) 𝐼 + (𝑤 − 𝑟) 𝐿 + 𝑤𝑈) .

(9)

And when 𝑤 = 𝑟, we have SOR method [20]; that is,

𝑀𝑤 =
1

𝑤
(𝐼 − 𝑤𝐿) , 𝑁𝑤 =

1

𝑤
((1 − 𝑤) 𝐼 + 𝑤𝑈)

󳨐⇒ 𝑙𝑤 = 𝑀
−1

𝑤 𝑁𝑤.

(10)

Lemma 7 (see [19]). Let 𝐴 be the coefficient matrix of the
linear system 𝐴𝑥 = 𝑏. If 𝐴 is an L-matrix, conditions of (19)
are satisfied and

0 ≤ 𝐷𝑑 ≤
1

𝑤
(1 − 𝑤)𝐷,

0 ≤ 𝐿 𝑙 ≤ (1 −
𝑟

𝑤
) ,

0 ≤ 𝑟 ≤ 𝑤 ≤ 1.

(11)

Then

(i) If 𝜌(𝑙𝑟,𝑤) < 1 ⇒ 𝜌(𝑇) ≤ 𝜌(𝐿𝑟⋅𝑤).
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(ii) If 𝜌(𝑙𝑟,𝑤) = 1 ⇒ 𝜌(𝑇) = 𝜌(𝐿𝑟⋅𝑤).
(iii) If 𝜌(𝑙𝑟,𝑤) > 1 ⇒ 𝜌(𝑇) ≥ 𝜌(𝐿𝑟⋅𝑤).

Lemma 8 (see [20]). Matrix 𝐴 is a GDDMmatrix if and only
if 𝐴 is an𝐻-matrix.

3. The Mixed Type Splitting Iterative Methods
for Fuzzy Linear Systems

Let 𝑆 be nonsingular and 𝑆 = 𝐷 − 𝐿 − 𝑈, where

[
𝑠1 −𝑠2

−𝑠2 𝑠1
] [
𝑥

𝑥
] = [

𝑏

𝑏
] ,

𝐷 = [
𝐷1 0

0 𝐷1
] , 𝐿 = [

𝐿1 0

𝑠2 𝐿1
] ,

𝑈 = [
𝑈1 𝑠2

0 𝑈1
] , 𝐷1 = diag (𝑠1) > 0,

𝐷1 − 𝐿1 − 𝑈1 = 𝑆1,

(12)

and −𝐿1, −𝑈1 are strictly lower and upper triangular matrices
of 𝑠1, respectively. The iterative method for 𝑆𝑋 = 𝐵 is

𝑋
(𝑖+1)
= 𝑀
−1
𝑁𝑋
(𝑖)
+𝑀
−1
𝐵, 𝑖 = 0, 1, . . . , (13)

where 𝑆 = 𝑀 − 𝑁, det (𝑀) ̸= 0, and 𝑋(0) is any initial
vector. There are several well-known point iterative methods
and block numerical iterativemethods for FLS such as Jacobi,
Gauss-Seidel, SOR, and AOR; see [9–14]. As a matter of fact,
these methods are generalization of iterative methods for
crisp linear systems 𝐴𝑥 = 𝑏. For instance, in AOR method
for FLS [12] we have

𝑥
(𝑖+1)
= 𝑇𝑟,𝑤𝑥

(𝑖)
+ (𝐷 − 𝑟𝐿)

−1
𝑤𝑏, 𝑖 = 0, 1, . . . , (14)

where the iterative matrix is

𝑇𝑟,𝑤 = (𝐷 − 𝑟𝐿)
−1
[(1 − 𝑤)𝐷 + (𝑤 − 𝑟) 𝐿 + 𝑤𝑈] . (15)

Therefore, we obtain

𝑀 = (𝐷 − 𝑟𝐿) = (
𝐷1 − 𝑟𝐿1 0

− 𝑟𝑆2 𝐷1 − 𝑟𝐿1

) 󳨐⇒ 𝑀
−1
= (

(𝐷1 − 𝑟𝐿1)
−1

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑘

0⏟⏟⏟⏟⏟⏟⏟

𝛽

𝑟 (𝐷1 − 𝑟𝐿1)
−1
𝑆2 (𝐷1 − 𝑟𝐿1)

−1

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝜂

(𝐷1 − 𝑟𝐿1)
−1

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝛾

). (16)

And we have

𝑇𝑟,𝑤 = 𝑀
−1
𝑁 = (

𝑘 0

𝑟𝑘𝑆2𝑘 𝑘
){(

(1 − 𝑤)𝐷1 0

0 (1 − 𝑤)𝐷1
) + (

(𝑤 − 𝑟) 𝐿1 0

(𝑤 − 𝑟) 𝑆2 (𝑤 − 𝑟) 𝐿1
) + (

𝑤𝑈1 𝑤𝑆2

0 𝑤𝑈1
)}

󳨐⇒ 𝑇𝑟,𝑤 =
[
[

[

𝑘 [(1 − 𝑤)𝐷1 + (𝑤 − 𝑟) 𝐿1 + 𝑤𝑈1]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Φ

𝑤𝑘𝑆2⏟⏟⏟⏟⏟⏟⏟⏟⏟

Γ

𝑤𝑘𝑆2𝑘 [(1 − 𝑟)𝐷1 + 𝑟𝑈1]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Ω

𝑘 [(1 − 𝑤)𝐷1 + (𝑤 − 𝑟) 𝐿1 + 𝑟𝑤𝑆2𝑘𝑆2 + 𝑤𝑈1]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Ψ

]
]

]

.

(17)

Other methods are the same and we know that, by choosing
special parameters, the similar results can be obtained, for
example,

(1) Jacobi method for 𝑤 = 1, 𝑟 = 0;

(2) JOR (Jacobi Overrelaxation) method for 𝑟 = 0;

(3) Gauss-Seidel method for 𝑟 = 𝑤 = 1;

(4) SOR method for 𝑟 = 𝑤.

Now, from 𝑋(𝑖) = [ 𝑥
(𝑖)

𝑥
(𝑖)
] we have the following algorithms

(mentioned in [12] for the first time).

Algorithm 9. AOR iterative method for FLS.

Step 1. Choose an initial vector 𝑋(0) = [ 𝑥
(0)

𝑥
(0)
] and parameters

𝑟 and 𝑤.

Step 2. For 𝑘 = 0, 1, 2, . . . do

𝑥
(𝑖+1)
= Φ𝑥
(𝑖)
+ Γ𝑥
(𝑖)
+ 𝑤 (𝑘𝑏 + 𝛽𝑏)

𝑥
(𝑖+1)
= Ψ𝑥
(𝑖)
+ Ω𝑥
(𝑖)
+ 𝑤 (𝜂𝑏 + 𝛾𝑏) .

(18)

Step 3. If ‖𝑥(𝑖+1) −𝑥(𝑖)‖/‖𝑥(𝑖+1)‖ < 𝜀 or ‖𝑥(𝑖+1) −𝑥(𝑖)‖/‖𝑥(𝑖+1)‖ <
𝜀, then stop; otherwise set 𝑘 = 𝑘 + 1 and go to Step 2.
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Step 4. End for.

Step 5. Return to𝑋(𝑘+1).

Next, we will establish the mixed type splitting iterative
method for FLS. The mixed type splitting iterative methods
[19] for solving 𝐴𝑥 = 𝑏 are given by the following:

(𝐷 + 𝐷𝑑 + 𝐿 𝑠 − 𝐿) 𝑥
(𝑖+1)
= (𝐷𝑑 + 𝐿 𝑠 + 𝑈) 𝑥

(𝑖)
+ 𝑏,

𝑖 = 0, 1, 2, . . . ;

(19)

whose iteration matrix is

𝑇 = (𝐷 + 𝐷𝑑 + 𝐿 𝑠 − 𝐿)
−1
(𝐷𝑑 + 𝐿 𝑠 + 𝑈) ,

𝐴 = 𝐷 − 𝐿 − 𝑈, 𝐷𝑑 ≥ 0, 0 ≤ 𝐿 𝑠 ≤ 𝐿.

(20)

Now, we consider the mixed type splitting iterative methods
for solving FLS. Based on above demonstration, we have

[

[

𝐷1 + 𝐷𝑑⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐸

+ 𝐿 𝑠 − 𝐿1 0

𝐿2𝑠 − 𝑠2 𝐷1 + 𝐷𝑑 + 𝐿 𝑠 − 𝐿1

]

]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑀

[
𝑥
(𝑖+1)

𝑥
(𝑖+1)]

= [
𝐷𝑑 + 𝐿 𝑠 + 𝑈1 𝑠2

𝐿2𝑠 𝐷𝑑 + 𝐿 𝑠 + 𝑈1
]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑁

[
𝑥
(𝑖)

𝑥
(𝑖)] + [

𝑏

𝑏
] ,

(21)

where 0 ≤ 𝐿 𝑠 ≤ 𝐿 and 0 ≤ 𝐿2𝑠 ≤ 𝑠2. Now, let

𝑘 = (𝐸 + 𝐿 𝑠 − 𝐿1)
−1
. (22)

Therefore, we obtain

𝑀
−1
= (

𝑘 0

−𝑘(𝐿2𝑠 − 𝑠2)𝑘⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝜂

𝑘) . (23)

And we have

𝑇 = 𝑀
−1
𝑁 = (

𝑘 [𝐷𝑑 + 𝐿 𝑠 + 𝑈1]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Φ̂

𝑘𝑠2⏟⏟⏟⏟⏟⏟⏟

Γ̂

−𝑘 (𝐿2𝑠 − 𝑠2) 𝑘 (𝐷𝑑 + 𝐿 𝑠 + 𝑈1) + 𝑘𝐿2𝑠⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Ω̂

−𝑘 (𝐿2𝑠 − 𝑠2) 𝑘𝑠2 + 𝑘 (𝐷𝑑 + 𝐿 𝑠 + 𝑈1)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Ψ̂

). (24)

Now, from 𝑋(𝑖) = [ 𝑥
(𝑖)

𝑥
(𝑖)
] we have the following algorithms

(mentioned in [12] for the first time).

Algorithm 10. Mixed type splitting iterative methods 1 for
FLS.

Step 1. Choose an initial vector 𝑋(0) = [ 𝑥
(0)

𝑥
(0)
] and parameters

𝑟 and 𝑤.

Step 2. For 𝑘 = 0, 1, 2, . . . do

𝑥
(𝑖+1)
= Φ̂𝑥
(𝑖)
+ Γ̂𝑥
(𝑖)
+ (𝑘𝑏)

𝑥
(𝑖+1)
= Ψ̂𝑥
(𝑖)
+ Ω̂𝑥
(𝑖)
+ (𝜂𝑏 + 𝑘𝑏) .

(25)

Step 3. If ‖𝑥(𝑖+1)−𝑥(𝑖)‖/‖𝑥(𝑖+1)‖ < 𝜀 and ‖𝑥(𝑖+1)−𝑥(𝑖)‖/‖𝑥(𝑖+1)‖ <
𝜀, then stop; otherwise set 𝑘 = 𝑘 + 1 and go to Step 2.

Step 4. End for.

Step 5. Return to𝑋(𝑘+1).

Note that when

𝐷𝑑 =
1

𝑤
(1 − 𝑤)𝐷1, 𝐿 𝑠 = 0, 𝐿2𝑠 = 0, (26)

we have SOR method for FLS (see [11]) and when

𝐷𝑑 =
1

𝑤
(1 − 𝑤)𝐷1, 𝐿 𝑠 =

1

𝑤
(𝑤 − 𝑟) 𝐿1, 𝐿2𝑠 = 0, (27)

where (𝑤, 𝑟) are real parameters with 𝑤 ̸= 0, we have AOR
method for FLS (see [12]).

Theorem 11. Let 𝐴 be an 𝐻-matrix and let conditions of
Lemma 7 be satisfied.

Then we have

(i): 𝜌 (𝑇) ≤ 𝜌 (⟨𝑇⟩) ≤ 𝜌 (⟨𝑙𝑟,𝑤⟩) < 1,

(ii): 𝜌 (𝑇) ≤ 𝜌 (⟨𝑇⟩) ≤ 𝜌 (⟨𝑙𝑤⟩) < 1.
(28)

Proof. We only prove (i); (ii) can be similarly verified.
Let 𝐴 be an 𝐻-matrix. Then ⟨𝐴⟩ is an𝑀-matrix and by

Lemmas 5 and 7,

𝜌 (⟨𝑇⟩) ≤ 𝜌 (⟨𝑙𝑟,𝑤⟩) < 1. (29)

By definition of mixed splitting method, we have

|𝑇| =
󵄨󵄨󵄨󵄨󵄨
(𝐷 + 𝐷𝑑 + 𝐿 𝑙 − 𝐿)

−1
(𝐷𝑑 + 𝐿 𝑙 + 𝑈)

󵄨󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨󵄨
𝐸 (𝐼 − 𝐸

−1
(𝐿 − 𝐿 𝑙))

−1

× [𝐸 {𝐸
−1
𝐷𝑑 + 𝐸

−1
𝐿 𝑙 + 𝐸

−1
𝑈}]
󵄨󵄨󵄨󵄨󵄨󵄨
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=
󵄨󵄨󵄨󵄨󵄨󵄨
(𝐼 − 𝐸

−1
(𝐿 − 𝐿 𝑙))

−1
[𝐸
−1
𝐷𝑑 + 𝐸

−1
𝐿 𝑙 + 𝐸

−1
𝑈]
󵄨󵄨󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨󵄨
(𝐼 + (𝐸

−1
(𝐿 − 𝐿 𝑙))

+ (𝐸
−1
(𝐿 − 𝐿 𝑙))

2
+ ⋅ ⋅ ⋅ ) [𝐸

−1
𝐷𝑑 + 𝐸

−1
𝐿 𝑙 + 𝐸

−1
𝑈]
󵄨󵄨󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨󵄨
((𝐸
−1
(𝐿 − 𝐿 𝑙)) + (𝐸

−1
(𝐿 − 𝐿 𝑙))

2
+ ⋅ ⋅ ⋅ )

× [𝐸
−1
𝐷𝑑 + 𝐸

−1
𝐿 𝑙 + 𝐸

−1
𝑈]

+ [𝐸
−1
𝐷𝑑 + 𝐸

−1
𝐿 𝑙 + 𝐸

−1
𝑈]
󵄨󵄨󵄨󵄨󵄨󵄨

≤ ({
󵄨󵄨󵄨󵄨󵄨
𝐸
−1
(𝐿 − 𝐿 𝑙)

󵄨󵄨󵄨󵄨󵄨
+ (
󵄨󵄨󵄨󵄨󵄨
𝐸
−1
(𝐿 − 𝐿 𝑙)

󵄨󵄨󵄨󵄨󵄨
)
2
+ ⋅ ⋅ ⋅ }

× [
󵄨󵄨󵄨󵄨󵄨
𝐸
−1
𝐷𝑑

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝐸
−1
𝐿 𝑙

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝐸
−1
𝑈
󵄨󵄨󵄨󵄨󵄨
])

+ ([
󵄨󵄨󵄨󵄨󵄨
𝐸
−1
𝐷𝑑

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝐸
−1
𝐿 𝑙

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝐸
−1
𝑈
󵄨󵄨󵄨󵄨󵄨
])

= (𝐼 −
󵄨󵄨󵄨󵄨󵄨
𝐸
−1
(𝐿 − 𝐿 𝑙)

󵄨󵄨󵄨󵄨󵄨
)
−1
(
󵄨󵄨󵄨󵄨󵄨
𝐸
−1
𝐷𝑑

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝐸
−1
𝐿 𝑙

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝐸
−1
𝑈
󵄨󵄨󵄨󵄨󵄨
)

= ⟨𝑇⟩ 󳨐⇒ 𝜌 (|𝑇|) ≤ 𝜌 (⟨𝑇⟩) . (30)

Therefore we have

𝜌 (𝑇) ≤ 𝜌 (|𝑇|) ≤ 𝜌 (⟨𝑇⟩) . (31)

And the proof is completed.

Lemma 12. The Matrix 𝑆 in (5) or (6) is an 𝐻-matrix if and
only if 𝐴 in (1) is𝐻-matrix.

Proof. Let 𝐴 be an 𝐻-matrix; then by Lemma 8, there exists
a positive diagonal matrix 𝑊 such that 𝐴𝑊 is strictly
diagonally dominant matrix. Without loss of generality, let
𝐴𝑊 be row strictly diagonally dominant; that is,

𝑛

∑

𝑗=1
𝑗 ̸=𝑖

󵄨󵄨󵄨󵄨󵄨
𝑎𝑖𝑗𝑤𝑗𝑗

󵄨󵄨󵄨󵄨󵄨
<
󵄨󵄨󵄨󵄨𝑎𝑖𝑖𝑤𝑖𝑖

󵄨󵄨󵄨󵄨 . (32)

Now, let

𝑗
+
= {𝑎𝑖𝑗 | 𝑎𝑖𝑗 ≥ 0} , 𝑗

−
= {𝑎𝑖𝑗 | 𝑎𝑖𝑗 < 0} , 1 ≤ 𝑖, 𝑗 ≤ 𝑛;

(33)

then we have

𝑛

∑

𝑗=1
𝑗 ̸=𝑖

󵄨󵄨󵄨󵄨󵄨
𝑎𝑖𝑗𝑤𝑗𝑗

󵄨󵄨󵄨󵄨󵄨
= ∑

𝑗∈𝑗
+

𝑗 ̸=𝑖

󵄨󵄨󵄨󵄨󵄨
𝑎𝑖𝑗𝑤𝑗𝑗

󵄨󵄨󵄨󵄨󵄨
+ ∑

𝑗∈𝑗
−

𝑗 ̸=𝑖

󵄨󵄨󵄨󵄨󵄨
𝑎𝑖𝑗𝑤𝑗𝑗

󵄨󵄨󵄨󵄨󵄨
<
󵄨󵄨󵄨󵄨𝑎𝑖𝑖𝑤𝑖𝑖

󵄨󵄨󵄨󵄨 . (34)

By considering the structure of 𝑆 and since, for all 𝑖 = 1, . . . , 𝑛,
𝑎𝑖𝑖 ≥ 0, we have

𝑛

∑

𝑗=1
𝑗 ̸=𝑖

󵄨󵄨󵄨󵄨󵄨
𝑠𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
= ∑

𝑗∈𝑗
+

𝑗 ̸=𝑖

󵄨󵄨󵄨󵄨󵄨
𝑎𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
,

2𝑛

∑

𝑗=𝑛+1

󵄨󵄨󵄨󵄨󵄨
𝑠𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
= ∑

𝑗∈𝑗
−

󵄨󵄨󵄨󵄨󵄨
𝑎𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
,

1 ≤ 𝑖 ≤ 𝑛,

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑠𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
= ∑

𝑗∈𝑗
−

󵄨󵄨󵄨󵄨󵄨
𝑎𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
,

2𝑛

∑

𝑗=𝑛+1
𝑗 ̸=𝑖

󵄨󵄨󵄨󵄨󵄨
𝑠𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
= ∑

𝑗∈𝑗
+

𝑗 ̸=𝑖

󵄨󵄨󵄨󵄨󵄨
𝑎𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
,

𝑛 + 1 ≤ 𝑖 ≤ 2𝑛.

(35)

Therefore
𝑛

∑

𝑗=1
𝑗 ̸=𝑖

󵄨󵄨󵄨󵄨󵄨
𝑠𝑖𝑗𝑤𝑗𝑗

󵄨󵄨󵄨󵄨󵄨
= ∑

𝑗∈𝑗
+

𝑗 ̸=𝑖

󵄨󵄨󵄨󵄨󵄨
𝑎𝑖𝑗𝑤𝑗𝑗

󵄨󵄨󵄨󵄨󵄨
+ ∑

𝑗∈𝑗
−

𝑗 ̸=𝑖

󵄨󵄨󵄨󵄨󵄨
𝑎𝑖𝑗𝑤𝑗𝑗

󵄨󵄨󵄨󵄨󵄨
<
󵄨󵄨󵄨󵄨𝑎𝑖𝑖𝑤𝑖𝑖

󵄨󵄨󵄨󵄨

1 ≤ 𝑖 ≤ 𝑛,

𝑛

∑

𝑗=1
𝑗 ̸=𝑖

󵄨󵄨󵄨󵄨󵄨
𝑠𝑖𝑗𝑤𝑗𝑗

󵄨󵄨󵄨󵄨󵄨
= ∑

𝑗∈𝑗
−

𝑗 ̸=𝑖

󵄨󵄨󵄨󵄨󵄨
𝑎𝑖𝑗𝑤𝑗𝑗

󵄨󵄨󵄨󵄨󵄨
+ ∑

𝑗∈𝑗
+

𝑗 ̸=𝑖

󵄨󵄨󵄨󵄨󵄨
𝑎𝑖𝑗𝑤𝑗𝑗

󵄨󵄨󵄨󵄨󵄨
<
󵄨󵄨󵄨󵄨𝑎𝑖𝑖𝑤𝑖𝑖

󵄨󵄨󵄨󵄨

𝑛 + 1 ≤ 𝑖 ≤ 2𝑛,

󳨐⇒

2𝑛

∑

𝑗=1
𝑗 ̸=𝑖

󵄨󵄨󵄨󵄨󵄨
𝑠𝑖𝑗𝑤𝑗𝑗

󵄨󵄨󵄨󵄨󵄨
<
󵄨󵄨󵄨󵄨𝑎𝑖𝑖𝑤𝑖𝑖

󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨𝑠𝑖𝑖𝑤𝑖𝑖

󵄨󵄨󵄨󵄨 .

(36)

Then, by choice of

𝑇 = (
𝑊 0

0 𝑊
)

2𝑛×2𝑛

(37)

𝑆𝑇 is row 𝑆𝐷𝐷𝑀. Therefore, by Lemma 8, 𝑆 is also an 𝐻-
matrix. Conversely, if 𝑆 is an 𝐻-matrix, then by reasoning
similar to that above, it can be seen that 𝐴 is an 𝐻-matrix
too.

Therefore, we can obtain the following theorem.

Theorem 13. Let 𝐴 be an 𝐻-matrix and the following condi-
tions are satisfied:

0 ≤ 𝐷𝑑 ≤
1

𝑤
(1 − 𝑤)𝐷1, 0 ≤ 𝐿 𝑙 ≤

1

𝑤
(𝑤 − 𝑟) 𝐿1,

0 ≤ 𝐿2𝑙 ≤ 𝑠2.

(38)

Then the speed of convergence of Algorithm 9 is faster than the
speed of convergence of SOR and AOR methods for FLS.

Proof. Let 𝐴 be an 𝐻-matrix; then by Lemma 12, 𝑆 is an
𝐻-matrix too. Furthermore, by Theorem 11, 𝜌(⟨𝑙𝑟,𝑤⟩) < 1.
Moreover, similar to the proving process of Theorem 11 and
(31), we can obtain

𝜌 (𝑙𝑟,𝑤) ≤ 𝜌 (
󵄨󵄨󵄨󵄨𝑙𝑟,𝑤
󵄨󵄨󵄨󵄨) ≤ 𝜌 (⟨𝑙𝑟,𝑤⟩) . (39)
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Table 1: (𝐷𝑑 = 0.1(−1 + 1/𝑤)𝐷1; 𝐿 𝑠 = 0.5(1 − 𝑟/𝑤)𝐿1; 𝐿2𝑠 = 0.01𝑠2).

Method AOR or SOR iterative methods Algorithm 10 Algorithm 14
𝑛 𝑤 𝑟 Iter. ELP 𝜌 Iter. ELP 𝜌 Iter. ELP 𝜌

5

0.5 0.1 64 0.003005 0.6739 20 0.001933 0.3764 20 0.001228 0.3228
0.5 0.5 62 0.003032 0.6322 17 0.001876 0.2278 15 0.001183 0.1476
0.7 0.3 34 0.001592 0.5191 16 0.001545 0.2530 16 0.001199 0.1953
0.9 0.6 21 0.001523 0.3192 13 0.001109 0.1399 12 0.001056 0.1084

50

0.5 0.1 528 0.034716 0.9173 219 0.024478 0.9261 188 0.019920 0.5229
0.5 0.5 460 0.032090 0.8419 142 0.020052 0.8847 126 0.015032 0.6006
0.7 0.3 359 0.029076 0.8241 175 0.019944 0.9072 152 0.018738 0.4894
0.9 0.6 189 0.019587 0.9227 140 0.015078 0.8831 125 0.013490 0.6094

100

0.5 0.1 1123 0.069947 0.9290 403 0.053815 0.9611 343 0.069539 0.5275
0.5 0.5 652 0.060993 0.8534 264 0.041211 0.9392 233 0.060378 0.6449
0.7 0.3 753 0.057825 0.8544 324 0.046366 0.9511 279 0.053829 0.5134
0.9 0.6 452 0.051150 0.6884 260 0.037807 0.9383 232 0.053185 0.6554

250

0.5 0.1 2578 3.042835 0.9672 920 0.898741 0.9840 780 0.795855 0.5320
0.5 0.5 1993 1.967367 0.9302 619 0.635806 0.9749 549 0.582322 0.6738
0.7 0.3 1553 1.566464 0.9419 746 0.761868 0.9798 644 0.656939 0.5342
0.9 0.6 882 0.885911 0.8819 607 0.617928 0.9745 543 0.571853 0.6854

Therefore,

𝜌 (𝑙𝑟,𝑤) < 1, (40)

and by Lemma 7 the proof is completed.

In the sequel, we will improve Algorithm 10 by the
following updating technique.

(I) First, use 𝑥𝑖 and 𝑥𝑖 from our previous information to
compute the new 𝑥(𝑖+1) exactly as in the first line of
Step 2.

(II) Then, replace 𝑥(𝑖) in the second line of Step 2 with
𝑥
(𝑖+1), obtained just as in the above, to compute the

new 𝑥(𝑖+1).

Algorithm 14. Mixed type splitting iterative methods 2 for
FLS.

Step 1. Choose an initial vector 𝑋(0) = [ 𝑥
(0)

𝑥
(0)
] and parameters

𝑟 and 𝑤.

Step 2. For 𝑘 = 0, 1, 2, . . . do

𝑥
(𝑖+1)
= Φ̂𝑥
(𝑖)
+ Γ̂𝑥
(𝑖)
+ (𝑘𝑏) ,

𝑢𝑝𝑑 = Ω̂𝑥
(𝑖+1)

𝑥
(𝑖+1)
= Ψ̂𝑥
(𝑖)
+ 𝑢𝑝𝑑 + (𝜂𝑏 + 𝑘𝑏) .

(41)

Step 3. If ‖𝑥(𝑖+1) −𝑥(𝑖)‖/‖𝑥(𝑖+1)‖ < 𝜀 or ‖𝑥(𝑖+1) −𝑥(𝑖)‖/‖𝑥(𝑖+1)‖ <
𝜀, then stop; otherwise set 𝑘 = 𝑘 + 1 and go to Step 2.

Step 4. End for.

Step 5. Return to𝑋(𝑘+1).

4. Numerical Example

In this section, we give an example of FLS to illustrate the
results obtained in previous sections.

Example 1. Consider the 𝑛 × 𝑛 fuzzy system

2𝑥1 − 𝑥3 = (2 + 𝑟, 4 − 𝑟) ,

𝑥2 + 2𝑥3 − 𝑥4 = (2 + 𝑟, 4 − 𝑟) ,

𝑥3 + 2𝑥4 − 𝑥5 = (2 + 𝑟, 4 − 𝑟) ,

.

.

.

𝑥𝑛−3 + 2𝑥𝑛−2 = (2 + 𝑟, 4 − 𝑟) ,

𝑥𝑛−2 + 2𝑥𝑛−1 = (2 + 𝑟, 4 − 𝑟) ,

𝑥𝑛−1 + 2𝑥𝑛 − 𝑥1 = (2 + 𝑟, 4 − 𝑟) .

(42)

The extended 2𝑛 × 2𝑛matrix is

𝑆 = [
𝑠1 −𝑠2

−𝑠2 𝑠1
] , (43)
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where

𝑠1 =

[
[
[
[
[
[
[
[
[
[

[

2 0 ⋅ ⋅ ⋅ 0 0 0 0

1 2 ⋅ ⋅ ⋅ 0 0 0 0

.

.

. d d ⋅ ⋅ ⋅ d d
.
.
.

0 ⋅ ⋅ ⋅ 1 2 0 ⋅ ⋅ ⋅ 0

0 ⋅ ⋅ ⋅ 0 1 2 0 0

0 ⋅ ⋅ ⋅ d 0 1 2 0

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 1 2

]
]
]
]
]
]
]
]
]
]

]

,

𝑠2 =

[
[
[
[
[
[
[
[
[
[
[

[

0 0 0 −1 0 ⋅ ⋅ ⋅ 0

0 0 0 0 −1 d
.
.
.

.

.

.

.

.

. d d d d 0

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 d −1

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 0 0

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 0 0

−1 0 ⋅ ⋅ ⋅ 0 0 0 0

]
]
]
]
]
]
]
]
]
]
]

]

.

(44)

Evidently, 𝐴 is an 𝐻-matrix and therefore 𝑆 is also an 𝐻-
matrix. Table 1 shows the numerical results of the above
example with the tolerance 𝜀 = 10−10. Moreover, the initial
approximation is zero vector. In the Table 1, we reported
the number of iterations (Iter), Elapsed time (ELP), and
associated spectral radii (𝜌) for the iterative methods with
different 𝑛,𝑤, and 𝑟.This results show that our algorithms can
be applied to a large class of FLS. Furthermore, from Table 1,
we can see that for solving FLS, Algorithm 14 is superior to
the other methods from point of view rate of convergence.

This example is computed with MATLAB7 on a personal
computer Pentium 4-256MHZ.

5. Conclusion

In this paper, we have proposed a class of splitting methods,
called mixed type splitting iterative method for fuzzy linear
systems that contains auxiliary matrices. Furthermore, our
methodwith some other iterativemethods is compared in the
frame of fuzzy linear systems and it is shown that by proper
choice of these auxiliary matrices, the new iterative method
is faster than these mentionedmethods form point of view of
the convergence speed.
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