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Nowadays, parallel and distributed based environments are used extensively; hence, for using these environments effectively,
scheduling techniques are employed.The scheduling algorithm aims to minimize the makespan (i.e., completion time) of a parallel
program. Due to the NP-hardness of the scheduling problem, in the literature, several genetic algorithms have been proposed to
solve this problem, which are effective but are not efficient enough. An effective scheduling algorithm attempts to minimize the
makespan and an efficient algorithm, in addition to that, tries to reduce the complexity of the optimization process. The majority
of the existing scheduling algorithms utilize the effective scheduling algorithm, to search the solution space without considering
how to reduce the complexity of the optimization process. This paper presents a learner genetic algorithm (denoted by LAGA) to
address static scheduling for processors in homogenous computing systems. For this purpose, we proposed two learning criteria
named Steepest Ascent Learning Criterion andNextAscent Learning Criterionwherewe use the concepts of penalty and reward for
learning. Hence, we can reach an efficient search method for solving scheduling problem, so that the speed of finding a scheduling
improves sensibly and is prevented from trapping in local optimal. It also takes into consideration the reuse idle time criterion
during the scheduling process to reduce the makespan. The results on some benchmarks demonstrate that the LAGA provides
always better scheduling against existing well-known scheduling approaches.

1. Introduction

The parallel processor revolution is underway. Move toward
the use of parallel structures is one of the greatest challenges
for software industries. In 2005, Justin Rattner, chief tech-
nology officer of Intel Corporation, said “We are at the cusp
of a transition to multicore, multithreaded architectures, and
we still have not demonstrated the ease of programming the
move will require. . .” [1].

A good scheduling of a sequential program onto the
processors (or computers) is critical to effective utilization of
the computing power of amultiprocessor (ormulticomputer)
system [2]. To perform scheduling, a sequential program is
represented by a Directed Acyclic Graph (DAG), which is
called a task graph. In this graph, a node represents a task
which is a set of instructions that get a set of inputs to
produce a set of outputs and must be executed serially in the
same processor. Computation cost associated with each node
indicates the amount of computation. The edges in the DAG
correspond to the communication messages and precedence
constraints among the tasks as they show the communication

time from one task to another. This number is called the
communication cost and is denoted by cij [3]. A sample DAG
is shown in Figure 1. In a task graph, a node is not ready to
run until all its required data are received from its parent
nodes. The communication cost between two nodes which
are allocated to the same processor is considered to be zero.

Scheduling has been used in two different areas in
performance evaluation in the literature: multiprocessors
distributed systems and cloud computing. The purpose of
the scheduling onmultiprocessors systems is to minimize the
completion time of DAG on a set of homogeneous or hetero-
geneous processors. This helps to speed up a sequential pro-
gram. Cloud computing also utilizes scheduling techniques,
but with different goals such as response time, energy con-
summation, throughput, and RAM efficiency. Some papers
that use scheduling in this regard are [4–7]. This paper aims
to present an algorithm for scheduling a sequential onto
multiprocessors systems, not cloud computing.

In the scheduling problem, the completion time is the
time required for a program to be completed. Figure 2 shows
a sample timeline (scheduling) in the form of a Gantt chart
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Figure 1: A sample task graph.
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Figure 2: A sample task graph.

on two processors for task graph shown in Figure 1. As can be
seen in this figure, the completion time for this task graph is
140.

The performance of a scheduling algorithm is usually
measured in terms of completion time and the running
time of the algorithm. There is, usually, a trade-off between
these two performance parameters; that is, efforts to obtain
a minimum completion time often incur a higher time
complexity.

Due to the NP-hardness of the scheduling problem,
the use of search-based and evolutionary approaches such
as genetic algorithm is to be more reasonable than other
approaches [2]. The searching procedure in search-based
algorithms can be performed in two ways: global search and
local search. Global search-based methods usually consider
thewhole search space to find a good solution.Thesemethods
have an operator to explore new regions in search space.
The genetic algorithm is one of the main search methods
that use the global search strategy. This algorithm has no
exploitation ability, and also the speed of convergence is not

sufficient while searching for global optima. Local search
algorithms, such as Hill Climbing and Learning Automata,
utilize exploitation ability to improve the quality of the
already existing solutions as well as the rate of convergence.

Hill climbing algorithm starts froman initial solution and
then iterativelymoves from the current solution to a neighbor
solution (to be defined) in the search space by applying local
changes. There are no learning concepts in this algorithm.
Learning is an ability of a system to improve its responses
based on past experience. Reinforcement learning techniques
are used to choose the best response based on the rewards or
punishments taken from the environment. Learning automata
is an automaton-based approach for learning. Learning
automata learn the optimal action through past experiences
and repeated interactions with its stochastic environment.
The actions are chosen according to a specific probability
distribution which is updated based on the environmental
response.

The problem addressed in this paper is the scheduling
of a task graph on homogeneous processors for minimizing
the completion time to achieve a higher performance in the
execution of parallel programs. To achieve this aim, this paper
presents a new learning schema inspired by the behaviors
of both hill climbing algorithm and learning automata. We,
then, propose an efficient search approach which adds a new
learning function to the evolutionary process of the genetic
algorithm for scheduling. This new algorithm combines
global search (genetic algorithm) and local search (using
the concepts of penalty, reward and neighbors) strategies
for scheduling of a task graph. This causes the evolutionary
process speed, i.e., convergence rate, to increase considerably
and be prevented from trapping in local optimal. Hence, the
algorithm, at the same time with other algorithms, can search
more search-space of the problem and find the solution with
higher quality. Also, the proposed algorithm can be improved
by employing the optimal reuse of idle time on processors and
the use of the critical path of the task graph for constructing
the initial population. This technique enables the GA to
schedule the task graph better than previous algorithms.
Results of the conducted experimental demonstrate that
LAGA is superior to the Parsa, CPGA, TDGA, CGL, BCGA,
DSC, MCP, LC, and LAST algorithms.

The contributions of this paper are summarized as below:

(1) Proposing a new learning schema inspired by the
behaviors two local search-based algorithms namely
hill climbing algorithms and learning automata;

(2) Improving the genetic algorithmevolutionary process
using the new learning schema;

(3) Proposing optimal reuse idle time heuristic, aiming to
reuse idle times on the processors;

(4) Proposing new reward and penalty function which
is based on the earliest start time for task graph
scheduling.

The remainder of this dissertation is structured as follows.
In Section 2, we provide an overview of related work. In
Section 3, a new algorithm for scheduling a task graph is
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proposed. In Section 4, the results of the proposed algorithm
are evaluated. Finally, Section 5 concludes the paper.

2. Background and Previous Works

The need for accurate task graph scheduling has been widely
recognized by the research community. In the literature, there
are many works about the task graph scheduling algorithms.
The Scheduling techniques are typically categorized into two
classes; the first class is homogeneous [12] and the second
one is heterogeneous [13, 14]. In homogeneous systems, the
processing power of all processors is considered similar.
In heterogeneous type, processors have different processing
power; therefore, for each task, time on every processor
should be given separately. In this paper, scheduling is
assumed as homogeneous.

Generally, all task graph scheduling algorithms can be
grouped into two categories: static and dynamic. Static
scheduling is performed off-line; in other words, desirable
parallel program characteristics such as computation costs,
communication cost, and data dependencies are known
before execution [11]. Dynamic scheduling algorithms can be
further grouped into two categories: accomplished quickly
mode and batch processing mode algorithms. In the accom-
plished quicklymode, a task ismapped as soon as it arrives. In
the batch mode, tasks are not mapped as they arrive; instead,
they are collected into a list for scheduling and mapping [12].
The work in this paper is solely concerned with the static
scheduling.

Static task graph scheduling algorithms are classified
into two categories: Heuristic-based algorithms and guided
random search-based algorithms [14]. Heuristic-based algo-
rithms have acceptable performance with a low complexity.
These algorithms are further classified into three classes:
list-based algorithms, clustering-based algorithms, and task
duplication algorithms.

List-based scheduling approaches, such as HEFT [15] and
CPOP [14], consist of two phases of tasks prioritization and
processor selection (to assign the task to the processor). Task
duplication approaches aim, such as STDS [16], HCNF [17],
is to run a task on more than one processor to reduce the
waiting time for the dependent tasks. The main idea behind
this approaches is to use the processors time gap.

In the literature, there are several heuristic-based
(nonevolutionary) scheduling algorithms such as PEFT [13],
ETF [18], DSC [19], DLS [20], HLFET [20], LAST [21], ISH
[22], MCP [23], LC [24], EZ [25], and MTSB [26]. Most
of these algorithms consider several simple assumptions
about the structure of a task graph [2, 12]. For example,
ignoring task communication cost, or considering the
same computational cost for all tasks [2], or assuming a
tree structure for a task graph [8] is some of these simple
assumptions. In general, nowadays many recent algorithms
are designed to deal with any graphs. Moreover, scheduling
on a limited number of processors, called Bounded Number
of Processors (BNP), or the availability of unlimited number
of processors, called Unbounded Number of Clusters (UNC),
is another assumption of scheduling algorithms.

Since the task graph scheduling problem is an NP-
Hard problem [2, 12]; even simplified versions of the task
scheduling problem are NP-Hard. Let P and T indicate the
number of processors and the number of tasks, respectively,
thus, the possible number of task to processor allocation is
PT and the possible number of task orderings is T!; then, the
overall search space is T!PT. Considering this huge search
space, obtaining an optimal schedule by a comprehensive
search of all possible schedules is not achievable; hence, an
evolutionary approach such as genetic algorithms may be
applied to solve such problems, effectively [8, 27].

Using genetic algorithms to solve task graph scheduling
have received much attention. The main difference among
genetic algorithms is the encoding scheme used to represent
a schedule. The structure of encoding significantly impacts
the complexity of the genetic process to the convergence
of an optimal schedule. For example, Wang and Korfhage
[10] presented a matrix representation of schedules which
records the execution order of the tasks on each processor. In
this encoding, the crossover and mutation operators do not
prevent the production of invalid solutions. Although exist
the repair operations to correct these solutions. However,
the operations consume additional time. Parsa et al. [8] pro-
posed a new representation of schedules based on the string
representation. In this new encoding scheme, a scheduling
solution is represented by an array of pairs (ti, pj), where ti
indicates the task number assigned to the processor pj. Using
this representation, both the execution order of the tasks on
each processor and the global order of the tasks executions
on the processors are determined in each chromosome. Hou
et al. [9] proposed a variable-length representation which
orders the tasks on each processor. Their proposed string
representation prevents the production of invalid solutions.
Whereas this representation cannot span the complete space
of possible schedules, it may be impossible for the genetic
algorithm to converge to an optimal solution.

Omara and Arafa [11] proposed two genetic-based algo-
rithms with a new encoding scheme, namely, Critical Path
Genetic Algorithm (CPGA) and Task-Duplication Genetic
Algorithm (TDGA). The CPGA algorithm tries to schedule
the tasks placed on the critical path on the same processor
aiming to reduce the completion time.The second algorithm,
TDGA, is based on the principle of task duplication to mini-
mize the communication overhead. One of the weaknesses of
thismethod is to generate invalid chromosomes.The runtime
of these two algorithms is very high for finding a scheduling
because it uses some internal algorithms for scheduling such
as critical path and task duplication. Also, the performance of
the algorithm is not clear on benchmarked DAGs.

Daovod et al. [28] proposed a new scheduling algorithm,
which is called the Longest Dynamic Critical Path (LDCP),
to support scheduling in heterogeneous computing systems.
The LDCP is a list-based scheduling algorithm, which
effectively selects the tasks for scheduling in heterogeneous
computing systems.The accurate and better selection of tasks
enables the LDCP to provide a high quality in scheduling
the heterogeneous systems. The function of this algorithm is
compared with two well-known HEFT and DLS algorithms
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in this context. One of the weaknesses of this algorithm is its
greediness, which will not respond well in the case of large-
scale DAGs.

Bahnasawy et al. [29] proposed a new algorithm,
named Scalable Task Duplication Based Scheduling for static
scheduling in computing systems with heterogeneous multi-
processors. Considering the priority between the tasks, this
algorithm divides the graph into levels so that the tasks at
each level are arranged in a list based on their size. The tasks
based on their priority are assigned to the first processor
found in the list. One of the weaknesses of this algorithm is its
greediness, which will not function well in solving large-scale
DAGs.

Naser et al. [30] proposed a scheduling algorithm, called
Communication Leveled DAG with Duplication (CLDD), in
the heterogeneous multiprocessor systems. This algorithm
consisted of three phases: (1) level arrangement, (2) tasks
prioritization, and (3) processor selection.

Wen [31] proposed a hybrid algorithm of genetics and
variable neighborhood search (VNS) [32] to minimize the
tasks scheduling in the heterogeneous multiprocessor sys-
tems. This algorithm has derived a variety of features from
GA and VNS.

NSGA-II [33] is a genetic-based algorithm for task graph
scheduling. In this algorithm does not exist the dependency
among the tasks, and elitism operator is used to protect the
good solutions in the evolutionary process of the genetic
algorithm. To provide diversity in solution, this algorithm
uses crowding distance technique.

TSB algorithm [34] belongs to a class of scheduling algo-
rithms called BNP. TSB utilizes two queues, namely, ready
task queue and not ready task queue to perform scheduling.
Then, it uses breath first search traversal algorithm for
selecting tasks. The MTSB algorithm [26], also, belongs to
the BNP class, with the difference that, unlike the algorithm
TSB, it does not consider communication time between tasks
and processors.

Akbari et al. [35] proposed a genetic-based algorithm
for static task graph scheduling in heterogeneous computing
systems. Their proposed algorithm presents a new heuristic
to generate an initial population and also proposed new
operators aiming to guarantee the diversity and convergence.
Akbari and Rashidi [36] employed cuckoo optimization
algorithm for static task graph scheduling in heterogeneous
computing systems. Because this algorithm works on con-
tinuous space, hence, they proposed a discretization of this
algorithm to solve the task graph scheduling problem.

Moti Ghader et al. [37] proposed a learning automata-
based algorithm for static task graph scheduling. This algo-
rithm uses learning automata to represent different possible
scheduling. Since this algorithm is a local-based search
algorithm, thus, it traps in the local optima.

A significant performance assessment and comparison
of the addressed algorithms is a complex task and it is
necessary to consider a number of issues. First, there are
several scheduling algorithms based on various assumptions.
Second, the performance of the most existing algorithm is
evaluated on small sized task graphs, and, hence, it is not
clear their performance on large-scale problem size [38]. Due

Table 1: Classic chromosome structure for a sample DAG.

Task No. 1 2 3 4 5 6
Processor No. 1 1 2 3 1 2

to the NP-hardness of the task graph scheduling, the rate
of convergence when searching for global optima is still not
sufficient. For this reason, there is a need formethods that can
improve convergence speed, to achieve a good scheduling.

3. The New Algorithm

In this section, a new genetic algorithm is presented for the
task graph scheduling problem which is based on learning.
In this algorithm, each solution is represented by a chromo-
some. Each chromosome’s cell is called a gene.The number of
genes depends on the number of tasks. We use two different
chromosome structures in our algorithm named classic and
extended chromosome structure. In classic chromosome, the
structure of each chromosome includes two rows where the
first row is task number and the second row is processor
number assigned to the task (see Table 1).

The extended chromosome structure is utilized for the
learning process.This representation has four rows where the
first row is task number, the second row is processor number
assigned to the task, the third row is the depth of each gene,
and the fourth row is selection probability of each task needed
to perform learning. The total probability of them, initially, is
equal (Table 2).

In extended chromosome, structure a chromosome is
defined as a tuple {𝑎, V, 𝛽, 𝜑, 𝐹, 𝑃, 𝑇} as follow:

(i) 𝑎 = {𝑎1, ..., 𝑎𝑟}: is a set of genes (r is number of the
tasks).

(ii) V = {V1, ..., V𝑟}: is a set of processors in the chromo-
some.

(iii) 𝛽 = {𝛽1, ..., 𝛽𝑟}: This is the outcome of evaluation
of a gene considering interactions with its stochastic
environment and indicates that a gene must be fined
or rewarded.

(iv) 𝜑1, 𝜑2, ..., 𝜑𝑅𝑁: Let N and R denote the depth allocated
to a gene and the number of genes, respectively, this
shows a set of internal states for a gene.

(v) 𝐹 : 𝜑 × 𝛽 󳨀→ 𝜑: This is a mapping function. This
function based on evaluating a gene determines the
next action for a gene.

(vi) 𝑃 = {𝑝1, ..., 𝑝𝑟}: is a chromosome’s genes probability.
This vector (fourth row inTable 2) shows the selection
probability of each gene to perform reward or penalty
operations. Based on the fact that the penalty is taken
or rewarded, these probabilities are updated. If no
prior information is available, there is no basis in
which the different genes ai can be distinguished. In
such a case, all gene probabilities would be equal - a
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Table 2: Extended chromosome structure for a sample DAG.

Task No. 1 2 3 4 5 6
Processor No. 1 1 2 3 1 2
Depth 0 0 0 0 0 0
Probability 0.16 0.16 0.16 0.16 0.16 0.16

Step 1:
- Create the initial population (classic chromosomes) as described in Section 3.1.

Step 2:
-While termination condition has not been satisfiedDo

- For each classic chromosome in the current population Do
- Convert it to the extended structure chromosome (such as Table 2).
- Enhance chromosome by applying learning operators (reward and penalty) on the chromosome until the

makespan could be less, described in Section 3.4.
- Convert extended chromosome to classic chromosome by removing rows related depth and probability
- Apply the standard roulette wheel selection strategy for selecting potentially useful individuals for recombination
- Apply the standard two-point crossover operator on processors in two enhanced chromosomes
- Apply the standard mutation operator on processors in two enhanced chromosomes
- Apply the reuse idle time heuristic on 30% of best chromosomes, described in Section 3.3.

Algorithm 1: A new task graph scheduling algorithm.

- Calculate the t-level + b-level values for all the tasks;
- Considering t-level + b-level, identify all the tasks placed on the critical path;
- Repeat

- Select a task amongst the tasks ready to schedule
- If the selected task placed on the critical pathThen

Assign the task to a processor that has assigned other tasks on the critical path;
Else Find a task with highest communication cost with this task and locate both of them on

the same processor;
- Until the list of tasks is empty.

- At first, each gene on the chromosome is in the boundary state or zero depth and its probability is:
𝑃𝑖(𝑡) = 1/𝑟

Algorithm 2

“pure chance” situation. For an r-gene chromosome,
the gene probability is given by:

𝑃𝑖 (𝑡) = 1
𝑟 𝑖 = 1, 2, . . . , 𝑟 (r is number of tasks) (1)

(vii) 𝑇 = 𝑇[𝑎(𝑛), 𝛽(𝑛), 𝑝(𝑛)] indicates the parameters
required for a learning.

In Algorithm 1, the steps of our proposed task graph schedul-
ing algorithm are given. Different parts of this algorithm are
further described in the following sections.

The objective of the new task scheduling algorithm is
to minimize the completion time. Some terms are used; the
proposed algorithm is defined below.

Definition 1. In a task graph, the t-level of node i is the length
of the longest path from an entry node to i (excluding i). Here,
the length of a path is the sumof all the node and edgeweights
along the path [39].

Definition 2. The b-level of a node is the length of the longest
path from the node to an exit node [39].

Definition 3. A Critical Path (CP) of a task graph is a path
from an entry node to an exit node as the sum of execution
time and communication cost is the maximum. The nodes
located on the CP can be identified with their values of (t-
level + b-level); i.e., t-level + b-level for that node should be
maximized [39].

Definition 4. ESTij — Earliest Start Time of task i and
processor j: The EST refers to the earliest execution start time
of the node ni on processor pj.

3.1. Initial Population. The initial population is constructed
as shown in Algorithm 2.

The initial population is generated in such a way that
the overall communication time is minimized. To do this,
the algorithm identifies all tasks located on the critical path
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(1) For each task in a chromosomeDo
Set its reference count equal to the number of immediate parents of the task, in the task graph corresponding
to the chromosome.

(2) For each processor Pi Do
Set its local timer si to zero.
Add execution time of processor’s first task to si.(3) Set the global timer S to one.

(4) Repeat
For each processor Pi Do {

Read the value of timer si of Pi.
If S = si Then

Reduce one from the reference count of each child of the task.
Set EST of each child of the task that are not assigned to Pi , to:
Max (Current EST of the child, Sum of si and communication cost between the tasks)
Take next task of Pi from the chromosome.
Add the sum of S and execution time of the task to si.

If EST of the task is bigger than S or reference count of task is not zeroThen
add one unit of time to si.

Add one unit of time to the global timer S.
} Until all the tasks are scheduled.

(5) makespan = the maximum value of the timers, si, of all processors, Pi, as the fitness of the chromosome.

Algorithm 3: Schedule length.

and then tries to shorten the critical path in the DAG
by assigning the tasks on the critical path into the same
processor. By reducing the length of the critical path, the
minimum completion time of the scheduling is reduced.

3.2. Computing Fitness of Chromosome. Quality of each
the chromosome depends on the completion time of the
scheduling. The completion time of a scheduling represents
its fitness. The objective is to minimize the completion time.
In the proposed algorithm, first, the EST for all tasks are
calculated. The value of an entry ESTij, referring to task i and
processor j, will be given by

𝐸𝑆𝑇𝑖𝑗 = max (𝐹𝑇𝑗, 𝐸𝑇𝑇𝑖𝑗) (2)

where FTj is the time that machine j finishes the execution
of all previous tasks of task i and ETTij indicates the time
that all the data required to run task i on processor j
is ready. To calculate this time, the finish time and time
required to transfer data between processors of all immediate
predecessors of task i in the task graph are considered.

The fitness function used to guide the evolutionary
process of the genetic algorithm for finding a scheduling
is based on the total finish time of the schedule, which is
obtained by

Makespan = max {FT (Pj)} ; for j = 1, 2, . . . ,Np (3)

whereNp and FT(Pj) denote the number of processor and the
finish time of the last task in the processor Pj, respectively.

max makespan = max {makes-spans} ;
Fitness value = max makes-pan – makespan

(4)

In our method the length of an obtained schedule and
makespan is computed as Algorithm 3.

In the LAGA, we employed the roulette wheel selection
operator to select potentially useful chromosomes for the
reproduction process. The fitness value is used to associate
a selection probability for each chromosome. Let 𝑓i and
N denote the fitness value of the chromosome i (which
is calculated by (4)) and the number of chromosomes in
the population, respectively. The selection probability of this
chromosome, Pi, is calculated as follows:

𝑃𝑖 = 𝑓𝑖
∑𝑁𝑗=1 𝑓𝑖 (5)

Using (5), a proportion of the wheel is assigned to each chro-
mosome.The higher the fitness value of the chromosome, the
higher its opportunities of being elected for the reproduction
process.

3.3. Reuse Idle Time. A reuse idle time criterion can improve
the quality of a schedule [40]. In this section, we present
a reuse idle time greedy algorithm to control the original
system and improve the quality of returned results. For a
randomly selected chromosome in the population, in each
generation, we assign some tasks to idle time slots. For
example, Figure 3 shows a sample of the Gantt scheduling
chart related to Figure 1. According to Figure 3 (left), the
time gap in the P1 processor is as large as 10 units and the
completion time for the processor P1 is equal to 148. Also, the
weight of the task t10 is equivalent to 10. By applying changes,
the t10 can start from the time 73, and the completion time
reduces from 148 to 138 units with this reuse, as can be seen
in Figure 3 (left).
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Let STT be Start Time of Task
SIT be Idle Start Time
EIT be Idle End Time

(tj) denotes task j
For P=1 to the number of processors

For i=1 to the number of slots on processor P
For each slot i

Create ready task list; for doing this task, select the tasks that for those
STT >= EIT, i.e., select the tasks that is scheduled after a slot.
Sort tasks acceding based on w(tj)

If (((EITi - SITi) >= w(tj)) && DAT(tj, Pi) <= SITi)
Allocate task j to slot i
Update slot start and end time
Update the ready task list
After rescheduling, newly created slot is added to the slot ready list.

Algorithm 4: Reuse idle time.

After applying reuse heuristicBefore applying reuse heuristic
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Figure 3: Reusing the standby resources.

The algorithm of this heuristic is shown in Algorithm 4;
while all tasks and all slots are not addressed, this algorithm
will be repeated. Let idle start time and idle end time of slot i
denoted by SITi and EITi, respectively. Also assume DAT(ti,
Pi) and w(ti) denote data arrival time of task ti on processor
Pi and execution time of task ti, respectively. Task ti allocated
to slot si when

If (((EITi - SITi) >= w(ti)) && DAT(ti, Pi) <= SITi)
For example, assume the processor P1 has an idle slot; and
the SIT1 =73 and EIT1 =83. On the other hand, w(t10)= 10
and DAT (t10, P1)=59. In our algorithm t10 is scheduled to
start time 93. By applying the reuse idle algorithm, t10 can be
rescheduled to start at time 83.

We need a list that maintains all of SIT and EIT for
each slot. The algorithm tries to fill the slots as much as
possible. Our aim is to select the maximum tasks that meet
the above requirement. For doing this task, first, we sort the
tasks ascending considering their execution time, i.e., w(ti);
then, using Algorithm 4, we assign the tasks in slots.

The reuse idle time heuristic more minimizes the
makespan; however, this algorithm for large-scale task graphs
makes an overhead cost in terms of time. Therefore, we limit
reuse idle time heuristic just to 30% of best chromosomes.

This means that, among the chromosomes of a generation,
30% of them with the shortest completion time are selected
to apply reuse idle time heuristic.

3.4. Learning Operators. The evolutionary process of the
LAGA is enhanced using reward and penalty operators.These
operators are utilized for learning. In the LAGA, in addition
to evaluating the chromosome, the genes of a chromosome
are assessed based on their outcome on chromosome’s fitness.
Thus, the most fitting location for genes within chromosomes
and the most proper chromosome inside the population is
regularly discovered during the evolutionary process of the
genetic algorithm. Intuitively, the algorithm selects a gene a
chromosome and evaluates it based on certain criteria. If the
result of the evaluation is good, this gene will be rewarded.
This means that the gene in the chromosome is in the right
place and should be protected from future changes. But if the
evaluation result is not good, the gene must be penalized.
In this case, if the gene has not already been rewarded or
the amount of penalties and rewards are the same, the whole
possible neighbors (to be defined) of the gene are searched for
a penalty action. The neighbor with the highest quality will
be the replacement of this gene. But if the number of rewards
received by the gene is greater than the number of received
penalties, one of the numbers of rewards is reduced.
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Formally, the penalty and reward operators are employed
in the LAGA as follows.

during the scheduling process, the LAGA selects gene
𝑎𝑖 in a chromosome and assesses it, if it gets a promising
feedback, the probability, 𝑃𝑖(𝑛), of this gene increases and the
probability of other genes decreases. If it gets an inappro-
priate feedback, the probability, 𝑃𝑖(𝑛), of this gene decreases
and probability of other genes increases. In this paper, we
utilize a linear learning scheme for learning. This scheme
was considered first in mathematical psychology [41] but
was later independently conceived and introduced into the
engineering literature by Shapiro and Narendra [41]. Letting
Γ𝑗 and Ψ𝑗 be two functions, for a linear learning scheme with
multiple genes, we have

Ψ𝑗 [𝑝𝑗 (𝑛)] = 𝛼𝑝𝑗 (𝑛) 0 < 𝛼 < 1 (6)

Γ𝑗 [𝑝𝑗 (𝑛)] = 𝛽
𝑚 − 1 − 𝛽𝑝𝑗 (𝑛) (7)

In (6) and (7), m, 𝛼, and 𝛽 are the number of genes of a
chromosome, reward, and penalty parameters, respectively.
The parameters 𝛼 and 𝛽 are used to control the rate of
convergence of a chromosome. According to (6) and (7), if
𝛼 and 𝛽 are equal, the learning algorithm will be known
as linear reward penalty. If 𝛽 ≪ 𝛼, the learning algorithm
will be known as linear reward epsilon penalty and if b=0,
the learning algorithm will be a linear reward inaction.
Depending on whether penalty or reward has been made, the
probability of genes is updated as follows.

A promising feedback for gene i

𝑃𝑗 (𝑛 + 1) = 𝑃𝑗 (𝑛) − Ψ𝑗 [𝑃𝑗 (𝑛)] ; ∀𝑗 : 𝑗 ̸= 𝑖 (8)

but

Ψ𝑗 [𝑝𝑗 (𝑛)] = 𝛼𝑝𝑗 (𝑛) (9)

so

𝑝𝑗 (𝑛 + 1) = 𝑝𝑗 (𝑛) − 𝛼𝑝𝑗 (𝑛) = (1 − 𝛼) 𝑝𝑗 (𝑛) (10)

and

𝑝𝑖 (𝑛 + 1) = 𝑝𝑖 (𝑛) +
𝑟

∑
𝑗=1,𝑗 ̸=1

Ψ𝑗 [𝑝𝑗 (𝑛)]

= 𝑝𝑖 (𝑛) + ∑
𝑗=1,𝑗 ̸=𝑖

𝛼𝑝𝑗 (𝑛)

= 𝑝𝑖 (𝑛) + 𝛼∑𝑝𝑗 (𝑛)
//all values except j = i so . . .

= 𝑝𝑖 (𝑛) + 𝛼 (1 − 𝑝𝑖 (𝑛))

(11)

An inappropriate feedback for gene i

𝑝𝑗 (𝑛 + 1) = 𝑝𝑗 (𝑛) + Γ𝑗 [𝑝𝑗 (𝑛)] (12)

but

Γ𝑗 (𝑝𝑗 (𝑛)) = 𝛽
𝑚 − 1 − 𝑏𝑝𝑗 (𝑛) (13)

so

𝑝𝑗 (𝑛 + 1) = 𝑝𝑗 (𝑛) + 𝛽
𝑚 − 1 − 𝛽𝑝𝑗 (𝑛)

= 𝛽
𝑚 − 1 + (1 − 𝛽) 𝑝𝑗 (𝑛)

(14)

and

𝑝𝑖 (𝑛 + 1) = 𝑝𝑖 (𝑛) −
𝑟

∑
𝑗=1,𝑗 ̸=𝑖

Γ𝑗 [𝑝𝑗 (𝑛)]

= 𝑝𝑖 (𝑛) −∑( 𝛽
𝑟 − 1 − 𝛽𝑝𝑗 (𝑛))

= (1 − 𝛽) 𝑝𝑖 (𝑛) 0 ≤ 𝛽 < 1

(15)

These probabilities cause good genes to find their place in
the chromosome over time. The main intention of these
probabilities is to exploit the previous behavior of the system
in order to make decisions for the future, hence, learning
occurs. To perform learning, the number of internal states of
each gene must be determined. These internal states for each
gene maintain the number of failures and successes. How
to select a gene from a chromosome is based on calculating
the cumulative probability of each gene as follows (pi is gene
probability):

q1 = p1,
q2 = p1 + p2,

...
qn = p1 + p2 + . . . + pn

(16)

A random number is generated between 0 and 1. If generated
random number is higher than qi and lower than qj, the
corresponding gene to qi is selected to evaluate for reward
and penalty. Obviously, genes with higher probabilities are
preferred for reward or penalty.

In each iteration step of the algorithm, a gene of
each chromosome is selected based on its probability
((8), (11), (12), and (15)) and this gene is evaluated using
Algorithm 5.

Generally, a gene is penalized or rewarded as follows.
Suppose that a chromosome includes R genes ({𝛼1, 𝛼2,𝛼3, ..., 𝛼𝑅}) and has RN internal states (𝜑1, 𝜑2, ..., 𝜑𝑅𝑁). Inter-

nal states of 𝜑1, 𝜑2, ..., 𝜑𝑁 are related to 𝛼1, 𝜑𝑁+1, 𝜑𝑁+2, ..., 𝜑2𝑁
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(1) Select a gene of a chromosome according to its probability (Eqs. (8), (11), (12), and (15))
// a gene of a chromosome indicates a vertex in the task graph

(2) Compute gene’s EST (indicated by CEST)
(3) Compute EST of the previous task of the gene (indicated by PEST)
(4) If (PEST is lesser than CEST)

(4.1) The gene will be rewarded
(5) else

(5.1) The gene will be penalized

Algorithm 5: Evaluating a selected gene from a chromosome for performing reward and penalty.

1 2 3 N-1 N 2N 2N-1 N+3 N+2 N+1

(a) Positive feedback

1 2 3 N-1 N 2N 2N-1 N+3 N+2 N+1

(b) Inappropriate feedback

Figure 4: State transition for reward and penalty.

are related to 𝛼2, and 𝜑(𝑅−1)𝑁+1, 𝜑(𝑅−1)𝑁+2, ..., 𝜑𝑅𝑁 are related
to 𝛼𝑅. Therefore,

𝐺 [𝜑𝑖] =

{{{{{{{{{{
{{{{{{{{{{{

𝑎1 𝑖 = 1, 2, . . . ,𝑁
𝑎2 𝑖 = 𝑁 + 1, . . . , 2𝑁
⋅ ⋅ ⋅
𝑎𝑅−1
𝑎𝑅 𝑖 = (𝑅 − 1)𝑁 + 1, . . . , 𝑅𝑁

(17)

so that G is a mapping function.
If gene 𝛼1 is in the internal state 𝜑𝑖, (1 ≤ 𝑖 ≤ 𝑁) on the

chromosome and this gene gets a penalty (𝛽 = 1) then the
internal state changes as follows:

𝜑𝑖 󳨀→ 𝜑 𝑖+1 (𝑖 = 1, 2, . . . , 𝑁 − 1)
𝜑𝑁 = 𝜑2𝑁

(18)

If the gene gets the reward (𝛽 = 0) then the internal state
changes as follows:

𝜑𝑖 󳨀→ 𝜑 𝑖−1 (𝑖 = 1, 2, . . . , 𝑁)
𝜑1 = 𝜑1

(19)

If gene 𝛼2 is in internal state 𝜑𝑖, (𝑁 + 1 ≤ 𝑖 ≤ 2𝑁) and it gets
a penalty then the internal state changes as follows:

𝜑𝑖 󳨀→ 𝜑 𝑖+1 (𝑖 = 𝑁 + 1,𝑁 + 2, . . . , 2𝑁 − 1)
𝜑2𝑁 = 𝜑𝑁

(20)

If the gene gets the reward then transferring of state performs
as follows:

𝜑𝑖 󳨀→ 𝜑 𝑖−1 (𝑖 = 𝑁 + 2,𝑁 + 3, . . . , 2𝑁)
𝜑𝑁+1 = 𝜑𝑁+1

(21)

In Figure 4, the internal states of each gene are considered
to be N. In this figure, N and 2N indicate the boundary
states of the first gene and second gene, respectively. After
evaluating a gene, if it gets a positive feedback, it moves
to internal states, and if an inappropriate feedback is taken,
it moves to a boundary state. If a gene reaches boundary
state and gets an undesirable feedback, then it is displaced
with another gene in the chromosome, so that the overall
quality of the chromosome is improved. To perform this,
the neighbors of a gene are generated and then from these
neighbors the algorithm searches for a processor in the
chromosome for displacement so that makespan value in
that chromosome is lower than others. If the makespan
value of new chromosomes generated is more than the
initial chromosome, it remains the same initial chromosome.
Indeed, the algorithm continues until there no better solution
is obtained. The concept of neighbor scheduling is illustrated
in Figure 5. In this figure, A shows the current scheduling
and B, C, and D are three neighbor scheduling for that. For
example, consider the task a, so that, in B, it moved into
processor 4, in C, it moved into processor 2, and in C, it
moved into processor 3.

In the learning process, several percents of the genes
from a selected chromosome are chosen and each chro-
mosome selected is regularly improved by this algorithm
(Algorithm 6).The proposed algorithm considers a threshold
𝛽 for determining the number of neighbors for searching.
Such threshold could be any percentage in the range of 0% ≤
𝛽 ≤ 100%. Using a low value for 𝛽 reduces the algorithm
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Input: getting a current scheduling
Output: the best neighbor of a scheduling
Step 1- Compute the total number of neighbors for current scheduling using Eq. (22), and determine the threshold t. This
threshold determines how many percents of the current scheduling neighbors must be assessed to find the next scheduling.
Total number of neighbors = total number of processors in scheduling × the total number of tasks in the scheduling × t (22)
Step 2- Searching for the best neighbor for current scheduling:

- In the NAHC: algorithm generates a random neighbor scheduling for a selected gene and examine it. If the quality of
the neighbor scheduling is lower than the current scheduling, another neighbor scheduling is generated for the
current scheduling, and it repeats this action until a higher-quality neighbor is found.

- In the SAHC: algorithm generates all neighbors for a selected gene and examine all of them, then, the best neighbor
scheduling is returned.

Algorithm 6: Next Ascent and Steepest Ascent Algorithms.
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Figure 5: Neighborhood for task a.

steps prior to converging, and using a high value for 𝛽
increases the algorithm steps prior to converging. However,
it is reasonable that a high threshold can often produce
a good result. Based on 𝛽 value, we propose to types of
learning schema named Steepest Ascent Learning Criterion
(SALC) andNextAscent LearningCriterion (NALC). InNext
Ascent Learning Criterion 𝛽 is equal to zero. This means
the algorithm stops searching a scheduling when the first
scheduling found with a lower makespan (i.e., high-quality
solution); and in the Steepest Ascent Learning Criterion, 𝛽
is equal to 100%.This causes the algorithm to generate all the
neighbors scheduling and examine all of them and choose the
one with the lowest makespan.

Theorem 5. The time complexity of LAGA algorithm is
O(MaxGen×PopSize× N×V).
Proof. To calculate the time complexity of the algorithm, first,
we consider the following assumptions:

PopSize: the number of individuals in the population

MaxGen: The number of generation
I: Number of iterations for reward and penalty oper-
ators
V: the number of tasks in the task graph
N: the number neighbors for a selected gene
#P: the number of processors
#S: the number of idle slots in a processor
v’: the number of tasks allocated into a processor

To calculate time complexity for a chromosome, it is neces-
sary to calculate the completion time for all processors and
select the maximum time from them as time completion of
the chromosome. Thus, the time complexity to calculate the
completion time for a chromosome is O(V). The rewarding
operation time complexity is O(1), because only the internal
state of a gene changes. But, the penalizing operation time
complexity is O(N×V), because it is necessary to find its
neighbors and to compute them completion times and then
select a neighbor with minimum completion time.
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Figure 6: A sample task graph (from [8]).

Creating the initial population can be accomplished in
linear time, thus, the main computational cost lies in Step
2 (Algorithm 1). The computational complexity of learning
schema is O(N×V).The computational complexity of extend-
ing a chromosome to classic chromosome is O(PopSize×V).
The computational complexity of learning is O(PopSize×
N×V). The computational complexity of the selection oper-
ator is O(V). The computational complexity of crossover
is O(PopSize×V), and that of mutation is O(PopSize×V).
The computational complexity of reuse idle time heuristic
is O(PopSize × #P × #S × v’logv’). Thus, the overall time
complexity isO(V) +O(N×V)+O(N×V)+O(PopSize× #P×
#S × v’logv’) + O(V) + O(PopSize×V) + O(PopSize×N×V) +
O(PopSize×V) + O(PopSize×V). Therefore, considering the
number of generations, the time complexity of LAGA can be
simplified as O(MaxGen×PopSize× N×V).

4. Experimental Results

The task graphs used to support the findings of this
study have been deposited in the [8, 21] and http://www
.kasahara.cs.waseda.ac.jp/schedule/optim pe.html. In the
following, we compare the proposed algorithm with a
number of other algorithms on these task graphs.

We, first, compare the LAGA with Standard Genetic
Algorithm (denoted by SGA). In SGA, there is no depth and
tasks are arranged based on the topological order in each
chromosome. The result is obtained by applying LAGA to
the task graph offered in [8, 21], where this graph is redrawn
in Figure 6. The result indicates considerably improvement
LAGA compared to SGA. The parameter setting for the
experiments are as follows:

(i) Population size: 30 chromosomes,
(ii) Number of generations: 500,
(iii) Number of processors: 3,
(iv) Crossover probability: 80%,
(v) mutation probability: 5%,
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Figure 7: Comparison of the stability proposed algorithm and
standard genetic algorithm.

Convergence of SGA and LAGA 

SGA Algorithm
LAGA Algorithm

20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
00

Generation

35

40

45

50

C
om

pl
et

io
n 

Ti
m

e

Figure 8: A Comparison of the convergence of the proposed and
genetic scheduling algorithm.

(vi) Depth: 3,
(vii) 𝛽 = 100%
(viii) Reward and penalize probability: 50%.

Table 3 displays the scheduling and completion time obtained
for the task graph shown in Figure 6 for both LAGA and
SGA algorithms. Also, the stability of the proposed algorithm
is evaluated. Stability is a critical issue in evolutionary and
heuristic algorithms. It means that the algorithm gives the
same or close solutions in different runs. To demonstrate the
stability of the LAGA, the results obtained by twenty runs of
the algorithm to schedule the task graph shown in Figure 7.

The progression of the chromosomes, while applying
LAGA and SGA algorithms, is shown in Figure 8.

Comparison of the Proposed Algorithmwith Other Algorithms.
Most existing genetic algorithms and other heuristic algo-
rithms have been evaluated on graphs which are randomly
produced and do not communication cost. Hence, we select
the algorithms for comparison for which their results on the
certain graph are known.Therefore, in this section, the LAGA
is compared with nine different algorithms on the graphs
which are used by them.

In Figure 9, LAGA is compared against Parsa algorithm
and six other scheduling algorithms. The comparison is
performed by applying LAGA to the task graph drawn in
Figure 6 [8, 21] and is used by Parsa and other six algorithms.
The results demonstrate that the scheduling obtained by

http://www.kasahara.cs.waseda.ac.jp/schedule/optim_pe.html
http://www.kasahara.cs.waseda.ac.jp/schedule/optim_pe.html
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Table 3: The completion times for task graph shown in Figure 4 with LAGA and SGA algorithms.

(a) Scheduling produced by LAGA

Task Number 0 1 2 4 3 6 5 11 9 12 7 8 10 15 13 14 17 16 18
ProcessorNumber 2 2 2 0 2 1 2 1 2 1 0 0 2 0 1 0 1 0 1
Depth 0 0 1 2 2 2 2 1 1 2 1 2 2 2 1 1 1 1 0

(b) Scheduling produced by SGA

Task Number 0 1 2 4 3 6 5 11 9 12 7 8 10 15 13 14 17 16 18
Processor Number 2 1 0 2 1 2 1 0 0 2 0 1 2 0 2 1 1 0 2

(c) Scheduling results

Algorithm LAGA SGA
Completion time 39 42

Table 4: Fast Fourier Transform Task Graphs (FFT).

Task or node# FFT1 FFT2 FFT4
1-8 1 25 60 25 20 5
9-12 20 25 50 25 20 600
13-16 30 25 5 25 30 5
17-20 20 25 5 25 20 5
21-28 1 25 5 25 5 5

1 2 3 4 5 6 7 8
Series1 39 39 40 41 41 43 40 39
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Figure 9: Comparison of the completion times on task graph
Figure 6.

LAGA outperforms the algorithms 3–7 and is the same with
Parsa and LC algorithms. However, LAGA obtains the result
very swift and stable. In addition, LAGA runs faster when
the number of tasks grows. Furthermore, Parsa algorithm is
evaluated using small problem sizes, and it is not clear their
performance on large-scale problem size. In Figure 10, the
stability of LAGA is compared with Parsa algorithm.

Fast Fourier Transform Task Graphs (FFT), depicted in
Figure 11, are good benchmarks to assess the performance of
the scheduling algorithms. Table 4 shows three versions of
these graphs (i.e., FFT1, FFT2, and FFT4). The first column
in each of these cases shows the computation time of each
task and the second column shows the communication time
of each task with others.

According to Tables 5 and 6, it has been found that
LAGA with 𝛽 = 100% always outperforms the genetic
and nongenetic based algorithms. Because, considering high-
speed of LAGA, at the same timewith other algorithms, it can
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Figure 10: Comparison of the stability proposed algorithm and
Parsa algorithm.

search more state-space of the problem and, as a result, can
find the answers with higher quality.

Usually, the efficiency of most algorithms presented
for task’s graph scheduling problem is studied on
graphs with small size and low communications and
their results on graphs with real applications which are
graphs with large size and high communications are
not clear. The LAGA (𝛽 = 100%) is applied to specific
benchmark application programs which are taken from a
Standard Task Graph (STG) archive (http://www.kasahara
.cs.waseda.ac.jp/schedule/optim pe.html) (see Table 7). The
first program of this STG set, Task Graph 1, is a randomly
generated task graph, the second program is a robot control
program (Task Graph 2) which is an actual application
program, and the last program is a sparse matrix solver (Task
Graph 3). Also, we considered the task graphs with random

http://www.kasahara.cs.waseda.ac.jp/schedule/optim_pe.html
http://www.kasahara.cs.waseda.ac.jp/schedule/optim_pe.html


Applied Computational Intelligence and Soft Computing 13

Table 5: Comparison of LAGA with well-known genetic-based algorithms on FFT benchmarks.

Graph Sequential
Time

CGL
[9]

BCGA
[10]

Parsa
[8]

LAGA
𝛽 = 0%

LAGA
𝛽 = 100% Speedup∗ improvement% ∗∗

FFT 1 296 152 124 124 124 124 2.38 0%
FFT 2 760 270 240 240 240 200 3.80 16%
FFT 4 480 260 255 185 255 170 2.82 8%
∗Speedup = sequential time / LAGA (𝛽 = 100%) completion time.
∗∗improvement = ((Parsa completion time - LAGA (𝛽 = 100%) completion time)/Parsa completion time) × 100.

Table 6: Comparison of LAGA with well-known nongenetic algorithms considering the number of processors on FFT benchmarks
(completion time/#processor used).

Graph Sequential Time DSC MCP LC LAST LAGA
𝛽 = 100%

FFT 1 296 / 1 124 / 4 148 / 8 172 / 8 146 / 4 124 / 4
128 / 8

FFT 2 760 / 1 205 / 8 205 / 8 225 / 8 240 / 8 190 / 8
240 / 2

FFT 4 480 / 1 710 / 12 710 / 8 710 / 8 710 / 8 185 / 4
185 / 8
160 / 12

Table 7: Three selected task graphs.

Task graphs Number of tasks
Task Graph 1 100
Task Graph 2 90
Task Graph 3 98
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Figure 11: Fast Fourier Transform (FFT) Task Graph (from [8]).

communication costs. These communication costs are
distributed uniformly between 1 and a specified maximum
communication delay.

Table 8 shows the results of comparing among SGA
and LAGA (on depth 3 and 5), Parsa, CPGA, and TDGA
algorithms on 4 processors for programs listed in Table 7.
According to Table 8, the proposed algorithm (LAGA)
with depth=3 produces schedule length lower than other
algorithms.

Table 9 shows a comparison of three genetic-based
algorithms with LAGA on a number of randomly generated
graphs. The task execution time and communication time

between processors are considered random. The task execu-
tion time and communication time are distributed uniformly
within (10, 50) and (1, 10) second, respectively. To evaluate the
efficiency of the algorithms, we set the running time of the
algorithms equally. As can be seen in this table, the LAGA, in
all cases and at the same time with them, outperforms better
than the rest. This demonstrates that the LAGA is able to
search more space than the rest at the same time, and as a
result it is efficient.

5. Conclusions

The task graph scheduling problem is an NP-Hard problem.
Hence, to solve this problem, evolutionary approaches are
pretty effective. But, their convergence rate when searching
for global optima is still not sufficient. For this reason, there
is a need for methods that able to improve the convergence
speed, to achieve a good scheduling. In this paper, we com-
bined genetic algorithm with an accelerated convergence rate
strategy, aiming to achieve higher performance in parallel
environments. We have proposed a learning-based genetic
algorithm for solving the problem which is to better utilize
the processors. Considering high-speed of the proposed
approach, the proposed approach can search more state-
space of the problem at the same time with other algorithms,
as a result, it can find the solution with higher quality.

5.1. Future Works. A number of directions can be explored to
extend and improve this work.

(1) Finding a useful and effective a reward and penalty
function;

(2) Using clustering in the scheduling of task graph,
instead of, using the critical path;
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Table 8: Comparison of the genetic-based algorithms.

Benchmarks programs SGA LAGA
(depth=3)

LAGA
(depth=5) Parsa CPGA

[11]
TDGA
[11]

Task Graph 1 256 194 231 230 210 201
Task Graph 2 995 635 650 800 690 650
Task Graph 3 332 190 221 322 322 221

Table 9: Comparison of the three genetic-based algorithms with LAGA on four processors.

DAG # of tasks # of edges Run Time
(minute) SGA CPGA Parsa TDGA LAGA

(depth=3)
Random graph 1 200 420 60 1241 1108 1206 1108 998
Random graph 2 400 850 60 2209 1943 1954 1829 1458
Random graph 3 600 882 90 4592 4320 4832 4001 3765
Random graph 4 800 1232 240 8092 7809 7994 7031 6895
Random graph 5 1000 1891 240 17431 16490 15923 14134 11290

(3) Finding a useful and effective load balancing heuristic
for the proposed algorithm.

(4) The parameter tuning is one of the major drawbacks
of the genetic algorithm. Recently, for solving NP-
Hard problems, using optimization algorithms with-
out parameter tuning, such as Beetle Antennae Search
Algorithm [42], has attracted a lot of attention. In the
future work, we intend to use this algorithm for task
graph scheduling problem.

Also, the proposed method may be extended to solving
scheduling in grid computing, cloud computing, and het-
erogeneous environment; and also it is possible to use our
approach to solve other NP-Hard problems.
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[38] T. Davidović and T. G. Crainic, “Benchmark-problem instances
for static scheduling of task graphs with communication delays
on homogeneous multiprocessor systems,” Computers & Oper-
ations Research, vol. 33, no. 8, pp. 2155–2177, 2006.

[39] K. S. Shin, M. J. Cha, M. S. Jang, J. Jung, W. Yoon, and S. Choi,
“Task scheduling algorithm using minimized duplications in
homogeneous systems,” Journal of Parallel and Distributed
Computing, vol. 68, no. 8, pp. 1146–1156, 2008.

[40] Z. Jovanovic and S. Maric, “A heuristic algorithm for dynamic
task scheduling in highly parallel computing systems,” Future
Generation Computer Systems, vol. 17, no. 6, pp. 721–732, 2001.

[41] I. J. Shapiro,The Use of Stochastic Automata in Adaptive Control
[Ph.D. Thesis], Dep. Eng. and Applied Sci., Yale Univ., New
Haven, Conn., USA, 1969.

[42] X. Jiang and S. Li, “BAS: beetle antennae search algorithm for
optimization problems,” 2017, https://arxiv.org/abs/1710.10724.



Computer Games 
 Technology

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

 Journal ofEngineering
Volume 2018

Advances in

Fuzzy
Systems

Hindawi
www.hindawi.com

Volume 2018

International Journal of

Reconfigurable
Computing

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 Applied 
Computational 
Intelligence and Soft 
Computing

 Advances in 

 Artificial 
Intelligence

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Civil Engineering
Advances in

Hindawi
www.hindawi.com Volume 2018

Electrical and Computer 
Engineering

Journal of

Journal of

Computer Networks 
and Communications

Hindawi
www.hindawi.com Volume 2018

Hindawi

www.hindawi.com Volume 2018

 Advances in 

Multimedia

 International Journal of 

Biomedical Imaging

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Engineering  
 Mathematics

International Journal of

Robotics
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Computational Intelligence 
and Neuroscience

Hindawi
www.hindawi.com Volume 2018

Mathematical Problems 
in Engineering

Modelling &
Simulation
in Engineering
Hindawi
www.hindawi.com Volume 2018

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific 
World Journal

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Human-Computer
Interaction

Advances in

Hindawi
www.hindawi.com Volume 2018

 Scienti�c  
Programming

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/ijcgt/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/afs/
https://www.hindawi.com/journals/ijrc/
https://www.hindawi.com/journals/acisc/
https://www.hindawi.com/journals/aai/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/jcnc/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/journals/ijbi/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/cin/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ahci/
https://www.hindawi.com/journals/sp/
https://www.hindawi.com/
https://www.hindawi.com/

