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Based on a solution of the Floquet Hamiltonian we have studied the time evolution of electronic states in graphene nanoribbons
driven out of equilibrium by time-dependent electromagnetic fields in different regimes of intensity, polarization, and frequency.
We show that the time-dependent band structure contains many unconventional features that are not captured by considering the
Floquet eigenvalues alone. By analyzing the evolution in time of the state population we have identified regimes for the emergence
of time-dependent edge states responsible for charge oscillations across the ribbon.

If a time-periodic field is applied to electrons in a periodic
lattice the Bloch theorem can be applied twice, both in space
and in time.This is the essence of Floquet-Bloch theory [1–3]
that has recently attracted a renewed interest for its ability to
describe topological phases in driven quantum systems [4–
7]. The discovery that circularly polarized light may induce
nontrivial topological behaviour in materials that would be
standard in static conditions [8–11] has opened the way to
the realization of the so-called Floquet topological insulators,
where a topological phase may be engineered and manipu-
lated by tunable controls such as polarization, periodicity, and
amplitude of the external perturbation.

When the field is applied for a sufficiently long time (pulse
duration much larger than the field oscillation period) elec-
trons reach a nonequilibrium steady state characterized by a
periodic time-dependence of the wave functions and, con-
sequently, of the expectation values of any observable [12, 13].
In this paper we focus on this time-dependence, looking for
the time evolution of some relevant quantities such as energy
and charge density. How these characteristics affect the time
behaviour of these observables will be our focus. We will
consider the prototypical case of graphene that under the
influence of circularly polarized light exhibits in its Floquet
band structure the distinctive characteristics of a 2D Chern

insulator, namely, a gap in 2D and linear dispersive edge states
in 1D [9, 11, 14, 15].These Floquet edge states are topologically
protected and responsible for a quantized Hall conductance
in the absence of a magnetic field [16–18], a remarkable reali-
zation of the so-called “quantum Hall systems without Lan-
dau levels” originally proposed by Haldane [19].

Under a periodic drive, the nonequilibrium steady states,
solutions of the time-dependent Schrödinger equation

(�̂� (r, 𝑡) − 𝑖 𝜕𝜕𝑡)𝜓k (r, 𝑡) = 0 (1)

evolve in time as

𝜓�훼k (r, 𝑡) = 𝑒−�푖�휖𝛼(k)�푡𝜙�훼k (r, 𝑡) (2)

where 𝜙�훼k(r, 𝑡) is periodic in time and 𝜖�훼(k), the Floquet
quasi-energies, are the eigenvalues of an effective Hamilto-
nian �̂��퐹 ≡ �̂� − 𝑖(𝜕/𝜕𝑡), the so-called Floquet Hamiltonian:

�̂��퐹𝜙�훼k (r, 𝑡) = 𝜖�훼 (k) 𝜙�훼k (r, 𝑡) . (3)

Here �̂�(r, 𝑡) is the full Hamiltonian of the driven system

�̂� (r, 𝑡) = �̂�0 (r) + �̂� (r, 𝑡) (4)
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with 𝐻0(r) being the static Hamiltonian and 𝑉(r, 𝑡) being
the external periodic driving. The factorization in (2) is exact
and represents the temporal analogue of the Bloch theorem.
In the following we will consider states described by (2)
characterized by a single wave vector k and of a given Floquet
quasi-energy 𝜖�훼(k). With 𝜙�훼k(r, 𝑡) being time-periodic it can
be expressed as a Fourier series:

𝜙�훼k (r, 𝑡) =
∞

∑
�푛=−∞

𝐵�훼�푛k (r) 𝑒−�푖�푛Ω�푡. (5)

where in turn 𝐵�훼�푛k(r) can be expanded on a complete set, for
instance, on a localized basis:

𝐵�훼�푛k (r) =
�푁

∑
�푖

𝐶�훼�푖�푛 (k) 𝜒�푖 (r) (6)

with 𝑖 being a site index, 𝑁 being the number of sites in the
unit cell, and 𝜒�푖(r) being the localized orbitals. In practice the
Fourier expansion is truncated to include a finite number of
modes, up to a sufficiently large 𝑛�푚�푎�푥 whose value depends
obviously onΩ. This allows formulating the eigenvalue prob-
lem in (3) in a standard matrix form whose eigenvalues turn
out to be replicas of the static band structure with gaps open-
ing at their crossing points [1, 11].

The field-free Hamiltonian of graphene is described in
the tight-binding scheme with a single hopping parameter
𝐽 ≃ 2.8 eV between nearest neighbor sites, reproducing
the well-known Dirac-like valence and conduction bands
[20]. In the presence of the oscillating field described by the
vector potential A(𝑡), the hopping between neighboring sites
is modified according to Peierls’ substitution [21, 22]:

𝐽�푖�푗 (𝑡) = 𝐽𝑒�푖A(�푡)⋅(r𝑗−r𝑖). (7)

We are interested in the effects of reduced dimensionality,
namely, on the gapless edge states that arise in graphene
ribbons; we chose a zig-zag terminated ribbon 50 atoms wide
(Figure 1). We consider two frequency values (Ω1 = 5.5 eV,
Ω2 = 12 eV) representative of the intermediate and large
frequency regime (Ω1/𝐽 ≃ 2, Ω2/𝐽 ≃ 4). We study also the
effect of different amplitudes of the external vector potential
(𝐴0 = 0.5 and𝐴0 = 1.0 in units of the inverse carbon-carbon
distance [7]). In Figure 2 we compare the Floquet quasi-
energies obtained for the honeycomb lattice in 2D and 1D
exposed to a circularly polarized field A(𝑡) = 𝐴0(cos(Ω𝑡)𝑥 +
sin(Ω𝑡)𝑦).

Panels (a), (c), (e), and (g) report the Floquet Projected
Bulk Band Structure (FPBBS), namely, the Floquet eigenval-
ues obtained for the 2D lattice using the same unit cell of
the ribbon and periodically repeated in both x and y (along
the ribbon and perpendicular to it), in this way restoring
the 2D translation symmetry. As currently done in standard
surface physics [23], the projected bulk band structure allows
identifying straightaway the energy regions that, prohibited
in the bulk, can host localized states at the edges. Panels (b),
(d), (f), and (h) of Figure 2 report the Floquet quasi-energies
obtained in the 1D ribbon geometry clearly showing extra
states in the 2D forbidden regions. These states go in pairs

being localized either on the upper or on the lower edge of
the ribbon. We notice that for the largest frequency Ω = 12
eV the effect of increasing 𝐴0 is to widen the gap between
bulk Floquet bands and to increase the edge state dispersion.
Gapless edge states appearing around 𝑘�푥 = 1/2 (in units of
2𝜋/𝑎) exhibit for both values of𝐴0 the peculiar linear disper-
sion evocative of a nontrivial topological character [24–26].
The same dispersion exists also for Ω = 5.5 eV but now the
structure of Floquet bands is more complex and extra edge
states appear at different k-points and in other gaps and lenses
of the FPBBS. Smaller field strengths would correspond to
even smaller bulk gaps and less dispersive edge states.

It is interesting to compare these results with those ob-
tained assuming a linear polarization, with the vector poten-
tial oscillating perpendicular to the ribbon length (A(𝑡) =
𝐴0sin(Ω𝑡) 𝑦). As shown in Figure 3 2D Floquet bands are
gapless independently of the field strength. Edge states ap-
pearing in the middle of the 1D Brillouin Zone (BZ) have no
appreciable k-dispersion in the same way as edge states in
static conditions [27].

We may conclude this analysis of Floquet quasi-energies
by noticing that only circularly polarized fields of sufficient
strengthmay induce Floquet edge states with a significant lin-
ear dispersion. It is interesting now to go one step further and
use the solution of the Floquet problem to obtain information
on physical observables.

Even if Floquet quasi-energies are used to interpret the
photondressed electronic excitations probed by spectroscopic
techniques such as pump-probe experiments and time-re-
solved photoemission [7, 28–30] their connection with other
measurable quantities is somewhat indirect: Floquet quasi-
energies are time-independent eigenvalues of an auxiliary
Hamiltonian and therefore cannot capture all the essential
time-dependent physics. However Floquet eigenvalues and
eigenvectors can be used to calculate expectation values ex-
actly, thanks to the exact representation of the time-de-
pendent wave functions (see (5)). In particular the time-de-
pendent single particle energies of the driven system, defined
as the expectation values of the time-dependent Hamiltonian
over 𝜓k(r, 𝑡), can be expressed in terms of the Floquet eigen-
states as follows:

𝐸�훼 (k, 𝑡) ≡ ⟨𝜓�훼k (r, 𝑡) �̂� (r, 𝑡) 𝜓�훼k (r, 𝑡)⟩
= ⟨𝜓�훼k (r, 𝑡)

𝑖
𝜕
𝜕𝑡
 𝜓�훼k (r, 𝑡)⟩

= 𝜖�훼 (k)
+ ∑
�푛,�푚

𝑒�푖(�푛−�푚)Ω�푡𝑚Ω∫𝐵�훼,�푛,k (r)∗ ⋅ 𝐵�훼,�푚,k (r) 𝑑r.

(8)

Figure 4 shows the time-dependent single particle ener-
gies of the 2D system calculated at k-vectors around the
Dirac point for different strengths and frequencies of the
circularly polarized external field. We choose to plot 𝐸(k, 𝑡)
as a function of the unperturbed Blochmomentum k instead
of the shifted momentum k − A(𝑡) that takes into account
the effect of the external field as shown in [31]. This shift



Advances in Condensed Matter Physics 3

R3

R2 R1

y

x

edge 2

edge 1

Figure 1: Geometry of a zig-zag honeycomb ribbon. Heavy lines indicate the unit cell for an 8-atomwide ribbon.𝑅1, 𝑅2 are the lattice vectors
associated with 1D translation symmetry. 𝑅3 is the lattice vector to be used to reproduce the 2D lattice starting from the present unit cell (see
text).
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Figure 2: Floquet quasi-energies for circularly polarized field of different strengths and frequencies. Panels (a), (c), (e), and (g) report the
Floquet Projected Bulk Band Structure, panels (b),(d), (f), and (h) report the results for the zig-zag ribbon. The full Floquet band structure
(brown dots) corresponds to a replication of the zero-mode Floquet band (black dots). Upper panels: Ω = 12 eV; lower panels Ω = 5.5 eV;
panels (a), (b), (e), and (f): 𝐴0 = 0.5; panels (c), (d), (g), and (h): 𝐴0 = 1.

is crucial when performing theoretical simulation of time-
resolved photoemission experiments [32] but is not relevant
when time-dependent energies are used for calculations that
involve a summation over 𝑘 (see the following).

We show few snapshots at selected times 𝑡�푛 = (𝑛 − 1)/8𝑇
within the interval 0 ≤ 𝑡 ≤ 𝑇/2, 𝑇 being the period of the
external field. Since 𝐸�훼(k, 𝑡) = 𝐸�훼(k, 𝑇 − 𝑡) these snapshots
are illustrative of the full time evolution. It is interesting to
notice that the time-dependent energies 𝐸�훼(k, 𝑡), in spite of 𝛼
running over both Floquet modes and band index, consist of
two bands only since different Floquet modes give rise to the
same time-dependent energy.

This is a consequence of the Floquet eigenvalues peri-
odicity and while Floquet eigenvalues are defined modulo-
Ω, time-dependent band energies are identified by the band
index only.

A comment on the relationship between Floquet eigen-
values and time-dependent band energies 𝐸(k, 𝑡) is in order.
The exponential prefactor in (2) is the envelope function of
the full solution of the time-dependent Schrödinger equation.
Thus Floquet quasi-energies that enter that term provide
information on the amplitude modulation in time of the
complete wave function, without catching the full time evolu-
tion but only the slowly varying one. Indeed, they correspond
to the exact dynamics only in a stroboscopic picture, i.e., for
multiple integers of the driving period. On the other hand,
time-dependent energies show the complete time evolution
of the solution of the Schrödinger equation, even the fastest
components. Real experiments are in general sensitive only to
the slowest dynamics; therefore real time-dependent energies
become somehow elusive to a direct investigation. Neverthe-
less, as it will be pointed out in the following, other relevant
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Figure 3: Same as Figure 2 but for linear polarization.

and observable quantities such as charge and currents can be
truly evaluated only considering the full time-dependence.

We move now to 1D structures. For 1D ribbons we are
interested in particular in the time evolution of zero-energy
edge states. As shown in Figures 2 and 3 Floquet edge states
exist only in a narrow portion of the 1DBZwherewe now plot
their time evolution (Figure 5). By looking at the site com-
position of the wave function we can unambiguously identify
states localized either at the upper or at the lower edge and in
the following we describe the time evolution of each of them.

Let us focus first on circular polarization. The high fre-
quency regime (Figure 5, panels (a) and (b)) is particularly in-
teresting; during the time evolution the two edge states mod-
ify their k-dispersion keeping however the same positive or
negative slope: positive for states localized at the upper edge
and negative for those localized at the lower one. This is re-
markable since it corresponds to unidirectional edge states
(right-movers on the lower edge and left-movers on the upper
one for clockwise circular polarization) that would carry, if
occupied, a constant current around the sample [33].

For a smaller frequency (Figure 5, panels (c), (d)) edge
states exhibit a more complicated k-dispersion due to over-
lapping Floquet bands. In this frequency regime edge states
exhibit a less pronounced localization extending down into
the ribbon. As it can be noticed, in this regime some addi-
tional states appear as satellites in addition to the other bands
whichwere present at higher frequencies, too. Attention must
be paid in this circumstance: these additional states, indeed,
which appear at k-points far from the center of the BZ, are not
proper edge states. In fact, analyzing their density distribution
over time it can be seen that these are simply different
itinerant states across the ribbon which at different times
localize close to (but not exactly onto) the edges of the ribbon.
This is also the reason why sometimes (Figure 5 panel (c))

their velocity is opposite to the one of the bona-fide edge
states.

A more detailed analysis can be performed calculating
the time-dependent expectation value of the velocity operator
[34]

kk (𝑡) = −𝑖 ⟨𝜓k (r, 𝑡) [r̂, �̂� (𝑡)] 𝜓k (r, 𝑡)⟩ , (9)

in this way obtaining a velocity vector field in real space
whose time average turns out to be

k�푖 = ∑
�푖�훼

∑
�푛�푚

∑
k
𝐶�훼∗�푖�푛 (k) 𝐶�훼�푖�푚 (k) 𝑒−�푖k⋅(r𝑖−r𝑖 ) (r�푖 − r�푖)

⋅ 𝐽�푖�푖 1𝑇 ∫�푇/2
−�푇/2

𝑒−�푖A(�푡)⋅(r𝑖−r𝑖 )𝑒−�푖(�푛−�푚)Ω�푡𝑑𝑡.
(10)

The results for a ribbon under circularly polarized fields of
different strengths and frequencies are shown in Figure 6.
Edge electrons are characterized by a negligible average veloc-
ity across the ribbon (y-component) and by finite x-com-
ponents of opposite sign at the two edges, confirming their
right-mover/left-mover character.

The effect of linearly polarized fields is significantly dif-
ferent: edge states are confined in a reduced k-space region
and their overall dispersion is drastically reduced by orders
of magnitude with respect to the case of circular polarization.
Moreover, and even more notably, the right-mover/left-mov-
er behaviour is lost and for any value of frequency and inten-
sity the two edge bands have a parabolic dispersion, with both
positive and negative slope.

Under the influence of the oscillating field we expect the
charge to oscillate across the ribbon. The charge density at
each site 𝑖 in the unit cell is calculated as the expectation
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Figure 4: Time evolution of the band energies of 2D graphene under a circularly polarized field. Bands are plotted around the Dirac point
reported as k=0. Panels (a) and (b) refer to high frequency regime (Ω = 12 eV) for intensities 𝐴0 = 0.5 and 𝐴0 = 1, respectively. Panels (c)
and (d) report the results for Ω = 5.5 eV and 𝐴0 = 0.5, 𝐴0 = 1, respectively. Different snapshots at 𝑡�푛 = 𝑇(𝑛 − 1)/8, 𝑇 being the period of the
external field, are shown.
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Figure 5: Time evolution of the edge states of a zig-zag ribbon for circular (left panel) and linear polarization (right panel). States localized
at upper and lower edge are indicated by black and brown lines, respectively. Panels (a) and (a’): Ω = 12 eV and 𝐴0 = 0.5; panels (b) and
(b’): Ω = 12 eV and 𝐴0 = 1; panels (c) and (c’): Ω = 5.5 eV and 𝐴0 = 0.5; panels (d) and (d’): Ω = 5.5 eV and 𝐴0 = 1. Snapshots at times
𝑡�푛 = 𝑇(𝑛 − 1)/8 are reported, 𝑇 being the period of the external field.
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value of the charge density operator 𝑐†�푖 (𝑡)𝑐�푖(𝑡) over the many-
body ground state. Since we are dealing with noninteracting
electrons, the many-body states are Slater determinants
which contain in the ground state single particle orbitals
that correspond to the lowest energies 𝐸�훼k(𝑡0). It is useful to
start by writing the expectation value of the charge density
operator in the Heisenberg picture (from here on, we use the
subscript letter H to indicate theHeisenberg picture, while we
consider the Schroedinger picture otherwise)

𝜌�푖 (𝑡, 𝑡0) = �퐻 ⟨Ψ�푁0 𝑐†�푖 (𝑡)�퐻 𝑐�푖 (𝑡)�퐻 Ψ�푁0 ⟩�퐻 , (11)

which can be rewritten in the Schrödinger picture as follows
(the details of the calculations are given in the Appendix):

𝜌�푖 (𝑡, 𝑡0)
= ⟨Ψ�푁0 (𝑡0) �̂�† (𝑡, 𝑡0) 𝑐†�푖 (𝑡) 𝑐�푖 (𝑡) �̂� (𝑡, 𝑡0) Ψ�푁0 (𝑡0)⟩ .

(12)

In this picture, the creation and annihilation operators 𝑐†�푖 (𝑡)
and 𝑐�푖(𝑡) contain only the intrinsic time-periodic dependence.
Moreover, we observe that the time evolution of the initial
𝑁-particles ground state, �̂�(𝑡, 𝑡0) |Ψ�푁0 (𝑡0)⟩, in general is not
formed by the sum of the𝑁 lowest energy states at time 𝑡 and
does depend upon 𝑡0. We thus obtain (see the Appendix)

𝜌�푖 (𝑡, 𝑡0)
= ∑
�훼,k,�푛,�푚

𝑒�푖(�푛−�푚)Ω�푡𝐶�훼∗�푖�푛 (k) 𝐶�훼�푖�푚 (k) 𝜃 (𝐸�퐹 − 𝐸�훼k (𝑡0)) , (13)

where the step function involves the energy 𝐸�훼,k(𝑡0) and
guarantees that only the single particle orbitals that at time
𝑡0 give rise to the lowest total energy are involved. This
corresponds to a “quasi-equilibrium” occupation of Floquet
bands at 𝑡 = 𝑡0 = 0: this is physically motivated by the fact
that when the Floquet quasi-steady states are formed, their
occupation is stationary in time, which does not mean that
the time-dependent energies are statically occupied as in
equilibrium, due to the intrinsic time-periodic dependence.
𝐸�퐹 is the highest occupied level that satisfies the correct elec-
tron counting.

Since the initial time 𝑡0 is arbitrary, an average over 𝑡0 is
required and we get

𝜌�푖 (𝑡) = 1
𝑇 ∫
�푇

0
𝜌�푖 (𝑡, 𝑡0) 𝑑𝑡0. (14)

The above definition starts from a strong assumption con-
cerning the initial state condition: the electrons are assumed
to be from the beginning in a quasi-equilibrium steady state
associated with the presence of a pulse of “infinite” duration
or rather of duration much larger than the oscillation period.
In order to check the validity of this assumption we have
tested a different initial condition corresponding to a very
rapid switching on of the field. According to this “sudden
approximation” the initial state is the unperturbed ground
state |Φ(0)0 ⟩ (i.e., the solution of the undriven static Hamil-
tonian �̂�0, namely, �̂�0|Φ(0)0 ⟩ = 𝐸0|Φ(0)0 ⟩), and the time
evolution is described as projecting |Φ(0)0 ⟩ onto the Floquet

quasi-steady states and evolving time-periodically from then
on. Within this sudden approximation the charge density is
given by (see the Appendix)

𝜌�耠�푖 (𝑡) = ∑
�훼,k,�푛,�푚

𝐶�훼�푖,�푛 (k)∗ 𝐶�훼�푖,�푚 (k)

⋅ 𝑒�푖(�푛−�푚)Ω�푡 ⟨Φ(0)0 (𝑡) | Ψ�훼,k (𝑡)⟩ .
(15)

The results of these two approaches are shown in Figure 7
for circular and linear polarization. We see that, in the large
frequency regime and for the relatively small field intensity
considered here, the two results are substantially coincident;
i.e., the quasi-equilibrium and the sudden approximation are
consistent with each other. This is explained by the intrin-
sically ultrafast dynamics induced by the laser: the charge
oscillations and energy dynamics are fast enough (this is
guaranteed in the driving frequency regime that is consid-
ered) to prevent states to relax and occupy lower energy levels
when they are above the corresponding equilibrium Fermi
level. In all cases we find that excess charge accumulates at the
ribbon edges and moves in time from one edge to the other.

The width of charge oscillations at the edges is more pro-
nounced for linear polarization and grows with field inten-
sity, in agreement with physical intuition. The situation is
more complicated for circular polarization where the strong-
est oscillations occur for Ω = 5.5 eV and 𝐴0 = 0.5 (panel (c)
of Figure 7). For the same frequency but for higher intensity
((panel (d) of Figure 7) we notice less charge accumulating
at the edges. This is a consequence of the higher occupation
of bands corresponding to itinerant states which are less or
not localized, resulting into an overall less localization of the
noninteracting ground state.

This analysis allows us to conclude that fields of appro-
priate frequency and intensity of both linear and circular
polarization induce an oscillating dipole across the ribbon.
This approach can be extended to the expectation values of
the current density [1] and then to the calculation within the
Floquet scheme of nonlinear optical properties under intense
laser fields (high harmonic generation [35] and saturable
absorption [36, 37] ) of graphene. This will be the subject of
further study.

In summary, we have shown how the time evolution of
physical observables in systems driven out of equilibrium by
a time-periodic electromagnetic field can be obtained from
Floquet eigenstates and eigenvalues. In graphene ribbons the
effects depend strongly on the polarization of the applied field
and in the case of circularly polarized light in a given regime
of frequency and intensity unidirectional edge states are iden-
tified that describe electrons moving in opposite directions
along the edges. The expectation values of the time-de-
pendentHamiltonian over the time-dependent single particle
wave functions represent an extension of the band structure
to the time domain giving information on the time evolution
of single particle energies and on their population and to
physical quantities that require a summation over occupied
states such as charge density. These time-dependent single
particle energies are essential in order to study the time evolu-
tion of the ground state energy of a collection of independent
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Figure 7: Time evolution of the local charge calculated for circularly (left panels) and linearly (right panels) polarized fields of different
strengths and frequencies. In black are the results for 𝜌�푖(𝑡) of (14) and in brown are the results for 𝜌�耠�푖 (𝑡) of (15) (see text). Panels (a) and (a’):
Ω = 12 eV and𝐴0 = 0.5. Panels (b) and (b’):Ω = 12 eV and𝐴0 = 1. Panels (c) and (c’):Ω = 5.5 eV and𝐴0 = 0.5. Panels (d) and (d’):Ω = 5.5
eV and 𝐴0 = 1. Snapshots are given at times 𝑡�푛 = 𝑇(𝑛 − 1)/8.

particles and consequently of the ground state expectation
values of physical observables. A part from the results that
we have obtained for a specific system, graphene ribbon in
the high frequency off-resonant regime, this analysis has fun-
damental implications related to state population and ground
state definition that are ineluctable for the correct evaluation
of physical quantities in driven quantum systems.

Appendix

In order to describe our time-periodicHamiltonian in second
quantized form we consider the Hilbert space which con-
sists of site-localized time-periodic functions 𝜙�푖,�푛(𝑟, 𝑡) =
𝜙�푖(𝑟)𝑒−�푖�푛Ω�푡, the so-called Sambe space [38].The second quan-
tized form of the Hamiltonian reads

�̂� = ∑
�푖,�푗

+∞

∑
�푛=−∞

+∞

∑
�푚=−∞

⋅ ⟨𝜙�푖 (𝑟)𝐻 (𝑟, 𝑡) 𝜙�푗 (𝑟)⟩ 𝑒−�푖(�푛−�푚)Ω�푡𝑐†�푖,�푛𝑐�푗,�푚
(A.1)

where the matrix elements of theHamiltonian are given in (7)
of the main text. According to [39] we define

𝑐�푖 (𝑡) =
+∞

∑
�푛=−∞

𝑒�푖�푛Ω�푡𝑐�푖,�푛, (A.2)

𝑐†�푖 (𝑡) =
+∞

∑
�푛=−∞

𝑒−�푖�푛Ω�푡𝑐†�푖,�푛. (A.3)

Finally the following is obtained [40]:

�̂� (𝑡) = ∑
�푖,�푗

𝐽�푖,�푗𝑒−�푖
�㨀→
�퐴(�푡)⋅(�㨀→�푟 𝑖−

�㨀→�푟 𝑗)𝑐†�푖 (𝑡) 𝑐�푗 (𝑡)

= ∑
�푖,�푗

𝐽�푖,�푗𝑒−�푖
�㨀→
�퐴(�푡)⋅(�㨀→�푟 𝑖−

�㨀→�푟 𝑗)𝑒−�푖(�푛−�푚)Ω�푡𝑐†�푖,�푛𝑐�푗,�푚.
(A.4)

The charge density at time t has been defined in (11) as

𝜌�푖 (𝑡, 𝑡0) = �퐻 ⟨Ψ�푁0 𝑐†�푖 (𝑡)�퐻 𝑐�푖 (𝑡)�퐻 Ψ�푁0 ⟩�퐻 . (A.5)

Here states and the operators are written in the Heisenberg
picture. The connection with the Schrödinger picture is the
standard one:Ψ�푁0 ⟩�퐻 = �̂�† (𝑡, 𝑡0)

Ψ�푁0 (𝑡)⟩ ,
𝑂�퐻 (𝑡) = �̂�† (𝑡, 𝑡0) 𝑂 (𝑡) �̂� (𝑡, 𝑡0) ,

(A.6)

where𝑂(𝑡) is a generic operator in the Schrödinger picture.
Substituting the previous expressions into (A.5), we get

𝜌�푖 (𝑡, 𝑡0)
= (⟨Ψ�푁0 (𝑡) �̂� (𝑡, 𝑡0)) (�̂�† (𝑡, 𝑡0) 𝑐†�푖 (𝑡) �̂� (𝑡, 𝑡0))
⋅ (�̂�† (𝑡, 𝑡0) 𝑐�푖 (𝑡) �̂� (𝑡, 𝑡0)) (�̂�† (𝑡, 𝑡0) Ψ�푁0 (𝑡)⟩) ,

= ⟨Ψ�푁0 (𝑡) 𝑐†�푖 (𝑡) 𝑐�푖 (𝑡) Ψ�푁0 (𝑡)⟩ .

(A.7)

Furtherly, making use of the evolution of the Schrödinger
states

Ψ�푁0 (𝑡)⟩ = �̂� (𝑡, 𝑡0) Ψ�푁0 (𝑡0)⟩ , (A.8)
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we can write

𝜌�푖 (𝑡, 𝑡0) = ⟨Ψ�푁0 (𝑡0) �̂�† (𝑡, 𝑡0) 𝑐†�푖 (𝑡) 𝑐�푖 (𝑡) �̂� (𝑡, 𝑡0)
⋅ Ψ�푁0 (𝑡0)⟩ ,

(A.9)

which coincides with (12).
Let us consider this expression with 𝑁 = 1 in order

to drop the index N for simplicity of notation (the same
reasoning can be applied for any N):

𝜌�푖 (𝑡, 𝑡0) = (⟨Ψ0 (𝑡0) �̂�† (𝑡, 𝑡0) 𝑐†�푖 (𝑡))
⋅ (𝑐�푖 (𝑡) �̂� (𝑡, 𝑡0) Ψ0 (𝑡0)⟩) .

(A.10)

The ket can be rewritten as follows:

𝑐�푖 (𝑡) �̂� (𝑡, 𝑡0) Ψ0 (𝑡0)⟩ = ∑
�푛,�훼,k

𝑒�푖�푛Ω�푡𝐶�훼�푖,�푛 (k)

⋅ 𝑐�훼,k�̂� (𝑡, 𝑡0) Ψ0 (𝑡0)⟩ = ∑
�푛,�훼,k

∑
�훼 ,k

𝑒�푖�푛Ω�푡𝐶�훼�푖,�푛 (k)

⋅ 𝑐�훼,k 𝜓�훼 ,k (𝑡)⟩ ⟨𝜓�훼 ,k (𝑡) �̂� (𝑡, 𝑡0) Ψ0 (𝑡0)⟩
= ∑
�푛,�훼,k

𝑒�푖�푛Ω�푡𝐶�훼�푖,�푛 (k) 𝑐�훼,k 𝜓�훼,k (𝑡)⟩ ⟨𝜓�훼,k (𝑡) �̂� (𝑡, 𝑡0)

⋅ Ψ0 (𝑡0)⟩ = ∑
�푛,�훼,k

𝑒�푖�푛Ω�푡𝐶�훼�푖,�푛 (k) 𝑐�훼,k 𝜓�훼,k (𝑡)⟩

⋅ ⟨𝜓�훼,k (𝑡0) | Ψ0 (𝑡0)⟩ .

(A.11)

Here we have used the identity decomposition I =
∑�훼 ,k |𝜓�훼 ,k (𝑡)⟩⟨𝜓�훼 ,k (𝑡)| and the expansion of the annihila-
tion operator in the k-dependent Floquet-Bloch eigenstates
𝑐�푖(𝑡) = ∑�푛,�훼,k 𝑒�푖�푛Ω�푡𝐶�훼�푖,�푛(k)𝑐�훼,k.

Repeating the same procedure for the term
⟨Ψ0(𝑡0)|�̂�†(𝑡, 𝑡0)𝑐†�푖 (𝑡), we get

⟨Ψ0 (𝑡0) �̂�† (𝑡, 𝑡0) 𝑐†�푖 (𝑡) = ∑
�푚,�훽,K

𝑒−�푖�푚Ω�푡𝐶�훽∗�푖,�푚 (K)

⋅ ⟨Ψ0 (𝑡0) | 𝜓�훽,K (𝑡0)⟩ ⟨𝜓�훽,K (𝑡) 𝑐†�훽,K.
(A.12)

Substituting expressions (A.12) and (A.11) into (A.10), we get

𝜌�푖 (𝑡, 𝑡0) = ∑
�푛,�훼,k

∑
�푚,�훽,K

𝑒�푖(�푛−�푚)Ω�푡𝐶�훽∗�푖,�푚 (K) 𝐶�훼�푖,�푛 (k)

⋅ ⟨Ψ0 (𝑡0) | 𝜓�훽,K (𝑡)⟩ ⟨𝜓�훽,K (𝑡) 𝑐†�훽,K𝑐�훼,k 𝜓�훼,k (𝑡)⟩
⋅ ⟨𝜓�훼,k (𝑡0) | Ψ0 (𝑡0)⟩ = ∑

�푛,�푚,�훼,k
𝑒�푖(�푛−�푚)Ω�푡𝐶�훼∗�푖,�푚 (k)

⋅ 𝐶�훼�푖,�푛 (k) ⟨Ψ0 (𝑡0) | 𝜓�훼,k (𝑡0)⟩ ⟨𝜓�훼,k (𝑡0) | Ψ0 (𝑡0)⟩
= ∑
�푛,�푚,�훼,k

𝑒�푖(�푛−�푚)Ω�푡𝐶�훼∗�푖,�푚 (k) 𝐶�훼�푖,�푛 (k)

⋅ ⟨Ψ0 (𝑡0) | 𝜓�훼,k (𝑡0)⟩2 ,

(A.13)

where we used the orthogonality of the Bloch waves to obtain
𝛿k,K𝛿�훼,�훽 and get rid of the indices 𝛽,K. In addition, since it is
|⟨Ψ0(𝑡0) | 𝜓�훼,k(𝑡0)⟩|2 = 𝜃(𝐸�퐹 − 𝐸�훼,k(𝑡0)), we end up with

𝜌�푖 (𝑡, 𝑡0)
= ∑
�푛,�푚,�훼,k

𝑒�푖(�푛−�푚)Ω�푡𝐶�훼∗�푖,�푚 (k) 𝐶�훼�푖,�푛 (k) 𝜃 (𝐸�퐹 − 𝐸�훼,k (𝑡0)) , (A.14)

as in (13).
Analogously, we can perform a similar procedure using

the unperturbed ground state |Φ(0)0 ⟩ (solution of the
Schrödinger equationwith the undrivenHamiltonian𝐻0 , i.e.,�̂�0|Φ(0)0 ⟩ = 𝐸0|Φ(0)0 ⟩), in order to obtain the bracket expres-
sion ⟨Φ(0)0 (𝑡0)|�̂�†(𝑡, 𝑡0)|Ψ�훼,k(𝑡)⟩ where �̂�†(𝑡, 𝑡0) contains the
rapid switch-on of the driving (in the sudden approximation)
and the rest of the time evolution, ending up with

𝜌�耠�푖 (𝑡) = ∑
�훼,k,�푛,�푚

𝐶�훼�푖,�푛 (k)∗ 𝐶�훼�푖,�푚 (k)

⋅ 𝑒�푖(�푛−�푚)Ω�푡 ⟨Φ(0)0 (𝑡) | Ψ�훼,k (𝑡)⟩ .
(A.15)
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[5] J. Cayssol, B. Dóra, F. Simon, and R. Moessner, “Floquet topo-
logical insulators,”Physica Status Solidi - Rapid Research Letters,
vol. 7, no. 1-2, pp. 101–108, 2013.

[6] N. Goldman, J. C. Budich, and P. Zoller, “Topological quantum
matter with ultracold gases in optical lattices,” Nature Physics,
vol. 12, no. 7, pp. 639–645, 2016.



10 Advances in Condensed Matter Physics

[7] M. A. Sentef, M. Claassen, A. F. Kemper et al., “Theory of Flo-
quet band formation and local pseudospin textures in pump-
probe photoemission of graphene,” Nature Communications,
vol. 6, 2015.

[8] N. H. Lindner, G. Refael, and V. Galitski, “Floquet topological
insulator in semiconductor quantumwells,”Nature Physics, vol.
7, no. 6, pp. 490–495, 2011.

[9] T. Oka and H. Aoki, “Erratum: Photovoltaic Hall effect in gra-
phene (Physical Review B - Condensed Matter and Materials
Physics (2009) 79 (081406)),” Physical Review B: Condensed
Matter and Materials Physics, vol. 79, no. 16, 2009.

[10] M. S. Rudner,N.H. Lindner, E. Berg, andM. Levin, “Anomalous
Edge States and the Bulk-Edge Correspondence for Periodically
Driven Two-Dimensional Systems,” Physical Review X, vol. 3,
no. 3, 2013.

[11] G. Usaj, P. M. Perez-Piskunow, L. E. F. Foa Torres, and C. A. Bal-
seiro, “Irradiated graphene as a tunable Floquet topological
insulator,” Physical Review B: Condensed Matter and Materials
Physics, vol. 90, no. 11, 2014.

[12] A. Farrell and T. Pereg-Barnea, “Photon-Inhibited Topological
Transport in QuantumWell Heterostructures,” Physical Review
Letters, vol. 115, no. 10, 2015.

[13] A. Kundu, H. A. Fertig, and B. Seradjeh, “Floquet-Engineered
Valleytronics inDirac Systems,” Physical Review Letters, vol. 116,
no. 1, 2016.

[14] Z. Gu, H. A. Fertig, D. P. Arovas, and A. Auerbach, “Floquet
Spectrum and Transport through an Irradiated Graphene Rib-
bon,” Physical Review Letters, vol. 107, no. 21, 2011.

[15] P. M. Perez-Piskunow, G. Usaj, C. A. Balseiro, and L. E. Torres,
“Floquet chiral edge states in graphene,” Physical Review B:
Condensed Matter and Materials Physics, vol. 89, no. 12, 2014.

[16] T. Kitagawa, T.Oka, A. Brataas, L. Fu, andE.Demler, “Transport
properties of nonequilibrium systems under the application of
light: Photoinduced quantum Hall insulators without Landau
levels,” Physical Review B: Condensed Matter and Materials
Physics, vol. 84, no. 23, 2011.

[17] M. Lababidi, I. I. Satija, and E. Zhao, “Counter-propagating
Edge Modes and Topological Phases of a Kicked QuantumHall
System,” Physical Review Letters, vol. 112, no. 2, 2014.

[18] Z. Zhou, I. I. Satija, and E. Zhao, “Floquet edge states in a har-
monically driven integer quantumHall system,”Physical Review
B: CondensedMatter andMaterials Physics, vol. 90, no. 20, 2014.

[19] F. D. M. Haldane, “Model for a quantum hall effect without lan-
dau levels: Condensed-matter realization of the “parity ano-
maly”,” Physical Review Letters, vol. 61, no. 18, pp. 2015–2018,
1988.

[20] S. Reich, J. Maultzsch, C. Thomsen, and P. Ordejón, “Tight-
binding description of graphene,”Physical Review B: Condensed
Matter and Materials Physics, vol. 66, no. 3, 2002.

[21] D. R. Hofstadter, “Energy levels and wave functions of Bloch
electrons in rational and irrational magnetic fields,” Physical
Review B: Condensed Matter and Materials Physics, vol. 14, no.
6, pp. 2239–2249, 1976.
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