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We study the time evolution of the survival probability and the spin polarization of a dissipative nondegenerate two-level system in
the presence of a magnetic field in the Faraday configuration. We apply the Extended Gaussian Orthogonal Ensemble approach to
model the stochastic system-environment interaction and calculate the survival and spin polarization to first and second order of
the interactionpicture.We present also the time evolution of the thermal average of these quantities as functions of the temperature,
themagnetic field, and the energy-levels density, for 𝜌(𝜖) ∝ 𝜖𝑠, in the subohmic, ohmic, and superohmic dissipation forms.We show
that the behavior of the spin polarization calculated here agrees rather well with the time evolution of spin polarization observed
and calculated, recently, for the electron-nucleus dynamics of Ga centers in dilute (Ga,N)As semiconductors.

1. Introduction

Thenecessity to maintain the information for long periods of
time and the efforts to control and manipulate the electronic
spin degrees of freedom led to extensive research activities,
such as, among others, the search for the best conditions to
keep the spin polarization, as well as new mechanisms to
enhance the spin coherence time [1–6]. In spite of abundant
empirical knowledge of the spin depolarization rates and the
spin coherence times, there is little knowledge of the explicit
time evolution of these quantities, as functions of the relevant
system-environment interaction parameters. In this paper,
we focus on this problem and present a simple calculation
of the time evolution of the spin polarization driven by the
stochastic interaction of the system and its environment, with
good results and few assumptions.

The physics of the two-state systems have been studied
since the early days of the quantum theory, and various mod-
els and approaches have been proposed and published [7–18].
Attempts to solve completely the models for dissipative two-
state systems are generally faced withmathematical complex-
ities. Examples vary from entangled differential equations in
master equation approaches [11, 19] to perturbative calcula-
tions in the ‘spin-boson’ [14] and the rotating-wave” approxi-
mation [16]. Recently the master equation approach [19] was

applied to describe the evolution of the electronic and nuclear
spin polarizations of interstitial galliumdefects, which behave
as paramagnetic centers in dilute (Ga,N)As semiconductor
that selectively capture electrons with opposite spin, and
block the recombination of conduction band electrons with
the same spin (which lead to an increase of the lifetime of
conduction electrons and bound electrons from picoseconds
to nanoseconds). The intricacy of this approach expressed
through almost a hundred of coupled nonlinear differential
equations (with assumptions on the dissipative interactions)
reminds us of the ‘much too intractable (intermediate results)
of the spin-boson model’ [15]. In the physics of complex
systems, it has been frequently found that some processes
are insensitive to the details of the interaction, being only a
few “gross properties” relevant to describe them.This feature,
which is not new to many body problems, has often been
used to construct successful and enlightening approaches in
terms of ensembles of stochastic interactions [17, 20–27] that
make possible satisfying evaluations of ensemble averages for
relevant quantities.Wewill present here aGaussian stochastic
spin-environment interaction approach that strengthens this
idea.

In themaster equation approach in [28, 29], the electronic
and nuclear spin dynamics, obtained through rather detailed

Hindawi
Advances in Condensed Matter Physics
Volume 2019, Article ID 2030573, 10 pages
https://doi.org/10.1155/2019/2030573

http://orcid.org/0000-0001-9660-1756
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/2030573


2 Advances in Condensed Matter Physics

18.0

17.0

16.0

200 400 600 800 1000

Δt (ps)

P
ez

(%
)

Figure 1: The spin polarization calculated in [28] (gray circles) and
our results (black curve), to second order of the interaction picture,
for level density of the bath 𝜌𝜐(𝜀) = 109𝜖𝑠, with 𝑠 = 0.28, and
frequency 𝜔𝑜 = 2.73556 × 1010s−1. The gray circles graph published
with author’s permission.
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Figure 2: Experimental results of the field effect on the spin-
dependent recombination ratio reported in Ref. [5] and, on top of
these data, we plot (blue curve) the spin polarization behavior as
function of the magnetic field. The blue curve is for 𝜌𝜐(𝜀) = 108𝜖𝑠,
with 𝑠 = 2.5, frequency 𝜔𝑜 = 2.279 × 1010𝐵s−1, and 𝑡 = 1.410−9s.
Reprinted figure with permission from [5]. Copyright (2013) by the
American Physical Society.

calculations, oscillate as shown in Figure 1 (gray-circles
curve). This behavior has been explained as caused by oscil-
lations of the hyperfine interaction of bound electrons with
the nuclei. In the stochastic interaction model presented here,
we obtain, to second order of the interaction picture, the spin
polarization oscillations shown also in Figure 1 and plotted
with the continuous (black) curve on top of the gray-circles
curve.The agreement of these results supports the suggestion
that the loss of coherence and the oscillating time evolution of
the spins might be caused by the stochastic nature of trapping
and recombination. The complexity of the system makes
it also difficult to establish to which extent the observed
time evolution is a consequence of a new mechanism or of
multiple stochastic and spin-field interactions. In Figure 2

we show the experimental results of the field effect, in the
Faraday geometry, on the spin-dependent recombination
ratio reported in [5], where the hyperfine interaction was
uphold to explain this behavior when interstitial Ga2+ atoms
are present in dilute (Ga,N)As semiconductors. On top of
these data we plot also our results (see blue curve) for the
spin polarization, as function of the magnetic field, driven
by the stochastic interaction. The oscillatory behavior of our
results might be behind the large dispersion of data in the
experimental results shown in Figure 2.

We will show here that the gross properties of the spin
dynamics and spin polarization oscillations, observed in the
above mentioned examples, result when a two-state system
interacts stochastically with its environment. To take into
account the magnetic field in the Faraday configuration, we
will consider the Hamiltonian,

𝐻 = 1
2Δ 𝑜𝜎𝑥 + 𝐻𝐸 + 𝜎𝑧𝑉 = 𝐻𝑜 + 𝜎𝑧𝑉, (1)

where (1/2)𝜔𝑜𝜎𝑥 represents a particle of spin 1/2 in the
magnetic field B = (Δ 𝑜/𝑔𝑆𝜇𝐵)x̂ and 𝐻𝐸 describes the
environment (also referred as the bath), characterized by a
level density 𝜌(𝜖). The potential 𝜎𝑧𝑉 represents the system-
environment interaction where the operator V represents the
environment, with matrix elements modelled as statistically
independent Gaussian variables. TheHamiltonians𝐻𝐵 and𝑉
belong to Gaussian orthogonal ensembles (GOEs) of random
matrices with dimension𝑁×𝑁, large enough that the order
relations in (14) are fulfilled. A similar Hamiltonian with the
terms 𝜎𝑥 and 𝜎𝑧 interchanged with each other was studied
before [18]. In that case, it was possible to evaluate the whole
series of the survival probability and the spin polarization,
in the interaction representation, for times much larger than
the collision time 𝑡𝑐𝑜𝑙𝑙 and much smaller than the Poincarè
recurrence time 𝑡𝑃.When the basis is chosen such that |1⟩ and
| − 1⟩ are the eigenstates of 𝜎𝑥, the Hamiltonian describes the
spin flip processes. If, instead, |1⟩ and |−1⟩ are the eigenstates
of 𝜎𝑧, the spin-flip processes are understood as tunneling
process in the fictitious spin 1/2 picture [15]. Another system
with a similar Hamiltonian 𝜎𝑧/2 + 𝐻𝑒 + 𝜆𝜎𝑧𝑉, and the two-
state system in an eigenstate of 𝜎𝑥, at 𝑡 = 0, was numerically
studied in [30], showing also that the decoherence depends
greatly on the nature of the random environment 𝐻𝑒 and
the interaction 𝑉. A result that agrees with the results
obtained here and other previous papers where it was shown,
analytically, that the survival probabilities depend explicitly
on the density of levels 𝜌(𝜖) of the bath. The authors in [30]
considered three cases: randommatrices that belong to finite-
dimension GOE, to BEGOE, and to FEGOE, being the last
two embedded ensembles generated by 𝑘-body interactions
of spinless fermions and bosons, respectively. The dynamics
and complexity of this system are different from the ones
studied here and in [18]. For the purpose of this paper it is
good enough to calculate the survival and spin polarization to
second order of the interaction picture, and for times 𝑡 such
thatΔ 𝑜𝑡/ℏ is of the order of 1.Thismeans that when 𝑡 ≃ 1-10ns
the magnetic fields are of the order of 10mT.

TheHamiltonian in (1) is similar to that of the spin-boson
model for a two-state system in the fictitious spin 1/2 picture.



Advances in Condensed Matter Physics 3

In the spin-boson model the environment is modeled as a
set of harmonic oscillators and the Hamiltonian describes
effectively the tunneling between wells of a double well
potential. Some quantities were calculated when appropriate
approximations were introduced and the level density was
assumed∝ 𝐸𝑠 (which, depending on whether the exponent 𝑠
is equal to 1, < 1 or > 1, corresponds to the so-called ohmic,
subohmic and superohmic dissipation forms, respectively).

In the next section we will present the dissipative two-
level model. We will present results for the first- and second-
order terms of the interaction representation picture in
Section 3. In Section 4 we will show some results for the
survival probability and for the spin polarization. We discuss
some conclusions at the end.

2. The Random Matrix Model and the
Survival Probability

As mentioned before, we will consider the Hamiltonian in
(1), where the environment interacts with a spin 1/2 particle.
The interaction operator 𝑉 is chosen such that its matrix
elements are statistically independentGaussian variableswith
zero mean and covariance given by [17, 21–23]

⟨𝑉𝑎𝑏𝑉𝑐𝑑⟩ = V2𝑎 (𝐸𝑎𝑏) (𝛿𝑎𝑑𝛿𝑏𝑐 + 𝛿𝑎𝑐𝛿𝑏𝑑)𝑊Δ 𝑎 (𝐸𝑎 − 𝐸𝑏) , (2)

The angular brackets denote the ensemble average,
V2𝑎(𝐸𝑎𝑏) is the strength of the interaction, 𝐸𝑎𝑏 is the centroid
of 𝐸𝑎 and 𝐸𝑏, and𝑊Δ 𝑎 is a Lorentzian weight factor of width
Δ 𝑎. This means that the interaction connects states of the
bath within an energy range of order of the Lorentzian width,
which defines the collision time 𝑡𝑐𝑜𝑙𝑙 ∼ ℏ/Δ 𝑎, i.e., the duration
of each application of the spin-bath interaction that should
be distinguished from the time between successive collisions.
We will assume that at 𝑡 ≤ 0 the system is held in the
eigenstate |1⟩ od 𝜎𝑧, while the bath is in thermal equilibrium
described by the canonical ensemble:

𝑝𝑎 = 1
𝑍𝑒

−𝛽𝐸𝑎 . (3)

Here 𝐸𝑎 denotes the energy eigenvalue of𝐻𝐸 in the state |𝑎⟩,
with levels density 𝜌(𝐸), and 𝑍 is the partition function. The
states |𝑎𝛼⟩, with |𝛼⟩ an eigenstate of 𝜎𝑧, form a complete set.
If, at time 𝑡 = 0, the interaction is switched on, we pose the
problem of calculating the probability 𝑃1󳨀→1(𝑡) that at time
𝑡 > 0 the system remains in the state |1⟩, regardless the state of
the bath, i.e., the problem of calculating the thermal average
of the survival probability,

⟨𝑃1󳨀→1 (𝑡)⟩𝛽 = ∑
𝑎,𝑎𝑖

𝑝𝑎𝑖 ⟨󵄨󵄨󵄨󵄨󵄨⟨1𝑎 󵄨󵄨󵄨󵄨󵄨𝑒−𝑖𝐻𝑡/ℏ󵄨󵄨󵄨󵄨󵄨 1𝑎𝑖⟩󵄨󵄨󵄨󵄨󵄨
2⟩ , (4)

where ⟨⋅ ⋅ ⋅ ⟩ stands for the ensemble average on the Gaussian
variables and ⟨⋅ ⋅ ⋅ ⟩𝛽 for the thermal average. Concerning
the Gaussian ensemble, it is worth mentioning that a wide
research on random matrix ensembles underwent a rapid
development leading to various modified versions, in par-
ticular the embedded ensembles (EE) generated by random
𝑘-body interactions, 𝑘 = 2 being the most important;

see [26, 27]. The statistical assumptions that we need in
our calculations below are completely characterized by (2)
and (12), which, according to [21], are compatible with
the postulates of matrix elements given by the two-body
random ensemble. Before we calculate these averages, we
write the time evolution operator 𝑒−𝑖𝐻𝑡/ℏ in the interaction
representation as

𝑒−𝑖𝐻𝑡/ℏ = 𝑒−𝑖𝐻𝑜𝑡/ℏ∑
𝑛

(− 𝑖ℏ)
𝑛 ∫𝑡
0
𝑉 (𝑡𝑛) 𝑑𝑡𝑛

⋅ ∫𝑡𝑛
0
𝑉 (𝑡𝑛−1) 𝑑𝑡𝑛−1 ⋅ ⋅ ⋅ ∫

𝑡3

0
𝑉(𝑡2) 𝑑𝑡2

⋅ ∫𝑡2
0
𝑉 (𝑡1) 𝑑𝑡1.

(5)

Here

𝑉(𝑡𝑗) = 𝑒𝑖𝐻𝑜𝑡𝑗/ℏ𝜎𝑥𝑉𝑒−𝑖𝐻𝑜𝑡𝑗/ℏ

= (𝜎𝑧 cos Δ 𝑜𝑡ℏ + 𝜎𝑦 sin Δ 𝑜𝑡ℏ ) 𝑒𝑖𝐻𝐸𝑡𝑗/ℏ𝑉𝑒−𝑖𝐻𝐸𝑡𝑗/ℏ
(6)

that can be written as

𝑉(𝑡𝑗) = (𝜎𝑧 cos Δ 𝑜𝑡𝑗ℏ + 𝜎𝑦 sin Δ 𝑜𝑡𝑗ℏ )
⋅ ∑
𝑎𝑏

⟨𝑎| 𝑒𝑖𝐻𝐸𝑡𝑗/ℏ𝑉𝑒−𝑖𝐻𝐸𝑡𝑗/ℏ |𝑏⟩ ⟨𝑏| ,

= (𝜎𝑧 cos Δ 𝑜𝑡𝑗ℏ + 𝜎𝑦 sin Δ 𝑜𝑡𝑗ℏ )
⋅ ∑
𝑎𝑏

𝑉𝑎𝑏𝑒(𝑖𝜀𝑎−𝜀𝑏)𝑡𝑗/ℏ |𝑎⟩ ⟨𝑏| .

(7)

To simplify the notation, from here onwards we will define
𝜀 = 𝐸/ℏ and 𝜔𝑜 = Δ 𝑜/ℏ. Using these quantities in (5), the
amplitude of the survival probability becomes

⟨1𝑎| 𝑒−𝑖𝐻𝑡 󵄨󵄨󵄨󵄨1𝑎𝑖⟩ = ⟨1𝑎| 𝑒−𝑖𝐻𝑜𝑡
∞

∑
𝑛=0

(−𝑖)𝑛 ∑
𝑏1 ,...,𝑏𝑛

󵄨󵄨󵄨󵄨𝑏𝑛⟩∫
𝑡

0
𝑑𝑡𝑛

⋅ (𝜎𝑧 cos𝜔𝑜𝑡𝑛 + 𝜎𝑦 sin𝜔𝑜𝑡𝑛)

⋅ 𝑉𝑏𝑛𝑏𝑛−1𝑒𝑖(𝜀𝑏𝑛−𝜀𝑏𝑛−1 )𝑡𝑛 ⋅ ⋅ ⋅ × ∫
𝑡3

0
𝑑𝑡2

⋅ (𝜎𝑧 cos𝜔𝑜𝑡2 + 𝜎𝑦 sin𝜔𝑜𝑡2)

⋅ 𝑉𝑏2𝑏1𝑒𝑖(𝜀𝑏2−𝜀𝑏1 )𝑡2 × ∫
𝑡2

0
𝑑𝑡1

⋅ (𝜎𝑧 cos𝜔𝑜𝑡1 + 𝜎𝑦 sin𝜔𝑜𝑡1)
⋅ 𝑉𝑏1𝑎𝑖𝑒𝑖(𝜀𝑏1−𝜀𝑎𝑖 )𝑡1 |1⟩ .

(8)
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This amplitude can straightforwardly be written as

⟨1𝑎| 𝑒−𝑖𝐻𝑡 󵄨󵄨󵄨󵄨1𝑎𝑖⟩ = 𝑒−𝑖𝐸𝑎𝑡
∞

∑
𝑛=0

(−𝑖)𝑛

⋅ ∑
𝑏1,...,𝑏𝑛−1

𝑉𝑎𝑏𝑛−1 ⋅ ⋅ ⋅ 𝑉𝑏2𝑏1𝑉𝑏1𝑎𝑖 ∫
𝑡

0
𝑑𝑡𝑛𝑒𝑖(𝜀𝑎−𝜀𝑏𝑛−1 )𝑡𝑛 ⋅ ⋅ ⋅

⋅ ∫𝑡3
0
𝑑𝑡2𝑒𝑖(𝜀𝑏2−𝜀𝑏1 )𝑡2 ∫

𝑡2

0
𝑑𝑡1𝑒𝑖(𝜀𝑏1−𝜀𝑎𝑖 )𝑡1 ⟨1|

⋅ 𝑒−𝑖(𝜔𝑜/2)𝜎𝑥𝑡 [|1⟩ cos𝜔𝑜 (𝑡𝑛 − 𝑡𝑛−1 + ⋅ ⋅ ⋅ − (−)𝑛 𝑡1)
+ |−1⟩ sin𝜔𝑜 (𝑡𝑛 − 𝑡𝑛−1 + ⋅ ⋅ ⋅ − (−)𝑛 𝑡1)] .

(9)

Therefore,

⟨|1𝑎| 𝑒−𝑖𝐻𝑡 󵄨󵄨󵄨󵄨1𝑎𝑖⟩󵄨󵄨󵄨󵄨󵄨
2 = 𝑃1󳨀→1 (𝑡) =

∞

∑
𝑚,𝑛=0

(−𝑖)𝑚 (𝑖)𝑛

⋅ ∑
𝑎,𝑏1,𝑏2,...,𝑏𝑛−1

∑
𝑏󸀠1 ,𝑏
󸀠
2 ,...,𝑏
󸀠
𝑚−1

𝑉𝑎𝑏𝑛−1 ⋅ ⋅ ⋅ 𝑉𝑏2𝑏1𝑉𝑏1𝑎𝑖𝑉𝑎𝑖𝑏󸀠1𝑉𝑏󸀠1𝑏󸀠2 ⋅ ⋅ ⋅ 𝑉𝑏󸀠𝑚−1𝑎

⋅ ∫𝑡
0
𝑑𝑡𝑛 ⋅ ⋅ ⋅ ∫

𝑡3

0
𝑑𝑡2 ∫

𝑡2

0
𝑑𝑡1 ∫

𝑡

0
𝑑𝑡󸀠𝑚 ⋅ ⋅ ⋅ ∫

𝑡󸀠3

0
𝑑𝑡󸀠2 ∫

𝑡󸀠2

0
𝑑𝑡󸀠1

⋅ 𝑒𝑖[(𝜀𝑎−𝜀𝑏𝑛−1 )𝑡𝑛+⋅⋅⋅+(𝜀𝑏2−𝜀𝑏1 )𝑡2+(𝜀𝑏1−𝜀𝑎𝑖 )𝑡1]𝑒−𝑖[(𝜀𝑎𝑖−𝜀𝑏󸀠1 )𝑡󸀠1+⋅⋅⋅+(𝜀𝑏󸀠𝑚−1−𝜀𝑎)𝑡󸀠𝑚]

⋅ cos𝜔𝑜 ( 𝑡2 − 𝑡𝑛 + ⋅ ⋅ ⋅ + (−1)
𝑛 𝑡1) cos𝜔𝑜

⋅ ( 𝑡2 − 𝑡
󸀠
𝑚 + ⋅ ⋅ ⋅ + (−1)𝑚 𝑡󸀠1) .

(10)

For the calculation of the ensemble average of the sur-
vival probability 𝑃1󳨀→1(𝑡), we follow the procedure and
the assumptions explained in detail in [17, 18, 21]. In the
calculation of the average

⟨𝑉𝑎𝑖𝑏1𝑉𝑏1𝑏2 ⋅ ⋅ ⋅ 𝑉𝑏𝑛−1𝑎𝑉𝑎𝑏󸀠𝑚−1 ⋅ ⋅ ⋅ 𝑉𝑏󸀠2𝑏󸀠1𝑉𝑏󸀠1𝑎𝑖⟩ , (11)

using the statistical assumptions given in (2), one has to take
into account that only the covariance of 𝑉𝑎𝑏 with itself or
with 𝑉𝑏𝑎 is nonzero. This property implies that the average
of a product factorizes into products of averages of pairs of
matrix elements, more specifically into a number of config-
urations, such as ⟨𝑉𝑎𝑖𝑏1𝑉𝑏1𝑏2⟩ ⋅ ⋅ ⋅ ⟨𝑉𝑏𝑛−1𝑎𝑉𝑎𝑏󸀠𝑚−1⟩ ⋅ ⋅ ⋅ ⟨𝑉𝑏󸀠2𝑏󸀠1𝑉𝑏󸀠1𝑎𝑖⟩.
The Lorentzian weight factor𝑊Δ 𝑎(𝜖𝑎 − 𝜖𝑏) in (2) is assumed
to have the property

𝑊Δ 𝑎 (𝜖𝑎 − 𝜖𝑏) ≈
{
{
{
1, 󵄨󵄨󵄨󵄨𝜖𝑎 − 𝜖𝑏󵄨󵄨󵄨󵄨 ≤ Δ (𝜖𝑤)
0, 󵄨󵄨󵄨󵄨𝜖𝑎 − 𝜖𝑏󵄨󵄨󵄨󵄨 > Δ (𝜖𝑤)

(12)

which, as mentioned above, restricts the scope of the interac-
tion𝑉 to connect eigenstates of𝐻𝐸 within the energy intervalΔ 𝑎 = Δ(𝜖𝑤) = Δ(𝜖𝑎𝑏). Here 𝜖𝑎𝑏 ≡ 𝜖𝑎 = (𝜖𝑎 + 𝜖𝑏)/2. The
quantity

𝑡𝑐𝑜𝑙𝑙 ∼ 1
Δ 𝑎 (13)

has time dimensions and as mentioned before is associated
with the collision time, the duration of one application of the
interaction 𝑉. We assume that Δ 𝑎 contains many band levels.
In the following we will write Δ for Δ 𝑎. If𝐷 is the mean level
spacing of the energy eigenvalues of𝐻𝐸, we will also assume
that the characteristic tunneling frequencies, which are of the
order of 𝜔𝑜, are much larger than 𝐷. Therefore, the times
involved in the calculation satisfy the inequalities

1
Δ ∼ 𝑡𝑐𝑜𝑙𝑙 ≪ 𝑡 ≪ 𝑡𝑃 ∼ 1

𝐷 (14)

where 𝑡𝑃 is the Poincarè recurrence time. Notice that, in the
same way as 𝜀 and 𝜔𝑜, the energies Δ, Δ 𝑎, and 𝐷 are in units
of ℏ. The assumptions in (14) are taken into account in the
calculation of the ensemble average of (10). In this calculation,
we meet with quantities like

∑
𝑏𝑗,𝑏𝑗−1

⟨𝑉𝑏𝑗+1𝑏𝑗𝑉𝑏𝑗𝑏𝑗−1⟩ 𝑒𝑖((𝜀𝑗+1−𝜀𝑗)𝑡𝑗+1+(𝜀𝑗−𝜀𝑗−1)𝑡𝑗) (15)

which become

∫∞
0
𝑑𝜀𝑗𝜌 (𝜀𝑗) V2 (𝜀𝑗)𝑊Δ𝑒𝑖(𝜀𝑗+1−𝜀𝑗)(𝑡𝑗+1−𝑡𝑗)

= V2 (𝜀𝑗) 𝜌 (𝜀𝑗) 𝑒−Δ|𝑡𝑗+1−𝑡𝑗|
(16)

where V2(𝜀𝑗), 𝜌(𝜀𝑗), and Δ are assumed to vary slowly with
the energy. Since the product of V2(𝜀) and 𝜌(𝜀) appear
systematically and the energies 𝜀𝑗 and 𝜀𝑗+1 vary almost
continuously along the bath spectrum, we define the density
𝜌𝜐(𝜀) = V2(𝜀)𝜌(𝜀), in units of (𝐸2/ℏ2)(ℏ/𝐸) = 1/s. The values
of𝑚 and 𝑛 that determine the terms (𝑚, 𝑛) of the sum in (10)
determine also the order of the contribution to the survival
probability, which is given by ] = (𝑚+𝑛)/2. For easy reference
we write the survival probability as

⟨𝑃1󳨀→1 (𝑡)⟩ =
∞

∑
𝑚,𝑛=0

⟨𝑃𝑚,𝑛1󳨀→1 (𝑡)⟩ =
∞

∑
]=0

⟨𝑃(])1󳨀→1 (𝑡)⟩ (17)

with

⟨𝑃𝑚,𝑛1󳨀→1 (𝑡)⟩ = (−𝑖)𝑚 (𝑖)𝑛 ∑
𝑎,𝑏1,𝑏2 ,...,𝑏𝑛−1

∑
𝑏󸀠1 ,𝑏
󸀠
2,...,𝑏
󸀠
𝑚−1

⟨𝑉𝑎𝑖𝑏1𝑉𝑏1𝑏2

⋅ ⋅ ⋅ 𝑉𝑏𝑛−1𝑎𝑉𝑎𝑏󸀠𝑚−1 ⋅ ⋅ ⋅ 𝑉𝑏󸀠2𝑏󸀠1𝑉𝑏󸀠1𝑎𝑖⟩∫
𝑡

0
𝑑𝑡𝑛 ⋅ ⋅ ⋅ ∫

𝑡3

0
𝑑𝑡2 ∫

𝑡2

0
𝑑𝑡1

⋅ ∫𝑡
0
𝑑𝑡󸀠𝑚 ⋅ ⋅ ⋅ ∫

𝑡󸀠3

0
𝑑𝑡󸀠2 ∫

𝑡󸀠2

0
𝑑𝑡󸀠1

⋅ 𝑒𝑖[(𝜀𝑎𝑖−𝜀𝑏1 )𝑡1+⋅⋅⋅+(𝜀𝑏𝑛−1−𝜀𝑎)𝑡𝑛]𝑒−𝑖[(𝜀𝑎𝑖−𝜀𝑏󸀠1 )𝑡󸀠1+⋅⋅⋅+(𝜀𝑏󸀠𝑚−1−𝜀𝑎)𝑡󸀠𝑚]

⋅ cos𝜔𝑜 ( 𝑡2 − 𝑡𝑛 + ⋅ ⋅ ⋅ − (−1)
𝑛 𝑡1) cos𝜔𝑜 ( 𝑡2 − 𝑡

󸀠
𝑚

+ ⋅ ⋅ ⋅ − (−1)𝑚 𝑡󸀠1)

(18)
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3. Time Evolution of the Survival Probability
and the Spin Polarization

In this section we present, in detail, results to zeroth and
first order of the interaction picture (IP) of the survival
probability described in previous section for a spin 1/2 system
interacting with amagnetic field in the Faraday configuration
and randomly with its environment. The second-order terms
of the survival probability are calculated, in detail, in the
appendix.

3.1. Survival and Spin Polarization to Zeroth Order of the IP.
The zeroth order contribution describes the time evolution
of the isolated spin 1/2 system in the Faraday geometry. This
contribution is given by the term ⟨𝑃0,01󳨀→1(𝑡)⟩ in (18). The
survival probability to zeroth order is then the well-known
quantity

⟨𝑃(0)1󳨀→1 (𝑡)⟩ = 1
2 +

1
2 cos𝜔𝑜𝑡. (19)

This means that the probability to find the isolated spin 1/2
system in the eigenstate | − 1⟩ of 𝜎𝑧, in the Faraday geometry,
is

⟨𝑃(0)1󳨀→−1 (𝑡)⟩ = 1 − ⟨𝑃(0)1󳨀→1 (𝑡)⟩ = 1
2 −

1
2 cos𝜔𝑜𝑡. (20)

Therefore, as expected, the spin polarization of the isolated
spin 1/2 system, is

⟨Π𝑧 (𝑡)⟩ = ⟨𝑃(0)1󳨀→−1 (𝑡)⟩ − ⟨𝑃(0)1󳨀→1 (𝑡)⟩ = cos𝜔𝑜𝑡. (21)

It is clear that, in this case, the thermal average is

⟨Π𝑧 (𝑡)⟩𝛽 = 1
𝑍∑𝑎𝑖 𝑝𝑎𝑖 ⟨Π𝑧 (𝑡)⟩ = cos𝜔𝑜𝑡. (22)

3.2. Survival and Spin Polarization to First Order of the IP. We
calculate now the survival probability and spin polarization
of the spin 1/2 system in the Faraday geometry, to first order
of the interaction picture. In this calculation, we use the
property

⟨𝑃(𝑛,𝑚)1󳨀→1 (𝑡)⟩ = ⟨𝑃(𝑚,𝑛)1󳨀→1 (𝑡)⟩∗ . (23)

For the first-order contribution, we need to evaluate
⟨𝑃0,21󳨀→1(𝑡)⟩, ⟨𝑃1,11󳨀→1(𝑡)⟩, and ⟨𝑃2,01󳨀→1(𝑡)⟩. The term 𝑃0,21󳨀→1⟨(𝑡)⟩ is
given by

⟨𝑃0,21󳨀→1 (𝑡)⟩ = (𝑖)2 ∫
𝑡

0
𝑑𝑡2 ∫

𝑡2

0
𝑑𝑡1∑

𝑎,𝑏1

⟨𝑉𝑎𝑖𝑏1𝑉𝑏1𝑎⟩

⋅ 𝑒𝑖[(𝜀𝑎𝑖−𝜀𝑏1 )𝑡1+(𝜀𝑏1−𝜀𝑎)𝑡2] cos𝜔𝑜 ( 𝑡2 − 𝑡2 + 𝑡1) cos𝜔𝑜
𝑡
2 ,

= −∫𝑡
0
𝑑𝑡2 ∫

𝑡2

0
𝑑𝑡1𝜌𝜐 (𝜀) 𝑒−Δ(𝑡2−𝑡1) cos𝜔𝑜

⋅ ( 𝑡2 − 𝑡2 + 𝑡1) cos𝜔𝑜
𝑡
2 .

(24)

Neglecting terms of order 1/Δ and smaller, we have

⟨𝑃0,21󳨀→1 (𝑡)⟩ = −𝜌𝜐 (𝜀) 𝑡Δ2
Δ2 + 𝜔2𝑜 cos

𝜔𝑜𝑡
2 . (25)

The term (1, 1) is given by

⟨𝑃1,11󳨀→1 (𝑡)⟩ = (−𝑖) (𝑖) ∫
𝑡

0
𝑑𝑡1 ∫

𝑡

0
𝑑𝑡󸀠1

⋅ ∑
𝑎

⟨𝑉𝑎𝑖𝑎𝑉𝑎𝑎𝑖⟩ 𝑒𝑖[(𝜀𝑎𝑖−𝜀𝑎)𝑡1]𝑒−𝑖[(𝜀𝑎𝑖−𝜀𝑎)𝑡
󸀠
1] cos𝜔𝑜

⋅ ( 𝑡2 − 𝑡1) cos𝜔𝑜 (
𝑡
2 − 𝑡

󸀠
1) .

(26)

To order 1/Δ we have

⟨𝑃1,11󳨀→1 (𝑡)⟩ = 𝜌𝜐 (𝜀) 𝑡Δ
2𝜔𝑜 + Δ2 sin𝜔𝑜𝑡
Δ2𝜔𝑜 + 𝜔3𝑜 . (27)

Taking into account these contributions and the zeroth-
order contribution ⟨𝑃(0)1󳨀→1(𝑡)⟩, we have, to first order of the
interaction picture and for Δ ≫ 𝜔𝑜, the survival probability

⟨𝑃(1)1󳨀→1 (𝑡)⟩ = 1
2 +

1
2 (1 − 2𝑡𝜌𝜐 (𝜀)) cos 𝑡𝜔𝑜

+ 𝜌𝜐 (𝜀)
𝜔𝑜 sin 𝑡𝜔𝑜,

(28)

and the spin polarization

⟨Π(1)𝑧 (𝑡)⟩ = (1 − 2𝑡𝜌𝜐 (𝜀)) cos 𝑡𝜔𝑜 + 2𝜌𝜐 (𝜀)
𝜔𝑜 sin 𝑡𝜔𝑜. (29)

These quantities depend on the level density 𝜌𝜐(𝜀) and,
through the frequency 𝜔𝑜, on the magnetic field. We show in
Figure 3 the time evolution of the survival probability (upper
panel) and of the spin polarization (lower panel), for two
values of the density of levels 𝜌𝜐(𝜀) each. For the blue curves
we considered 𝜌𝜐1(𝜀) = 2×108 s−1 while for the red curves we
have 𝜌𝜐2(𝜀) = 5 × 108 s−1. In all of these graphs, we consider
the frequency 𝜔𝑜 = 2.73556×1010 s−1. In Figure 4 we plot the
thermal averages

⟨𝑃(1)1󳨀→1 (𝑡)⟩𝛽 =
1
𝑍∑𝑎𝑖 𝑝𝑎𝑖 ⟨𝑃

(1)
1󳨀→1 (𝑡)⟩ (30)

and

⟨Π(1)𝑧 (𝑡)⟩
𝛽
= 1
𝑍∑𝑎𝑖 𝑝𝑎𝑖 ⟨Π

(1)
𝑧 (𝑡)⟩ , (31)

assuming that the density of levels 𝜌𝜐 is proportional to 𝜖𝑠.
The graphs are plotted for 𝑇 = 300K and for 𝑠 = 0.2, 𝑠 =
1 and 𝑠 = 1.5, which correspond to the subohmic, ohmic,
and superohmic dissipation forms, in the spin-boson model
[15].

In Figure 5, we have the thermal average of the spin
polarization calculated in [28, 29], and on top of it the thermal
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Figure 3: The survival probability (upper panel) and the spin polarization (lower panel) for two values of 𝜌𝜐(𝜀), in arbitrary units. The blue
curve corresponds to 𝜌𝜐1(𝜀) = 2 × 108s−1 and the red curve to 𝜌𝜐2(𝜀) = 5 × 108s−1. The frequency in both cases is 𝜔𝑜 = 2.73556 × 1010s−1.
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Figure 4: The thermal averages of the survival probability (upper panel) and the spin polarization (lower panel) assuming that the density
of levels 𝜌𝜐(𝜀) is ∝ 𝜀𝑠. The plots shown here are for the subohmic 𝑠 = 0.2, ohmic 𝑠 = 1 and superohmic 𝑠 = 1.5 dissipation forms and for
𝑇 = 300K.

average of the spin polarization in (31). For this graph we
considered 𝜌 = 109 × 𝜖𝑠s−1, with 𝑠=0.36 and 𝜔𝑜 = 2.58 ×
1010s−1.The agreement is good up to times of the order 500ps.
In the appendix we obtain the polarization

⟨Π(2)𝑧 (𝑡)⟩ = −𝑡2𝜌2𝜐 + (1 − 2𝑡𝜌𝜐 + 𝑡2𝜌2𝜐) cos 𝑡𝜔𝑜
+ 2 𝜌𝜐𝜔𝑜 (1 − 𝑡𝜌𝜐) sin 𝑡𝜔𝑜,

(32)

whose thermal average

⟨Π(2)𝑧 (𝑡)⟩
𝛽
= 1
𝑍∑𝑎𝑖 𝑝𝑎𝑖 ⟨Π

(2)
𝑧 (𝑡)⟩ , (33)

was plotted in Figure 1 on top of the spin polarization
calculated in [19]. Our calculation of the spin polarization
in Figure 1 was for 𝑇 = 300K, 𝜌 = 109 × 𝜖𝑠s−1, with
𝑠 = 0.28, and 𝜔𝑜 = 2.58 × 1010s−1. As mentioned before,
the agreement is rather good and strengthens the idea that
in complex systems some processes are insensitive to the
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Figure 5:The spin polarization calculated in Ref. [28] (gray circles) and our results (black curve), to first order of the interaction picture, for
level density 𝜌𝜐(𝜀) = 109𝜖𝑠, with 𝑠 = 0.36, and frequency 𝜔𝑜 = 2.73556 × 1010s−1. The gray circles graph published with author’s permission.
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Figure 6: The survival probabilities ⟨𝑃(1)1󳨀→1(𝑡)⟩𝛽 and ⟨𝑃(3)1󳨀→1(𝑡)⟩𝛽 at𝑡 = 1.2 × 10−9, 𝑇 = 300K and 𝜌 = 𝜖𝑠 × 109s−1, with 𝑠 = 0.2.

details of the interaction, and only few “gross properties”
are relevant and can be described by suitable statistical
models.

The analytical expressions of the survival probabilities
and spin polarizations reported here allow also exploring the
behavior of these quantities as functions of themagnetic field.
This is the purpose in the next section.

4. The Field Effect on the Spin Polarization

A great amount of experimental research has been published
to show the behavior of the spin polarization as function of
the magnetic field. Nevertheless, we shall present here the
behavior of the thermal averages of the survival probability
⟨𝑃(𝑛)1󳨀→1(𝑡)⟩𝛽 and the spin polarization ⟨Π(𝑛)𝑧 (𝑡)⟩𝛽, as functions
of the magnetic field and time.

In Figure 6 we plot the magnetic field behavior of the sur-
vival probabilities ⟨𝑃(1)1󳨀→1(𝑡)⟩𝛽 and ⟨𝑃(3)1󳨀→1(𝑡)⟩𝛽 as functions of
the magnetic field at 𝑡 = 1.210−9 and for level density 𝜌𝜐(𝜀) =109𝜖𝑠, with 𝑠 = 0.2. As expected, the survival probability tends
to a probability of 1/2 as the magnetic field increases.

In Figure 7 we show the spin polarization ⟨Π(1)𝑧 (𝑡)⟩𝛽 as
function of time and of the magnetic field for a level density
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Figure 7:The spin polarization ⟨Π𝑧(𝑡)⟩𝛽 as function of themagnetic
field and time for 𝑇 = 300K and 𝜌 = 𝜖𝑠 × 109s−1, with 𝑠 = 0.2.

𝜌𝜐(𝜀) = 109𝜖𝑠, with 𝑠 = 0.2. The oscillating behavior shown
in this graph is compatible with the previous results, not
only as function of time but also as function of the magnetic
field.

5. Conclusions

We presented here a simple model to study the behavior
of a two-level system interacting stochastically with its
environment in the presence of a magnetic field in the
Faraday configuration. We calculated the survival and spin
polarization to first and second order of the interaction
picture. We have shown the oscillating evolution of the
thermal average of these quantities as function of time and
the magnetic field, for different values of the temperature
and for the level density 𝜌(𝜖) ∝ 𝜖𝑠, in the subohmic,
ohmic, and superohmic dissipation forms. We have shown
that the spin polarization behavior agrees rather well with
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Figure 8: Two possible configurations for the pairing of matrix elements 𝑉𝑎𝑏 that contribute to the second order of the survival probability
⟨𝑃(2)1󳨀→1(𝑡)⟩.

the time evolution of the spin polarization observed and
calculated, recently, for the electron-nucleus dynamics of Ga
centers in dilute (Ga,N)As semiconductors. The calculation
of the higher order terms, in the interaction picture, is
ongoing and we hope to obtain more accurate results and
a better understanding of the oscillating behaviors reported
here.

Appendix

Survival Probability and Spin Polarization to
Second Order

For the second-order contribution, one has to evaluate the
following terms ⟨𝑃0,41󳨀→1(𝑡)⟩, ⟨𝑃1,31󳨀→1(𝑡)⟩, and ⟨𝑃2,21󳨀→1(𝑡)⟩. For
the term 𝑃0,41󳨀→1(𝑡)⟩ we have to evaluate

⟨𝑃0,41󳨀→1 (𝑡)⟩ = (𝑖)4 ∫
𝑡

0
𝑑𝑡4 ∫

𝑡4

0
𝑑𝑡3 ∫

𝑡3

0
𝑑𝑡2 ∫

𝑡2

0
𝑑𝑡1

⋅ ∑
𝑎,𝑏1,𝑏2 ,𝑏3

⟨𝑉𝑎𝑖𝑏1𝑉𝑏1𝑏2𝑉𝑏2𝑏3𝑉𝑏3𝑎⟩

⋅ 𝑒𝑖[(𝜀𝑎𝑖−𝜀𝑏1 )𝑡1+(𝜀𝑏1−𝜀𝑏2 )𝑡2+(𝜀𝑏2−𝜀𝑏3 )𝑡3+(𝜀𝑏3−𝜀𝑎)𝑡4] cos𝜔𝑜
⋅ ( 𝑡2 − 𝑡4 + 𝑡3 − 𝑡2 + 𝑡1) cos𝜔𝑜

𝑡
2 ,

(A.1)

with ensemble average

⟨𝑃0,41󳨀→1 (𝑡)⟩ = ∫
𝑡

0
𝑑𝑡4 ∫

𝑡4

0
𝑑𝑡3 ∫

𝑡3

0
𝑑𝑡2 ∫

𝑡2

0
𝑑𝑡1𝜌2𝜐 (𝜀)

⋅ 𝑒−Δ(𝑡4−𝑡3)𝑒−Δ(𝑡2−𝑡1) cos𝜔𝑜
⋅ ( 𝑡2 − 𝑡4 + 𝑡3 − 𝑡2 + 𝑡1) cos𝜔𝑜

𝑡
2 .

(A.2)

For the term ⟨𝑃1,31󳨀→1(𝑡)⟩, there are two possible configurations
for the pairing of the matrix elements 𝑉𝑎𝑏 that contribute to
the same order in the leading order result. In Figure 8, we

show graphically these pairing in configurations A and𝐵.The
corresponding averages are

⟨𝑃1,31󳨀→1 (𝑡)⟩𝐴 = ∫
𝑡

0
𝑑𝑡3 ∫

𝑡3

0
𝑑𝑡2 ∫

𝑡2

0
𝑑𝑡1 ∫

𝑡

0
𝑑𝑡󸀠1𝜌2𝜐 (𝜀)

⋅ 𝑒−Δ|𝑡3−𝑡󸀠1|𝑒−Δ(𝑡2−𝑡1) cos𝜔𝑜 ( 𝑡2 − 𝑡3 + 𝑡2 − 𝑡1) cos𝜔𝑜

⋅ ( 𝑡2 − 𝑡
󸀠
1) ,

(A.3)

⟨𝑃1,31󳨀→1 (𝑡)⟩𝐵 = ∫
𝑡

0
𝑑𝑡3 ∫

𝑡3

0
𝑑𝑡2 ∫

𝑡2

0
𝑑𝑡1 ∫

𝑡

0
𝑑𝑡󸀠1𝜌2𝜐 (𝜀)

⋅ 𝑒−Δ|𝑡1−𝑡󸀠1|𝑒−Δ(𝑡3−𝑡2) cos𝜔𝑜 ( 𝑡2 − 𝑡3 + 𝑡2 − 𝑡1) cos𝜔𝑜

⋅ ( 𝑡2 − 𝑡
󸀠
1) .

(A.4)

Similarly, for the term ⟨𝑃2,21󳨀→1(𝑡)⟩, the pairing of the matrix
elements 𝑉𝑎𝑏 that contribute to the same order of the survival
probability are shown in Figure 9, in configurations 𝐴 and 𝐵.
The corresponding averages are

⟨𝑃1,31󳨀→1 (𝑡)⟩𝐴 = ∫
𝑡

0
𝑑𝑡2 ∫

𝑡2

0
𝑑𝑡1 ∫

𝑡

0
𝑑𝑡󸀠2 ∫

𝑡󸀠2

0
𝑑𝑡󸀠1𝜌2𝜐 (𝜀)

⋅ 𝑒−Δ(𝑡2−𝑡1𝑒−Δ(𝑡󸀠2−𝑡󸀠1) cos𝜔𝑜 ( 𝑡2 − 𝑡2 + 𝑡1) cos𝜔𝑜

⋅ ( 𝑡2 − 𝑡
󸀠
2 + 𝑡󸀠1) ,

(A.5)

⟨𝑃1,31󳨀→1 (𝑡)⟩𝐵 = ∫
𝑡

0
𝑑𝑡2 ∫

𝑡2

0
𝑑𝑡1 ∫

𝑡

0
𝑑𝑡󸀠2 ∫

𝑡󸀠2

0
𝑑𝑡󸀠1𝜌2𝜐 (𝜀)

⋅ 𝑒−Δ|𝑡2−𝑡󸀠2|𝑒−Δ|𝑡1−𝑡󸀠1| cos𝜔𝑜 ( 𝑡2 − 𝑡2 + 𝑡1) cos𝜔𝑜

⋅ ( 𝑡2 − 𝑡
󸀠
2 + 𝑡󸀠1) .

(A.6)
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Figure 9: Two possible configurations for the pairing of matrix elements 𝑉𝑎𝑏 that contribute to the second order of the survival probability
⟨𝑃(2)1󳨀→1(𝑡)⟩.

Neglecting terms of order 1/Δ and higher, adding the con-
tributions of all these terms and taking into account also the
first-order term ⟨𝑃(1)1󳨀→1(𝑡)⟩, we have

⟨𝑃(2)1󳨀→1 (𝑡)⟩ = 1
2 −

𝑡2𝜌2𝜐
2

+ 1
2 (1 − 2𝑡𝜌𝜐 + 𝑡

2𝜌2𝜐) cos 𝑡𝜔𝑜
+ 𝜌𝜐
𝜔𝑜 (1 − 𝑡𝜌𝜐) sin 𝑡𝜔𝑜.

(A.7)

Hence the probability that at time 𝑡 the particle is in the spin
state | − 1⟩ is

⟨𝑃(2)1󳨀→−1 (𝑡)⟩ = 1
2 +

𝑡2𝜌2𝜐
2

− 1
2 (1 − 2𝑡𝜌𝜐 + 𝑡

2𝜌2𝜐) cos 𝑡𝜔𝑜
− 𝜌𝜐
𝜔𝑜 (1 − 𝑡𝜌𝜐) sin 𝑡𝜔𝑜.

(A.8)

Therefore the polarization, to second order of the interaction
picture, is given by

⟨Π(2)𝑧 (𝑡)⟩ = −𝑡2𝜌2𝜐 + (1 − 2𝑡𝜌𝜐 + 𝑡2𝜌2𝜐) cos 𝑡𝜔𝑜
+ 2 𝜌𝜐𝜔𝑜 (1 − 𝑡𝜌𝜐) sin 𝑡𝜔𝑜.

(A.9)
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pulsado, Universidad Autónoma Metropolitana, Mexico City,
Mexico, 2018.

[29] J. C. Sandoval-Santana, “Electron-nuclear spin dynamics of Ga
centers in GaAsN dilute nitride semiconductors probed by
pump-probe spectroscopy,”The European Physical Journal Plus,
vol. 133, no. 122, 2018.

[30] M. Vyas and Th. H. Seligman, “Random matrix ensembles for
many-body quantum systems,”AIPConference Proceedings, vol.
1950, no. 1, 2017.



Hindawi
www.hindawi.com Volume 2018

 Active and Passive  
Electronic Components

Hindawi
www.hindawi.com Volume 2018

Shock and Vibration

Hindawi
www.hindawi.com Volume 2018

High Energy Physics
Advances in

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific 
World Journal

Volume 2018

Acoustics and Vibration
Advances in

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Advances in  
Condensed Matter Physics

Optics
International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Astronomy
Advances in

 Antennas and
Propagation

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 International Journal of

Geophysics

Advances in
Optical
Technologies

Hindawi
www.hindawi.com

Volume 2018

Applied Bionics  
and Biomechanics
Hindawi
www.hindawi.com Volume 2018

Advances in
OptoElectronics

Hindawi
www.hindawi.com

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Mathematical Physics
Advances in

Hindawi
www.hindawi.com Volume 2018

Chemistry
Advances in

Hindawi
www.hindawi.com Volume 2018

Journal of

Chemistry

Hindawi
www.hindawi.com Volume 2018

Advances in
Physical Chemistry

International Journal of

Rotating
Machinery

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

 Journal ofEngineering
Volume 2018

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ahep/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/acmp/
https://www.hindawi.com/journals/ijo/
https://www.hindawi.com/journals/aa/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijge/
https://www.hindawi.com/journals/aot/
https://www.hindawi.com/journals/abb/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/amp/
https://www.hindawi.com/journals/ac/
https://www.hindawi.com/journals/jchem/
https://www.hindawi.com/journals/apc/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/
https://www.hindawi.com/

