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In this study, we have successfully deposited n-type Cu2O triangular nanopyramids on Si by employing ion beam sputter
deposition with an Ar : O2 ratio of 9 :1 at a substrate temperature of 450°C. Scanning electron microscopy measurements showed
attractively triangular nanopyramids of ∼500 nm edge and height lengths. Both X-ray diffraction and Raman spectroscopy
characterizations showed the structures were single-phase polycrystalline Cu2O, and the room-temperature photoluminescence
investigation showed interestingly green and blue exciton luminescence emissions. All Mott—Schottky, linear sweep voltam-
metry, and photocurrent measurements indicated that the conductivity of the Cu2O pyramids is of n-type.

1. Introduction

Recently, cuprous oxide (Cu2O) nanostructures are drawing
great attention due to their smart optoelectronic character-
istics such as nontoxic, naturally abundant, inexpensive
market price, and high absorption coefficient. Cu2O nano-
structures have extensive applications in water splitting [1],
photosensing [2], electrode material for lithium-ion batteries
[3], photocatalysis [4], low-cost solar energy conversion [5],
etc. On the other hand, the use of Cu2O as an initial study
material to understand the basic principles is indispensable
since excitons in Cu2O were suggested as noble candidates for
understanding of Bose–Einstein condensation [6] because of
their unique combinational properties. However, there are
few reports on room-temperature exciton emission due to
optical quenching and domination of copper vacancy (VCu)
related luminescence. As a result, there is no sufficient in-
formation about room temperature (RT) excitons to explore
the optoelectronic applications of Cu2O comprehensively. To
overcome these problems, one possible way is to deposit
Cu2O with suppressed copper vacancies, and this leads to the
realization of n-type Cu2O since p-type conductivity is due to
the existence of copper vacancies.

So far, different methods such as chemical bath deposition,
solution-phase epitaxial growth, magnetron sputtering, and
electrodeposition [7–10] have been employed to deposit Cu2O

nanostructures with different shapes such as nanowires, nano-
rods, nanocubes, nanopyramids, and polyhedrons. However,
most of the methods utilize different precursors and surfactants
for control synthesis with relatively high oxygen flow rates. As a
result, most of themethods yield p-typeCu2O.'ere are only few
reports on the preparation of n-type Cu2O nanostructures using
physical methods with suppressed copper defect-related lumi-
nescence. In this paper,we report the growth and characterization
of novel n-type Cu2O triangular nanopyramids (TNPs) using ion
beam sputter deposition (IBSD), and the experimental results
show that attractively high structural quality n-type Cu2O TNPs
can be fabricated that exhibit RT green exciton photo-
luminescence (PL).

2. Experimental

A copper target was placed at 35mm downstream of the ion
source and a Si substrate was placed at 65mmupstream of the
copper target. Argon and oxygen gases were used as sputter
and reactive gases [11], respectively with a flow rate of 9 :1.
'e deposition was performed applying a discharging voltage
of 1 kV at a temperature of 450°C for 1.5 hours. Field emission
scanning electron microscopy (FE-SEM, JEOL JSM-6500F,
and 15 keV) was used to take images. X-ray diffraction (XRD)
was measured with a Bruker, D2 Phaser X-ray diffractometer
using the Cu Kα, radiation (λ� 0.15406 nm) in the θ–2θ
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range. Raman spectroscopy measurements were taken in a
PTT RAMaker micro-Raman system utilizing a green laser at
532 nmwith a power of 10mW.'e RT PLmeasurement was
taken at 300K using a 405 nm wavelength laser source with a
power of 5mW. 'e spectra were dispersed by a Triax 550
spectrometer and detected by a CCD detector cooled to
− 71K. Photo-electrochemical measurements were done by a
GamryG300 potentiostat with Ag/AgCl, Pt, and Cu2O sample

as reference, counter, and working electrodes, respectively,
using a customized electrochemical cell filled with 0.5M
K2SO4 electrolyte, employing xenon lamp for illumination.

3. Results and Discussion

Figures 1(a) and 1(b) denote the FE-SEM micrographs of
Cu2O TNP samples with different magnification values. 'e

Figure 1: FE-SEM micrographs of Cu2O TNPs.
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Figure 2: (a) XRD diffraction patterns (b) Raman spectra of Cu2O TNPs and (c) PL spectra of Cu2O TNPs.
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images indicate uniform, vertically aligned Cu2O TNPs with
an edge length of ∼500 nm, and the images exhibit smooth
morphologies. 'e cross-sectional view of the FE-SEM
micrograph (not presented) shows that the Cu2O TNPs are
on the top of a ∼180 nm thick Cu2O thin film, and the height
of the TNPs is ∼500 nm. 'is demonstrates that the growth
mechanism of the Cu2O TNPs is due to the Stranski–
Krastanov (SK) mode of growth.

Figure 2(a) demonstrates the XRD patterns of the Cu2O
TNP samples, and it shows all the diffraction peaks matched
with Cu2O phase (JCPDS #78-2076) and are indexed as the
(111), (200), (220), and (311) planes. As it can be seen from
Figure 2(a), the (111) peak is the largest compared with the
other peaks, and it shows the growth of the Cu2O TNPs is
along the (111) plane. 'e sample was further investigated
using Raman spectroscopy (Figure 2(b)). 'e measurement
shows all the peaks are the characteristic Raman peaks of
Cu2O [12–15], and the result is consistent with the XRD

measurements. Moreover, the strongly defined Ramanmode
at 219 cm− 1 proves the structural quality of the sample.

Photoluminescence (PL) characterization of Cu2O TNPs
was carried out at room temperature. Figure 2(c) demon-
strates the PL response of the Cu2O TNP sample at RT, and
the result shows a strong PL exciton emission of 2.451 eV.
'is strong PL band can be fitted into two Gaussian peaks:
the green exciton (2.3 eV) and blue exciton (2.451 eV) [16] of
Cu2O. Mostly, exciton emission of Cu2O is observed at low
temperature (∼5K), but this study clearly shows a promising
RT exciton emission. According to Ito et al., the green ex-
citon emission of cuprous oxide can be observed at 2.304 eV
at a temperature of 4.2 K, which is similar to our result
(2.3 eV) attributed due to transition from Γ+8 to Γ+6 . Fur-
thermore, the PL peak at 2.451 eV is closer to the blue lu-
minescence emission EoC(2.6 eV) observed during the
transition from Γ+8 to Γ

−
8 . 'e detection of these significantly

strong RT exciton emissions from the sample is a very
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Figure 3: (a) Mott–Schottky plot and (b) linear sweep voltammetry measurement of Cu2O TNPs.
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Figure 4: (a) − 0.3V and (b) 0.3V biased transient photocurrent graphs for Cu2O TNPs.
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encouraging result, and it has extensive potential applica-
tions in fabrication and engineering of photonic and op-
toelectronic devices working in the green and blue light
spectrum.

As shown from Figure 3(a), the value of slope of the
Mott–Schottky plot of the Cu2O TNPs is positive, dem-
onstrating a typical behavior of n-type conductivity with a
linear increase of C− 2 when the voltage becomes larger and
larger. Figure 3(b) shows the linear sweep voltammetry
measurement of the Cu2O TNP sample carried out in a
custom-built system, which includes a light source, an il-
lumination switch, and a three-electrode cell system to in-
vestigate the conduction type of the sample recorded in
0.5M of K2SO4 electrolyte. Figure 3(b) shows that as the
potential becomes negative, the anodic photocurrent drops.
On the other hand, as the voltage becomes positive, the
anodic photocurrent increases, which proves the nature of
n-type photoelectrodes.

Figure 4 designates the photocurrent response of Cu2O
TNPs under − 0.3 V (Figure 4(a)) and 0.3 V (Figure 4(b))
bias with respect to the Ag/AgCl reference electrode. 'e
figures show anodic photocurrent appeared dominantly
even though there is negligible catholic photocurrent
density (Figure 4(a)) when biased negatively compared
with the positively biased. 'e magnitude of the anodic
photocurrent for the positively biased (Figure 4(b)) one is
very huge, indicating that the carrier type is of n-type, and
the value of the photocurrent density (∼2.1mA/cm2) is
very huge and promising for the Cu2O semiconductor
material.

4. Conclusion

In this work, n-type Cu2O TNPs with high structural quality
and excellent optical properties have been grown success-
fully by IBSD with an Ar :O2 ratio of 9 :1 at a temperature of
450°C using metallic copper as a target. 'e FE-SEM in-
vestigation shows that Cu2O TNPs of edge length ∼500 nm
have been grown across the sample on the top of the Cu2O
thin film (TF), following the SK mode of growth. Both XRD
and Raman spectra measurements reveal with good agree-
ment that the sample is a single-phase Cu2O. Strong exciton
PL bands observed at 2.3 eV and 2.45 eV attributed from
green exciton and blue PL emissions. In this study, the
observation of the exciton luminescence in the green and
blue regions of the spectrum of light is very useful for further
understanding of the optical properties of Cu2O nano-
structures and for the fabrication of optoelectronic dis-
playing devices working at RT using Cu2O TNPs. Besides,
the high structural quality and the n-type conductivity of the
sample ascertain that the grown pyramids are of novel
quality and can be used in low-dimensional semiconductor
researches and helpful to improve the efficiency of the solar
cell using Cu2O.
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