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Aiming at the low accuracy of large-pose face alignment, a cascade network based on truncated Alexnet is designed and
implemented in the paper.'e parallel convolution pooling layers are added for concatenating parallel results in the original deep
convolution neural network, which improves the accuracy of the output. Sending the intermediate parameter which is the result of
each iteration into CNN and iterating repeatedly to optimize the pose parameter in order to get more accurate results of face
alignment. To verify the effectiveness of this method, this paper tests on the AFLW and AFLW2000-3D datasets. Experiments on
datasets show that the normalized average error of this method is 5.00% and 5.27%. Compared with 3DDFA, which is a current
popular algorithm, the accuracy is improved by 0.60% and 0.15%, respectively.

1. Introduction

As an important research topic in the field of artificial in-
telligence and face recognition, face alignment has been
widely concerned by academia and industry. 'e core is to
use computing equipment to extract the semantics of pixels
in face images, which has a great theoretical research sig-
nificance and practical application value. In recent years, the
success of application by using deep learning has greatly
improved the accuracy of face alignment. However, there are
still many challenges and bottlenecks in the recognition
problem under the unrestricted conditions in the real scene,
among which the pose change as a factor that cannot be
ignored greatly affects the accuracy of face alignment.

At present, the mainstream face alignment methods can be
divided into two categories: 2D face alignment and 3D face
alignment. As the widely used 2D face alignment method,
Zhang et al. [1] proposed face marker detection based on deep
multitask learning in 2014, and Lee et al. [2] improved it by
using the Gaussian-guided regression network in 2019. 'en,
pearl to the fine shape retrieval method was proposed by Zhu
et al. [3]. In 2015, they have laid the foundation for face
alignment of small and medium attitude where the yaw angle is

less than 45° and all the landmarks are visible. 'e steps of 2D
face alignment can be roughly divided into face preprocessing,
shape initialization, shape prediction, and output.

Compared with the traditional 2D face alignment, 3D
face alignment mainly uses a subspace to model 3D face and
realizes fitting by minimizing the difference between image
andmodel appearance, whichmakes the model performance
more robust and accurate in unconstrained scenes. Of
course, there are several inherent defects in the 3D face
alignment method. 'e alignment results are similar with
the average model. 'ey are lack of personalized features. In
order to solve the problem, Yin et al. [4] proposed a 3D
deformation model for face recognition. However, each
image takes one minute, which takes too much time. Liu and
Jourabloo [5] fitted the 3D deformation model to 2D image,
with the aid of the sparse 3D point distribution model; the
model parameters and projection matrix are estimated by
cascade linear or nonlinear regression variables, which re-
alize alignment of human faces in any posture. However, the
effect of recovering face detail features is still not good.'en,
Liu and Jourabloo [6] used 3D face modeling to improve the
result of locating landmarks in large-pose face. But the
accuracy of alignment results is still limited by linear
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parameterized 3D models. Large-pose alignment methods
still need to be improved. Zhu et al. [7] improved the face
alignment performance across large poses and addressed all
the three challenges that traditional models need visible
landmark points which are not applicable to the side; large
poses will cause significant changes in face from front to side
and to locate invisible landmarks in large poses. 'e first one
has been properly solved by the 3D dense face model [8],
whereas the others still depend on the model accuracy but
only the method.'erefore, we need the model which will be
more accurate and reliable. As the solution, we propose a
cascaded convolutional neutral network- (CNN-) based
regression method. CNN has been proved of excellent ca-
pability to extract useful information from images with large
variations in object detection and image classification. And
on this basis, we designed a new cascade network structure
based on truncated Alexnet to improve the accuracy.

2. The Training of the Model

2.1. Feature Selection. Good features can make training
efficient and improve the accuracy of the model. In order to
get better features, we designed a new cascade network
structure based on truncated Alexnet.

2.1.1. Alexnet. Alexnet deepens the network structure based
on Lenet [9]. 'e structure of Lenet is shown in Figure 1.

'e structure of Alexnet is shown in Figure 2. 'e network
contains five convolution layers and three fully connected
layers. Compared with Lenet, Alexnet has a deeper network
structure and uses several parallel convolution layers and
pooling layers to extract image features. It also uses dropout and
data enhancement data augmentation to suppress over fitting.

2.1.2. Cascade Network Structure Based on Truncated
Alexnet. Based on the structure of Alexnet, this paper
constructs a new kind of truncated Alexnet. 'e structure is
shown in Figure 3. An additional parallel convolution
pooling layer is added to the original structure to form a
truncated Alexnet cascade network. 'e input image is
stacked with the iterated PNCC as input and then convo-
luted into the network in parallel. 'e parallel results are
stacked together to form a full connection layer.

2.1.3. Network Structure. 'e purpose of 3D face alignment
is to estimate the target from a single face image. Different
from the existing network, based on the cascaded network
structure of 3ddfa, we add a parallel pooling layer and a
concatenate step before the full connection layer. In general,
at iteration k (k� 0, 1, . . ., K), given an initial parameter pk,
we construct a specially designed feature PNCC with pk and
train a convolutional neutral network Netk to predict the
parameter update △pk:

Δpk
� Netk I, PNCC p

k
􏼐 􏼑􏼐 􏼑. (1)

Afterwards, a better medium parameter pk+1 � pk + Δpkk

becomes the input of the next network Netk+1 has the same

structure as Netk. 'e input is the 100×100× 3 color image
stacked by PNCC. 'e network contains eight convolution
layers, seven pooling layers, and two fully connected layers.
'e first two convolution layers share weights to extract low-
level features. 'e last three convolution layers do not share
weights to extract location sensitive features, which is further
regressed to a 256-dimensional feature vector. 'e output is a
234-dimensional parameter update including 6-dimensional
pose parameters (f, pitch, yaw, roll, t2dx, and t2dy), 199-di-
mensional shape parameters αid, and 29-dimensional ex-
pression parameters αexp.

2.1.4. PNCC. 'e special structure of the cascaded CNN has
three requirements of its input feature. First, the feedback
property requires that the input feature should depend on
the CNN output to enable the cascade manner. Second, the
convergence property requires that the input feature should
reflect the fitting accuracy to make the cascade converge
after some iterations. Finally, the convolvable property re-
quires that the convolution on the input feature shouldmake
sense. Based on the three properties, we design our features
as follows: first, the 3Dmean face is normalized to 0-1 in x, y,
and z axis as given in the following equation. 'e unique 3D
coordinate of each vertex is called its normalized coordinate
code (NCC).

NCCd �
S − min(S)

max(S) − min(S)
, (d � x, y, z), (2)

where the S is the mean shape of 3DMM in equation 4. Since
NCC has three channels as RGB, we also show the mean face
with NCC as its texture. Second, with a model parameter p,
we adopt the Z-buffer to render the projected 3D face
colored by NCC as in the following equation:

PNCC � Z − buffer V3d(p ), NCC( 􏼁,

V3d(p ) � f∗R∗ S + t2d, 0􏼂 􏼃
T
,

Z − buffer (v, t),

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(3)

where Z − buffer (v, t) renders an image from the 3Dmesh v

colored by t, and V3d(p) is the current 3D face. Afterwards,
PNCC is stacked with the input image and transferred to
CNN. Projected normalized coordinate code (PNCC) is
shown in Figure 4.

2.2. 3DMM. Blanz and Basso [10] proposed the 3D
morphable model (3DMM) which describes the 3D face
space with PCA, and it is widely used in face alignment field
[11–13]. 3DMM is shown in the following equation:

S � S + Aidαid + Aexpαexp, (4)

where S is a 3D face, S is the mean shape, Aid is the principle
axes trained on the 3D face scans with neutral expression
and αid is the shape parameter, and Aexp is the principle axes
trained on the offsets between expression scans and neutral
scans and αexp is the expression parameter. In this work, the
Aid and Aexp come from the Basel Face Model (BFM) and
Face-Warehouse [14], respectively. 'e 3D face is then
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Figure 1: 'e network structure of Lenet.
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Figure 2: 'e network structure of traditional Alexnet.
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Figure 3: Cascade network structure based on truncated Alexnet.
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Figure 4: PNCC.

Table 1: 'e main features of image dataset.

Dataset Size Pose Annot. Synt.
300-W 4000 [−45°, 45°] 2D N
300W-LP-2D 61225 [−90°, 90°] 2D Y
300W-LP-3D 61225 [−90°, 90°] 3D N
AFLW2000-3D 2000 [−90°, 90°] 3D N
300-VW 218595 [−45°, 45°] 3D N

Table 2: Face alignment algorithm results comparison.

Method
AFLW dataset (21 pts) AFLW2000-3D dataset (68 pts)

[0°, 30°] [30°, 60°] [60°, 90°] Mean [0°, 30°] [30°, 60°] [60°, 90°] Mean
LBF 6.24 8.38 14.37 9.66 6.17 16.48 25.9 16.19
ESR 5.66 7.12 11.94 8.24 4.38 10.47 20.31 11.72
CFSS 3.78 7.57 12.53 7.96 3.44 10.9 24.72 13.02
RCPR 5.43 6.58 11.53 7.85 4.16 9.88 22.58 12.21
SDM 4.75 5.55 9.34 6.55 3.56 7.08 17.48 9.37
RMFA 5.21 5.11 7.16 5.83 4.96 8.44 13.93 9.11
3DDFA 5.00 5.06 6.74 5.60 3.78 4.54 7.93 5.42
Ours 4.43 4.65 5.92 5.00 3.61 4.52 7.07 5.27
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Figure 5: Comparisons of cumulative errors distribution (CED) curves on AFLW2000-3D.
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Figure 6: Comparisons of cumulative errors distribution (CED) curves on AFLW2000.

(a) (b) (c)

Figure 7: [0°, 30°], small-pose face alignment results.

(a) (b) (c)

Figure 8: [30°, 60°], medium-pose face alignment results.
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(a) (b) (c)

Figure 9: [60°, 90°], large-pose face alignment results.
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projected onto the image plane with weak perspective
projection.

V(p) � f∗ Pr∗R∗ S + t2d, (5)

where V(p) is the model construction and projection
function, leading to the 2D positions of model vertexes, f is
the scale factor, Pr is the orthographic projection matrix
1 0 0
0 1 0􏼠 􏼡, R is the rotation matrix constructed from ro-

tation angles pitch, yaw, and roll, and t2d is the translation
vector. 'e collection of all the model parameters is P� [f,
pitch, yaw, roll, t2d, αid, αexp]T.

2.3. Loss Function. In this paper, the loss function is shown
in the following equation:

ω∗ � argmin􏽘
i

L yi, f xi;ω( 􏼁 + λΩ(ω)( 􏼁, (6)

where L(yi, f(xi;ω)) is used to measure the error between
the predicted value f(xi;ω) of the model for the ith sample
and the real label yi. As mentioned above, it is necessary to
minimize this value as much as possible to improve the
fitness between the model and the training set. 'e fitness is
not the final evaluation index, but the test error. 'erefore,
the regularization function Ω(ω) of parameter ω is intro-
duced to constrain the model, in order to avoid over fitting.
It is shown in the following equation:

Ω(ω) �
1
2
‖ω‖2. (7)

'e initial learning rate was 10−4, and the batch size was
8. After 15 complete cycle iterations, the learning rate was
reduced to 10−5. 'en, after 15 iterations, the learning rate
was reduced to 10−6. Totally, 40 iterations were carried out
for the whole training.

3. Discussion and Results

3.1. Evaluation Index. In this paper, normalized mean error
(NME) [15] is applied to measure the accuracy of face
alignment rather than the Euclidian distance; the reason is
that the Euclidian distance of the contour surface with small
eye distance is not accurate. NME is shown in the following
equation:

NME �
1
N

􏽘

N

k�1

||xk − yk||2

d
, (8)

where x denotes the ground truth landmarks for a given face,
y is the corresponding prediction, and d is the square root of
the ground truth bounding box, computed as d �

��
w

√
∗

��
h

√
.

3.2. Experimental Analysis. 'e input is single picture, and
the output results are face detection image, PNCC, and pose
estimation results. 'e results construct on 2.30GHZ CPU

and GTX1060. Table 1 shows the most popular image
datasets and their main features.

In order to verify the effect of the face alignment method
in large poses in this paper, experimental results are based on
Annotated Facial Landmarks in the Wild (AFLW). AFLW
face database is a dataset composed of face pictures in
various natural situations, and the landmarks are accurately
marked. 'e database is suitable for face recognition, face
detection, face alignment, and other research. Table 2 and
Figure 5 show the comparison of mainstream algorithms.
Among them, ESR [16] (explicit shape regression), SDM [17]
(supervised descent method), LBF [18] (local binary fea-
tures), CFSS [3] (coat to fine shape searching), RCPR [19]
(robust cascaded pose regression), RMFA [20] (restrictive
mean field approximation), and 3DDFA [21] are popular
methods based on cascade regression.

By comparing the experimental results in Table 2 and
Figures 5 and 6, it shows the accuracy of the results.
Compared with the 3DDFA algorithm as the main reference
object, the NME of AFLW2000 and AFLW2000-3D is re-
duced to 5.00% and 5.27%, respectively, which is better than
several popular faces alignment algorithm which shows the
effectiveness and accuracy of this method.'e output results
are shown from Figures 7–9. Among them, Figures 7(a),
8(a), and 9(a) are the results of landmark labeling.
Figures 7(b), 8(b), and 9(b) are PNCC. 'e cubes in
Figures 7(c), 8(c), and 9(c) are the pose estimation of the
current face. It shows that the algorithm in this paper has
good alignment result in each pose.

4. Conclusion

In this paper, a method of face alignment using cascade
unified network structure is proposed for large-pose face
alignment. By using the deep convolution neural network to
iterate repeatedly and using the iterative results to return the
face feature points, the face alignment in large-pose envi-
ronment is realized, and the result is improved by using
normalized mean error function to evaluate alignment ac-
curacy. 'e experimental results show that this method has
obvious advantages over the existing face alignment
methods in accuracy. However, it still needs to be improved
in the efficiency of the algorithm. At the same time, it is
difficult to achieve accurate face alignment in the presence of
external occlusion. 'ese problems need to be further
studied and discussed, which will be the focus of subsequent
research work.
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