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Single and mixed-halide perovskite solar cells have attracted much research attention in recent years due to the conditions of low-
cost thin flm solar cell technology. For this current research, perovskite materials CH3NH3PbCl3, CH3NH3PbI2Cl,
CH3NH3PbICl2, and CH3NH3PbI3 have been synthesized and deposited on clean glass substrates by spin coating process. Te
structural and morphological properties of the prepared thin flms have been studied by X-ray difraction and Scanning electron
microscopy. All the perovskite showed fne crystallinity, possessing a tetragonal phase.Te average crystallite sizes of the prepared
samples are obtained to be 20.77 nm, 30.18 nm, 31.11 nm, and 42.23 nm, respectively. Te lattice strain decreased with increasing
crystallite size. A drastic change was observed in the morphological properties of the perovskites. Te perovskite grains change
from microrods to microcube by substituting iodine with chlorine ions.

1. Introduction

Nowadays, organic-inorganic perovskite solar cells (PSCs)
based on organometallic halides are an emerging photovoltaic
technology. Perovskites are attractive, highly crystalline hybrids
because of their unity of organic and inorganic materials [1].
Tese hybrid perovskites take advantage of combining distinct
properties of inorganic and organic components within a single
molecular material [2, 3]. Compared with other solar cells,
PSCs have low production costs because of their simple
synthesis procedure, mainly solution-based process [4, 5], and
fabrication without any complexity by using spin coating
process [6, 7]. Lead-based perovskites, mainly CH3NH3PbI3
(MAPI3), are the most harvested material for PSCs [8, 9]. Te
MAPI3 material has a better excitation coefcient with ex-
cellent external quantum efciency until 800nmof wavelength,
and this material shows the highest efciency [10, 11].

Te general chemical formula of organometallic pe-
rovskite compound is ABX3, where A and B are organic
cation and divalent metal cation, respectively, and X is the
halogen anion [12].

PSCs were frst reported in 2009, achieving 3.81%
power conversion efciency (PCE). A breakthrough came
in 2012, Lee et al. obtained a PCE of 10.9% perovskite
mixed-halide CH3NH3PbI2Cl using a “mesoporous device
architecture.” By 2013, a simple planar heterojunction solar
cell combining vapor-deposited perovskite (MAPbI3-xClx)
as an absorbing layer was reported to have a PCE over 15%
[13] which proved that nanostructure is not required to
obtain high efciency. Tey used a perovskite absorber and
mesoporous TiO2 as n-type transporter materials. Tey
replaced mesoporous n-type TiO2 with Al2O3, acting as a
“scafold,” which improved the efciency, and the perov-
skite flm was 150 nm thick [14]. Although Pb is a toxic
element, Pb-based perovskite shows better performance in
various felds compared to other metal-based perovskites
[15–24]. Jeong et al. reported high-efciency PSCs with a
PCE of 17% by size-controlled growth of MAPI3 cuboids
[17]. Nei et al. synthesized a millimeter-sized grain of
MAPbI3–xClx perovskite via the spin coating method
resulting in a PCE of 18% [18]. Perovskite-based solar cells’
PCE achieved 19.3% using a planar geometry without an
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antirefective layer. Tey used the perovskite absorber
CH3NH3PbI3-XClX [19]. PCE up to 20.4% was reported in
2016 to achieve reproducible MAPI perovskite solar cells
through the grain boundary healing process [20].
According to the NREL chart, the efciency of Pb-based
perovskite solar cells recently reached 25.2% based on
single-junction architectures and 29.1% in silicon tandem
cells in 2020 [25]. Mo et al. synthesized Zirconia coated Pb-
based perovskite nanocrystals for light emitting diode
(LED) applications, which showed enhanced stability and
better luminescence [16]. Wang et al. a developed
CsPbBr3@Polymethyl methacrylate composite which
showed improved performance as X-ray scintillators [21].
Zhou et al. studied superalkali introduced perovskites’ solar
cell performance and obtained up to 22.83% PCE with
H5O2PbBr3 [23].

A material’s optical and electrical properties are heavily
infuenced by its crystal structure and surface morphology. A
material can have varied crystal shapes and phases
depending on the crystal development conditions. Doping,
heating, concentration variation, and other means can also
be used to alter the crystal structure and surface
morphology.

Here, Lead-based perovskite materials CH3NH3PbI3
(MAPI3), CH3NH3PbI2Cl (MAPI2Cl), CH3NH3PbICl2
(MAPICl2), and CH3NH3PbCl3 (MAPCl3) were synthesized
via one-step spin coating method. In this work, the syn-
thesized materials’ basic structural and morphological
properties are studied using X-ray difraction (XRD) and
scanning electron microscopy (SEM), respectively.

2. Experimental

2.1. Reagents. CH3NH2 (40%), HI (67% in H2O), HCl (32%
in H2O), lead (II) chloride (99%, Merck), and lead (II) iodide
(99%, Sigma–Aldrich).

2.2. Synthesis of thePerovskite Structures. Methylamine (MA,
CH3NH2) was reacted with Hydroiodic acid (HI) with a
molar ratio of 1 :1 to produce CH3NH3I. Similarly, CH3NH2
and HCl were reacted with a 1 :1 molar ratio to synthesize
CH3NH3Cl [26].

0.01 mole CH3NH3Cl and CH3NH3I were dissolved
separately into 10mL·N, N-dimethylformamide (DMF). An
Equimolar ratio of PbCl2 and PbI2 dissolved in DMF
containing CH3NH3Cl and CH3NH3I, respectively, to
produce CH3NH3PbCl3 and CH3NH3PbI3 precursor solu-
tion [27, 28]. Similarly, an equimolar ratio of PbCl2 and PbI2
were reacted with CH3NH3I and CH3NH3Cl, respectively, to
synthesize CH3NH3PbICl2 and CH3NH3PbI2Cl, respectively
[29, 30]. Figure 1 shows the prepared perovskite precursor
solutions.

Te precursor solutions of CH3NH3PbI3,
CH3NH3ClPbI2, CH3NH3IPbCl2, and CH3NH3PbCl3, were
spin coated on glass substrates at 1500 rpm for 30 sec
(Figure 2). Ten, deposited flms were annealed at 60° for 20
minutes.

2.3. Characterizations. Te structural properties were ob-
tained by X-ray difraction analysis via the GBC EMMA
difractometer. Surface morphology was studied by ZEISS
Evo18 SEM.

3. Results and Discussion

3.1. Structural Analysis. XRD pattern of MAPI3 (Figure 3)
satisfes previous research showing peaks at 2θ�14.48°,
28.72°, 32.19°, and 43.47° which correspond to (100), (200),
(210), and (211), respectively [12, 31]. MAPI2Cl depicts
peaks at 2θ �11.13°, 13.14°, 31.72°, 39.03°, 52.55° which
correlate to (100), (110), (211), (221), and (400) planes,
respectively. (001), (100), and (111) planes of MAPICl2
perovskites are identifed at 2θ�14.38°, 28.57°, and 43.54°,
respectively [24]. For MAPCl3, peaks are procured at
2θ �16.0°, 32.02°, 48.51° correlating to (002), (103), and (211)
planes, respectively [32, 33]. Higher 2θ values correspond to
decreasing interplanner spacing and increasing peak width
[34, 35].

Te lattice parameters of the prepared crystals were
calculated via “FullProf” software and listed in Table 1. It is
observed that all the synthesized perovskites possess a
tetragonal crystal phase with a variation in lattice pa-
rameters which is caused by the structural deformation due
to the variation of halide ion stoichiometry. Te alteration
of halide ions can generate residual stress in the lattice due
to the variation of X-site ion radius, which can vary the
lattice constants as well as the interplanar spacing of the
crystals. As a result, the variation of unit cell parameters is
observed.

Te grain size of synthesized materials has been calcu-
lated from the X-ray difraction pattern using the Debye–
Scherrer equation [36].

Crystallite size, L �
Kλ

β cos θ
, (1)

where β, λ, and K are full-width half-maxima (FWHM),
X-ray wavelength, and Scherrer constant (∼0.89),
respectively.

Te average crystallite sizes of MAPI3, MAPI2Cl,
MAPICl2, and MAPCl3 structures are listed in Table 2. Te
crystallite size is related to the dislocation density (δ) by the
following equation:

δ �
1
L
2. (2)

Which represents the number of dislocations per unit length
[12]. Since δmakes an inverse square relation with L, smaller
crystallite size possesses higher dislocations. Te crystallite
size and dislocation density suggest that the periodicity of
perovskites increases with decreasing iodine content and
increasing chlorine content.

Te lattice strain (ε) is a measure of deformation in the
crystal structure and can be obtained from the following
equation [12],
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ε �
β

4 tan θ
. (3)

Te strains of MAPI3, MAPI2Cl, MAPICl2, and
MAPCl3 are 0.0087, 0.0081, 0.0067, and 0.0043, respec-
tively. Te strain decreases with iodine reduction in the
perovskite structure (Figure 4). Te lattice strain can vary

due to the diference in diferent halide ionic radii and the
variation in the thermal expansion coefcient of the
substrate and deposited crystals [12, 37]. Te reduction of
lattice strain represents less deformation in the crystal
structure, which can ofer higher periodicity. As a result,
the crystallite size has increased with decreasing iodine
content.

(a) (b)

(c) (d)

Figure 1: Synthesized (a) CH3NH3PbI3, (b) CH3NH3ClPbI2, (c) CH3NH3IPbCl2, and (d) CH3NH3PbCl3 precursor solutions.
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3.2. Morphological Structure of Synthesized Perovskite Film.
Figure 5 shows the SEM image of MAPI3, MAPI2Cl,
MAPICl2, and MAPCl3 perovskites. Tese images con-
frmed the crystal formation of perovskite structure and

obtained microrod shape for MAPI3 and MAPI2Cl in
Figures 5(a) and 5(b), respectively. As observed in previous
reports, the dendrite growth of iodine halide perovskite
allows them to form in rods or wires [12, 38]. Te grain
structure changes drastically with decreasing iodine con-
tent and increasing chlorine in the perovskite. Te
microrods tend to break down with a decreasing iodine
concentration in the sample. Te breakdown of microrods
is observed in Figure 4(b), whereas Figure 5(c) shows the
growth of cuboid clusters. Finally, for MAPCl3 structure
(Figure 5(d)), cubic grains are observed, which satisfes
previous research [39]. Te average grain size of MAPI3,
MAPI2Cl, MAPICl2, and MAPCl3 are 2.81 µm, 3.98 µm,
7.12 µm, and 7.2 µm, respectively. Te structural defor-
mation arises due to the change in the ionic radius of the
X-site. Tis deformation can oppose the growth of
microrods in various directions, which may cause the
breakage of the rod structure into smaller cuboids. Al-
though all the images show a poor flm coverage, which can
afect the optical as well as electrical properties of the
materials. In order to improve the flm coverage, higher
DMF content can be used [40].
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Figure 2: Flowchart of the experimental process.
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Figure 3: XRD of diferent synthesized perovskite materials.

Table 1: Lattice parameters and volume for synthesized materials.

Synthesized materials
Lattice parameters (Å)

(α� β� c � 90°) Cell volume (Å3)
a b c

MAPI3 6.134 6.134 4.409 165.86
MAPI2Cl 13.509 13.509 3.335 362.14
MAPICl2 3.122 3.122 6.142 59.86
MAPCl3 4.254 4.254 11.103 200.93

Table 2: XRD peak positions, FWHM, average L, and δ of the
prepared crystals.

Material 2θ
(degree)

FWHM
(degree)

Average L
(nm) δ (nm)−2

MAPI3
14.47 0.345

20.77 0.002328.85 0.53
32.215 0.35

MAPI2Cl

11.01 0.21

30.18 0.0011
13.123 0.294
31.93 0.245
39.13 0.327
52.547 0.338

MAPICl2
14.38 0.26 31.11 0.001028.56 0.261

MAPCl3
16.029 0.171 42.23 0.000531.89 0.22
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Figure 4: Crystallite size and lattice strain of the synthesized crystals.
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Figure 5: SEM morphological structure of (a) MAPI3, (b) MAPI2Cl and (c) MAPICl2, (d) MAPCl3.
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4. Conclusions

Te MAPI3, MAPICl2, MAPICl2, and MAPCl3 perovskite
thin flms were successfully synthesized via the one-step spin
coating method.Te XRD analysis shows fne crystallinity of
all the perovskite with average grain sizes of 20.77 nm,
30.01 nm, 31.11 nm, and 40.23 nm, for MAPI3, MAPICl2,
MAPICl2, and MAPCl3 structures, respectively, signifying
that reduction of iodine and increase of chlorine content in
the halide ion site can increase crystal periodicity. All the
structures showed a tetragonal phase with a variation of
lattice parameters due to the lattice deformation. Te grain
shape also changes from rod to cube structure with the
alteration of halide ions. Te average grain diameter of
MAPI3, MAPI2Cl, MAPICl2, and MAPCl3 are 2.81 µm,
3.98 µm, 7.12 µm, and 7.2 µm, respectively. Tis article deals
only with the structural and morphological properties of the
perovskites. However, more characterizations (i.e., optical,
electrical, elemental, etc.) can be observed for these struc-
tures in future studies.
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