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80030-035 Curitiba, PR, Brazil

2 Civil Construction Department, Federal University of Paraná, 81531-990 Curitiba, PR, Brazil
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A method based on a specific power-law relationship between the hydraulic head and the Boltzmann variable, presented using
a similarity hypothesis, was recently generalized to a range of powers to satisfy the Bruce and Klute equation exactly. Here,
considerations are presented on the proposed similarity assumption, and new analytical support is given to estimate the water
density flux into and inside the soil, based on the concept of sorptivity and on Buckingham-Darcy’s law. Results show that the new
analytical solution satisfies both theories in the calculation of water density fluxes and is in agreement with experimental results
of water infiltrating horizontally into sand. However, the utility of this analysis still needs to be verified for a variety of different
textured soils having a diverse range of initial soil water contents.

1. Introduction

Based on physical laws of similarity applied to the rate of
work required for water to wet and move through a soil,
Prevedello et al. [1] presented an analytic solution of a
Boltzmann transformed equation of continuity for hori-
zontal infiltration which is derived without invoking the
concept or use of the soil water diffusivity function. The
derivation assumes that a similarity exists between the shapes
of the soil water retention function θ(h) and the Boltzmann
transformation λ2(θ), and the solution successfully described
soil water content profiles experimentally measured for
different infiltration times into a homogeneous sand. More
recently, an extension of this theory generalized the solution
to a range of powers to include the saturated zone [2], to
satisfy the Bruce and Klute equation exactly.

With a similar assumption, but not exactly as expressed
by Prevedello et al. [1], Prevedello et al. [3] obtained a
new analytic solution of the Richards equation for the
infiltration into the same sand that holds for all infiltration
times from zero to infinity, including vertical directions
without making use of empirical constants. In this case,

the derivation assumed that a similarity exists between the
soil water retention function θ(h) and the soil water content
distribution θ(z) within the soil profile during infiltration.

Although the similarity assumptions used by [1, 3] seem
different, we now show that the mathematical development
of both leads to the same equation for the description of the
soil water content profiles for horizontal infiltration. We also
present an analysis to obtain analytical equations to estimate
the water density flow into and inside the soil, according to
the sorptivity concept and the Buckingham-Darcy law. These
analytical equations are compared with experimental results
of horizontal infiltration into the same homogeneous marine
sand.

2. Theoretical Considerations

2.1. Extended Similarity Hypothesis λN . Two identical solu-
tions for the horizontal water infiltration into a soil were
presented by [1, 3], coincidently (39) in both papers, but
using two apparently different initial postulates. The expla-
nation for that is given by a generalization of the similarity
theory proposed in [1]. A generalization of the similarity
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between the Boltzmann transformation λ2(θ) and the soil
water retention function θ(h) can be written as follows:

λN
dθ

dλN
= h

dθ

dh
(1)

in which N is a positive integer, θ the soil water content
(m3m−3), and h the matric water potential head (m). With
(1) being the fundamental hypothetical equation, it follows
that

dλN

λN
= dh

h
(2)

or

ln λN = lnh + lnCN , (3)

and introducing the horizontal position coordinate x(m) and
the time (s), we have

λ = xt−1/2
m = C1/N

N h1/N ; (4)

note that tm = tmodel = (tmeasured)/N .
When tm = 1,

λ = x = C1/N
N h1/N . (5)

From (2) it follows that

dh

dx
= Nh

x
, (6)

∂h
∂x
= Nhx=x

x
. (7)

Substituting (7) into the Buckingham-Darcy equation
written in the x-direction in terms of the soil hydraulic
conductivity K as a function of θ, we have

qm = −K(θ)
⌊
Nhx=x
x

⌋
, (8)

where the subscript m refers to the model hypothesis of (4).
Knowing (8), changing the variables so that the dependent
variable becomes the distance x, and remembering that x =
f (θ, t) = constant because the partial derivative of θ is taken
with respect to t, we have

∂x

∂tm
= − ∂

∂θ

⌊
K(θ)

Nhx=x
x

⌋
, (9)

which leads to

∂x
∂tm

= NK(θ)hx=x
x2

∂x
∂θ
− NK(θ)

x
∂hx=x
∂θ

− Nhx=x
x

∂K(θ)
∂θ

.

(10)

For a fixed time, based on (7), and multiplying by Δθ · Δtm,
we have

x
∂x

∂t
ΔtmΔθ = (1−N)K(θ)

∂h

∂θ
ΔθΔtm −Nhx=x ∂K

(θ)
∂θ

ΔθΔtm

(11)

or

xΔxΔθ = (1−N)K(θ)ΔhΔtm −Nhx=xΔKΔtm. (12)

Holding h constant and integrating, the above equation
becomes

∫ x
0
xdx

∫ θ0

θi
dθ = −Nhx=x

∫ K0

Ki
dθ
∫ tm

0
dt. (13)

Evaluating at tm = 1 when x = λ,

∫ λ
0
ξdξ

∫ θ0

θi
dθ = −Nhx=x

∫ K0

Ki
dK

∫ 1

0
dt,

λ2

2
(θ0 − θi) = −Nhx=x(K0 − Ki),

λ2 = −2N(K0 − Ki)hx=x
(θ0 − θi)

.

(14)

Recalling (3) in the form of

λ2 = (CNh)2/N (15)

and equating the two above equations that define λ2, we have

(CNh)2/N = −2N(K0 − Ki)hx=x
(θ0 − θi)

. (16)

Returning to (4), we know that

x = (CNh)1/N t1/2m . (17)

Substituting CN into the above equation, we obtain

x =
(−2(K0 − Ki)hx=xNtm

(θ0 − θi)
)1/2

. (18)

Recalling that Ntmodel = tmeasured , the solution is

x =
√
−2(K0 − Ki)hx=xtmeasured

(θ0 − θi)
. (19)

For the cases in which the soil is initially very dry (i.e.,
Ki = 0), the above equation reduces to

x =
√
−2K0hx=xtmeasured

(θ0 − θi)
, (20)

which is (39) presented in [1, 3].
From (5) we have

λ = C1/N
N h1/N or λN = CNh. (21)

According to (21), the generalized solution of λN is

λN = hN/2−1
(−2N(K0 −Ki)

(θ0 − θi)
)N/2

· h. (22)

But the fundamental hypothesis that gave rise to (22) is

dλN

dh
= λN

h
. (23)
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The derivative of (22) with respect to h is

dλN

dh
= hN/2−1N2N/2(−N(K0 − Ki)/(θ0 − θi))N/2

2
. (24)

Dividing (22) by h,

λN

h
= hN/2−12N/2

(−N(K0 − Ki)
(θ0 − θi)

)N/2
. (25)

Equating (24) and (25), since both follow the postulate,
the result is N = 2. This shows that any value of N different
from 2 cannot be accepted in this theory of similarity, as
originally postulated and confirmed in [1], since it is with the
square root of the time that the advancement of the wetting
front remains linear in the process of horizontal infiltration.

2.2. Explanation Notes. Considering N = 2 [or λ2(θ)] and
since x2

x=x/(hx=xt) = β = constant, [1, equation (19)], for the
cases in which h = 0 at x = 0 and when the soil is initially
very dry (Ki = 0), can be written as

x2
x=x

hx=xt
= β = − 4K0

(θ0 − θi)
+

2K0

(θ0 − θi)
= − 2K0

(θ0 − θi)
. (26)

Therefore, we know that

β = − 2K0

(θ0 − θi)
, (27)

and we can write (26) as follows:

xx=x
βt

=
(

2hx=x
xx=x

− hx=x
xx=x

)
= hx=x
xx=x

(28)

which shows that the gradient ∂h/∂x = 2hx=x/xx=x for-
mulated as an initial postulate in [1] is simplified during
the theoretical development to h/x. This statement can also
be verified starting with (11). In this equation, holding h
constant and making Ntmodel = tmeasured, we can write

ΔxΔθ = −hx=x
x

ΔKΔtmeasured, (29)

where we can see that the initially formulated gradient Nh/x
becomes h/x. The integration of the equation above leads to
(22) in [1, 3].

The solution obtained by [3] for horizontal infiltration
case, although identical to that obtained by [1], presupposes
a relation of the type λN = CNh with N = 1, that is, ∂h/∂x =
hx=x/x or ln λ = lnhx=x + C or λ = Ch, and, therefore,
it cannot be taken as formal as that presented in [1]. As
explained above, this is due to the fact that independently
of the chosen value of N in the generalised similarity theory
here introduced, the gradient ∂h/∂x = Nhx=x/x of (7), as
initially postulated in [1], is always simplified during the
theoretical development from (Nhx=x)/x to hx=x/x, so that
the B-D equation is always converted to q = −K(θ)�hx=x/x�,
and that, therefore, leads to a final solution that is identical
to that obtained by [1].

In this way it is shown that the same soil water profile
x(θ), expressed by (22) in both papers [1, 3], can be obtained

from both similarity approaches, that is, λ2(θ) or x(θ) as
images of the soil water retention curve h(θ). However,
only λ2(θ) as an image of h(θ) translates formally what was
postulated into a solution, such as shown in [1] or in the
extended similarity hypothesis λN shown above, in which
only N = 2 carries out formally this postulate.

2.3. The Similarity Hypothesis and New Analytical Support on
the Estimation of Horizontal Infiltration. Since Prevedello et
al. [1] found a solution such that λ2 is proportional to h,
so that dh/dx is proportional to λ, it follows that for t > 0,
from the definition of λ, at x = 0 both dh/dx and λ are equal
to zero. At a first glance, one could assume that to have a
finite flux density q at x = 0, K should be infinite at θ = θs.
According to this interpretation, Barry et al. [2] introduced a
nonzero air-entry value ha (e.g., Haverkamp et al. [4]), such
that for h < ha, θ < θO the soil is unsaturated and saturated
for h ≥ ha, θ = θO and generalized the Prevedello et al.
[1] solution to a range of powers. We here use the original
interpretation of Prevedello et al. [1] to calculate the flux
density q at x = 0 and at x = x, without running into the
shortcomings mentioned above. From Phillip’s analysis, we
know that for the case of horizontal infiltration,

qx=0(t) = di

dt
= S

2t1/2
=
(
−K(θ)

∂h

∂x

)
x=0

= 1
2t1/2

∫ θO
θi
λ(θ)dθ.

(30)

If in (30) we substitute x by λt1/2 the Bruce and Klute
equation or (1) of Barry et al. [2] are obtained. There are
many analytical forms to prove the equality in (30). Here,
our option was to obtain an analytical expression for both
the members and to compare the results obtained for each
one. According to the similarity assumption proposed by [1]
we know that

S =
√
−2K0

θ0 − θi

∫ θ0

θi

√
hx=xdθ. (31)

From van Genuchten we know that

−hx=x = 1
α

((
θx=x − θr
θ0 − θr

)−1/m

− 1

)1/n

(32)

so that (31) becomes

S =
√

2K0

α(θ0 − θi)
∫ θ0

θi

((
θ0 − θr
θx=x − θr

)1/m

− 1

)1/2n

dθ, (33)

so that

qx=0(t) =
√

K0

2α(θ0 − θi)t

∫ θ0

θi

((
θ0 − θr
θx=x − θr

)1/m

− 1

)1/2n

dθ.

(34)

The water flux density can also be evaluated through the
Buckingham-Darcy law directly, using the Prevedello et al.
[1, 3] similarity assumption:

qx=0 = Ko
∂h
∂x
= Ko

hx=x
xx=x

= Ko
hx=x√

−2Kohx=xt/(θo − θi)
.

(35)
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But, according to the similarity assumption, each value of
hx=x of the wetting profile is associated to its position value
x = x. Therefore, hx=x/x does not represent directly the total
or representative matric gradient at the wetting front. In this
way, (35) should be interpreted as the water density flow that
enters at x = 0 in response to a “representative” gradient
that occurs at the wetting front. Thus, if hx=x is taken as the
average matric potential of all the active potentials, then we
can find analytically this representative matric potential, as
well as the position where it acts at the wetting front, applying
the similarity assumption. In this way, the previous equation
can be written as

qx=0 = Ko
∂h

∂x
= Ko

hx=x
xx=x

= Ko
hx=x√(

−2Kohx=xt
)
/(θo − θi)

,

(36)

where hx=x is the representative potential active at the wetting
front and xx=x the position where this potential acts, defined
by

√
−hx=x =

∫ θ0
θi

√
−hx=xdθ∫ θ0

θi dθ
(37)

or

−hx=x =
⎡
⎣ 1

(θ0 − θi)
√
α

∫ θ0

θi

((
θ0 − θi
θx=x − θi

)1/m

− 1

)1/2n

dθ

⎤
⎦

2

.

(38)

Notice that this interpretation provides a constant value
of h independent of time, and it follows that

x
(
hx=x , t

)
=
(
−2hx=xK0

(θ0 − θi)

)1/2

t1/2. (39)

From the soil surface, where the soil is saturated (K =
KO), the wetting front advances as a response to an average
matric potential h, and with a force h̄/x̄ (average matric
gradient),

qx=0(t) =
(
−KO h

x

)
x=0

(40)

which should yield the same results as (34).
The analytical equation to estimate water density flow

inside the soil can be determined simply by substituting KO
for K(θ) or K(h) into (40), because the average gradient
remains fixed, but inside the soil we have the soil water
content or matric potential for each position x:

qx=x(t) =
(
−K(hx=x)

h

x

)
x=x

. (41)

3. Material and Methods

To validate experimentally the equations proposed above to
quantify the water density into and inside the soil during

Table 1: Saturated hydraulic conductivity K0 and parameters a,
n, m, q0, and qr of the van Genuchten [6] model for the wetting
water retention curve of the marine sand and the coefficient of
determination r2.

K0 a n m θ0 θr r2

(m·s−1) (m−1) (m3·m−3) (m3·m−3)

0.0001583 4.1 17 0.9412 0.3870 0.0187 0.991

the horizontal infiltration process for homogeneous sand, we
used the same data presented in [1, 3].

The van Genuchten [6] model was used to describe the
soil water retention curve

h = −1
α

(
Θ−1/m − 1

)1/n
, Θ = θ − θr

θ0 − θr
, (42)

where α, n, θ0, θr (residual soil water content), and m(m =
1−1/n) are the classical parameters of the soil water retention
curve. Using a nonlinear regression program as the one
suggested by Boratto [5], (42) was fitted to experimental
values to obtain the independent parameters α, θ0, θr , n, and
m.

According to van Genuchten [6], introducing (42) into
the Mualem [7] theory, the function K(Θ) is obtained as

K(Θ) = Θ

1
2
[

1−
(

1−Θ1/m
)m]2

. (43)

Data for the saturated hydraulic conductivity and for
the parameters of the water retention curve for the marine
sand are presented in Table 1, as previously shown in [1, 3].
With a coefficient of determination greater than 0.99, the van
Genuchten [6] model provides an excellent representation of
the observed values.

4. Results and Discussion

4.1. The Water Density Flow into the Soil (x = 0), according to
Philip’s Concept of Sorptivity. From the boundary conditions
and the soil parameters (Table 1) and assuming the initial soil
water content equal to θi = 0.0187 m3·m−3, (34) reduces to

qx=0 = S

2t1/2
= 20, 7489184

t1/2
mm/min (44)

which is shown in Figure 1 as a function of time, according
to the analysis of Philip [8].

Measured soil water content profiles (Figure 5 of
Prevedello et al. [1]) were integrated with respect to distance
x for times t1, t2, and t3 equal to 15, 60, and 300 min, resulting
in 165, 330, and 732 mm, respectively. We also know that the
cumulative infiltration into the soil surface

is

i(t) =
∫ θ0

θi
x(θ, t)dθ = t1/2

∫ θ0

θi
λ(θ)dθ (45)

or

i(t) = St1/2, S =
∫ θ0

θi
λ(θ)dθ, (46)
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After Philip’s analysis
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Figure 1: Water density flow into the soil (x = 0) as a function of
the time for horizontal infiltration in homogeneous marine sand,
according to (34) or (44).

By integration
Analytical

20151050

Infiltration time (min)1/2

0

100

200

300

400

500

600

700

800

C
u

m
u

la
ti

ve
in

fi
lt

ra
ti

on
(m

m
)

Figure 2: Cumulative water infiltration analytically estimated from
(46) and observed data obtained integrating soil water profiles
presented in [1].

where S is the sorptivity.
In light of (46) and substituting the value S =

41.4978368 mm·(min)−1/2, we have i(15) = 160.7 mm,
i(60) = 321.44 mm, and i(300) = 718.76 mm, respectively,
which are very close to those estimated by integration of
experimental data and showed in Figure 2.

4.2. The Water Density Flow into the Soil (x = 0), According
to Buckingham-Darcy Law. To verify the analytical validity
of (40) to quantify the water density flow at x = 0, (38)
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Figure 3: The water density flow as a function of x inside the soil for
times t1, t2, and t3 equal to 15, 60, and 300 min (from up to down),
after (49a) or (49b).
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Figure 4: Matric gradient as a function of x inside the soil for times
t1, t2, and t3 equal to 15, 60, and 300 min (from down to up),
according to (50a) or (50b).

and (39) were evaluated, resulting, respectively, in h =
−0.246090924 m and x(hx=x , t) = 0.112674007 · t1/2. These
results show that the similarity theory proposed by [1], here
represented by (36) or (40), does not imply in a water flux
density zero at x = 0. Substituting these values and KO =
0.0095 m/min into (40), we obtain

qx=0 = 20.7489184
t1/2

mm/min (47)

which is exactly the same value obtained in the calculation
through Philip’s concept for sorptivity (44) and what
therefore also adjusts very well with the experimental results
showed in the Figure 2.

Another apparently analogous way to obtain the results
of (47) above is to consider the derivative ∂h/∂x from (20),
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that is, ∂h/∂x = −(((θ0 − θi) · x)/K0t). But according to the
similarity theory proposed in [1, 3], the value of hx=x is a
constant for each position x at which it is only dependent on
the time t of advancement, and the derivative of a constant
is null. The same restriction is applicable to the Green and
Ampt theory [9] when we want to obtain the matric gradient
through derivative of hwf (the pressure head at the wetting
front) with respect to x because hwf is always a constant
independent of x. So, the derivative of h with respect to x
cannot be used here, except if associated to the concept of
the similarity, and as exposed previously in item b above, we
know that the matric gradient ∂h/∂x = 2hx=x/xx=x is reduced
to hx=x/xx=x , and therefore we can also write (40) as

qx=0(t) =
(
−KO h

x

)
x=0

=
(
− (θ0 − θi) · x

2t

)
. (48)

Comparing (30) with (48), we know that K(θ) = 0 for
h < h, K(θ) = Ko for h < h ≤ 0, and hx=x = h for h ≤ 0.
It is now readily apparent from the above analysis that the
distribution of K(θ) was substituted by the constant Ko in
(48) to determine the water flow density at x = 0 in response

to the force that occurs at distance
⇀
x where hx=x = h. Inside

of the soil the values of K(θx=x) or K(hx=x) are consistent
with the values of θ(hx=x) found from the values of hx=x in
(39) of Prevedello et al. [1, 3] because (39) provides the shape
of the soil water content profile at the wetting profile while
the average gradient h/x remains active on the time.

Equation (48) with values of θ from Table 1 and
x(hx=x , t) = 0.112674007 · t1/2 also yields values very close
to the experimental results (Figure 2) and exactly the same
results obtained in the calculation through Philip’s concept
for sorptivity (44).

4.3. The Density of Flow inside of the Soil, for Any Position and
Time. Considering the boundary conditions of soil water
content varying between 0.0187 and 0.387 m3·m−3, to use
(41) we first estimate the corresponding matric potentials for
any θ stipulated between 0.0187 and 0.387 m3·m−3, to obtain
their respective positions from (20) and their respective
K(hx=x) values from (43).

Through (41) we generate the water density flow for each
position inside the soil, that is,

qx=x(t) =
(
−K(hx=x)

−0.246090924
0.112674007

)
x=x

1
t1/2

. (49a)

Analogously as before in (48), the water density flow
inside the soil can also be determined through the following:

qx=x(t) =
(
−K(hx=x)

(θ0 − θi)x
2K0t

)
x=x

(49b)

in which x(hx=x , t) = 0.112674007 · t1/2, and the values of K0

and θ are showed in the Table 1.
Both (49a) and (49b) yield exactly the same values, and

Figure 3 shows the water density flow estimated from those
equations for each x reached at 15, 60 and 300 minutes of the
horizontal infiltration into the homogeneous marine sand.

It can be noted that for x = 0 the water density flow
values coincide with those obtained from (44), (47), or (48),
as it should be.

From the above, it follows that

∂h

∂x
= h

x
=
(−0.246090924

0.112674007

)
1
t1/2

, (50a)

or

∂h

∂x
=
(
− (θ0 − θi)x

2K0t

)
=
(
− (θ0 − θi)0.112674007

2K0

)
1
t1/2

,

(50b)

indicating that the gradient decreases with the time,
shown in Figure 4 for times of 15, 60, and 300 minutes.

To verify how accurate these estimated results are, the
same boundary value problem was solved numerically from
Richard’s equation without any similarity assumption, using
the procedure of Philip [10] with appropriate initial and
boundary conditions and using the measured soil water
properties shown in Section 3 (calculations based on Δθ =
0.0008 m3·m−3). Results showed that both water density
flows at x = 0 and inside the soil were very similar in the
transmission zone and wetting front for each of the three
chosen times of horizontal infiltration. However, the utility
of this analysis still needs to be verified for a variety of
different textured soils having a diverse range of initial soil
water contents.

5. Conclusion

The new analytical supports to estimate the water density
into and inside of the soil during horizontal infiltration agree
with the experimental results, with the concept of sorptivity
proposed by Philip [8] as well as the Buckingham-Darcy law,
when a “representative” matric gradient is considered acting
at the wetting front.
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