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A digital soil mapping approach is applied to a complex, mountainous terrain in the Ecuadorian Andes. Relief features are derived
from a digital elevation model and used as predictors for topsoil texture classes sand, silt, and clay. The performance of three
statistical learning methods is compared: linear regression, random forest, and stochastic gradient boosting of regression trees. In
linear regression, a stepwise backward variable selection procedure is applied and overfitting is controlled by minimizing Mallow’s
Cp. For random forest and boosting, the effect of predictor selection and tuning procedures is assessed. 100-fold repetitions of
a 5-fold cross-validation of the selected modelling procedures are employed for validation, uncertainty assessment, and method
comparison. Absolute assessment of model performance is achieved by comparing the prediction error of the selected method
and the mean. Boosting performs best, providing predictions that are reliably better than the mean. The median reduction of the
root mean square error is around 5%. Elevation is the most important predictor. All models clearly distinguish ridges and slopes.
The predicted texture patterns are interpreted as result of catena sequences (eluviation of fine particles on slope shoulders) and
landslides (mixing up mineral soil horizons on slopes).

1. Introduction

The most prominent conceptual model for explaining and
interpreting the spatial distribution of soils is the funda-
mental equation of soil-forming factors, known from Jenny
[1]. This conceptualization points at five very generally
formulated factors influencing soil development: climate,
organisms, relief, parent material, and time. According to
the initial letters of these factors, the model is referred to as
“clorpt” model.

This model can thus be applied for predicting the spatial
development of soils as a function of one or several clorpt
factors, an approach that is referred to as digital soil mapping
(DSM). Within the scope of DSM, a considerable number
of studies that span a large range of theoretical and applied
goals, methodological approaches, prediction factors, and

data sources were conducted. McBratney et al. [2] review
67 studies in which soil classes and/or soil attributes were
spatially predicted and Grunwald [3] provides a multicriteria
characterization of 90 studies conducted no earlier than 2007
in Geoderma and Soil Science Society of America Journals
alone.

Among the factors of the clorpt model, Schaetzl and
Anderson [4] attribute the relief factor the highest explana-
tory power for short scale variability of soil. According to
them, this is due to it providing potential and kinetic energy
on water movement and thus conditioning the redistribution
of energy and matter. The same observation of the relief
having a large impact on soil patterns is also manifest in
the catena concept, originally defined by Milne [5] as the
sequence of soils between a hilltop and the adjacent valley
bottom.
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Figure 1: Research area with soil profile locations. Overlaid hillshading with light source from north (adapted from [17]).

This paper presents a methodology to compare linear
regression, random forest, and stochastic gradient boosting
of regression trees (subsequently referred to as boosting),
applied to predicting topsoil texture in a complex terrain
in the Ecuadorian Andes. Despite the large number of
studies and the importance of relief for soil development,
studies applying DSM to extensive, complex mountainous
terrains are scarce (e.g., [6, 7]). Whilst linear regression is a
commonplace method in a multitude of DSM applications,
boosting has not been applied as frequently. In fact, neither
McBratney et al. [2] nor Grunwald [3] review any application
of both boosted regression trees and random forest to the
same data. One study that employed both techniques is
Viscarra Rossel and Behrens [8] who predicted clay content,
SOC, and pH from remote sensing data.

2. Material and Methods

2.1. Research Area. The research area is located in the
“Reserva de Biósfera San Francisco” (RBSF) at around 3∘58S
and 79∘4W. It is situated on the eastern escarpment of
the southern Ecuadorian Andes, in the valley of the San
Francisco River. The area extends across 26 km2 and spans
the altitudinal range from 1800m to 3200m a.s.l. (Figure 1).

It is affected by the tropical trade wind regimewith strong
easterlies all over the year. Combined with the location at
the eastern Andean range, this results in >6000mm annual
precipitation, reaching its maximum intensity from April to
August. Westerly winds occur only in the somewhat drier
November [18]. The lower parts of the area (<2200m a.s.l.)
belong to the “tierra templada” with temperatures around
13–19∘C and relatively lower rainfall intensities. The upper
parts (>2200m) belong to the “tierra fria” with temperatures

around 6–13∘C and a maximum observed precipitation rate
of 36.2mmh−1 [18, 19].

The NNW-facing slopes of the valley up to the tree
line are mostly covered by evergreen broadleaved mountain
forests, followed by subpáramo shrubland above the tree
line. Homeier and Werner [20] estimate that the RBSF
harbours some 1500–1700 species of seed plants, or about
10% of the entire spermatophyte flora of Ecuador. A clear
differentiation can be observed between dense forests in the
ravines and more open crest woodlands [21]. Canopy height
rarely exceeds 20m and bigger trees are rare [22]. The forests
on the SSE facing slopes of the valley were largely converted
to pasture land 12–30 years ago [23].

The area is part of the Chiguinda unit of the Zamora
Series. Parent material is highly weathered and comprises
metasiltstones, siltstones, and quartzites, intermixed with
layers of phyllite and clay schists [24]. The area is rich in
sloping mires [17], thus leading to a prevalence of soils
with stagnic properties and thick organic horizons. These
were described as, for example, Humaquepts [25] (according
to the USDA Soil Taxonomy [26]) and as Histosols and
Stagnosols, associated with Umbrisols, Cambisols, Leptosols,
and Regosols [27] (according to theWorld Reference Base for
Soil Resources [28]).

2.2. Dataset. Transects were defined by Ließ et al. [27] to
cover a representative yet accessible selection of different
terrain forms. Along each of the transects, three plots were
selected in the field aiming at (1) equidistance from each
other, (2) coverage of full transect length, (3) coverage of
different terrain forms, and (4) suitability for pit construction
and soil sampling. 107 soil pits were excavated at the positions
displayed in Figure 1. Topsoil texture was determined by wet
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Table 1: Terrain parameter calculation with SAGA GIS software.

Parameter Module Reference Saga author/year
1 Elevation (El) Fill sinks [9] Wichmann 2003
2 Slope (𝛼) Slope, aspect, curvature [10] Conrad 2001
3 Aspect
4 Valley depth Relative heights and slope positions — Böhner and Conrad 2008
5 Wind Wind effect — Boehner and Ringeler 2008, Conrad 2011
6 CI Convergence index [11] Conrad 2003

7 Specific catchment
area Flow tracing/kinematic routing algorithm (KRA) [12] Conrad 2001

8 OFD Strahler order ≥5 [13] Olaya 2004
Overland flow distance to channel network [14] Conrad 2001 & 2011

9 SWI Saga wetness index [15] Böhner and Conrad 2001
10 LS factor Length of slope factor [16] Conrad 2003

sieving and pipette analysis according to Köhn [29]. Due
to some missing data, 99 samples entered the soil texture
models.

Spatial information on terrain parameters for the region-
alisation of the sampled point data was derived from a digital
elevationmodel (DEM)of 10m raster cell resolution provided
by the research unit’s database [30]. Ten terrain features were
selected for the set of initial predictors and calculatedwith the
terrain analysis modules of the open-source software SAGA
[31] (Table 1). Most of these terrain features or very similar
indices were already used for predicting responses related to
soil texture [32–36].

2.3. Supervised Learning Methods. Linear regression is very
simple, fast, and efficient. Therefore, it is commonly used in
many applications [8, 34, 35]. However, it follows assump-
tions such as linear relations between predictor and response
variables, normally distributed and independent data points,
and constant variance [37].

The properties of decision tree methods are almost
contrary to those of linear regression. They have to be
solved iteratively and approximately. But they are free of
the rigid assumptions, and they can accommodate all sorts
of variable scales, intervariable relations, and distributions.
Random forest decorrelates the individual trees and decreases
the prediction variance in comparison to simple regression
trees [33]. This method was repeatedly applied to DSM
[8, 38, 39]. Stochastic gradient boosting was developed by
Freund and Schapire [40] andmodified by Friedman [41, 42].
Additionally to the variance reduction already implemented
in random forest, boosting also reduces the bias of the
prediction [43]. It was praised as the “best off-the-shelf
classifier in the world” by Breiman [44]. Recent regression
applications to DSM were described by Viscarra Rossel and
Behrens [8] and classification applications by Grinand et al.
[45] and Lacoste et al. [46]. All modelling was done within
the 𝑅 software environment, version 2.14.1 [47].

2.3.1. Linear Regression. A stepwise backward variable selec-
tion was conducted (𝑅 package: leaps). The criterion for

selecting the final model and to prevent overfitting was mini-
mizing Mallows’s Cp [48]. Collinearity among the predictors
would violate the assumption of independent and identically
distributed data, inflate the variance of parameters, and bias
predictor selection. During the stepwise variable selection,
this error exacerbates as variables “wrongly” skipped would
change the trajectory of the subsequent selection decisions
[49]. Therefore, collinearity was checked with a correlation
analysis using Pearson’s correlation coefficient >0.7 as thresh-
old criterion for excluding predictors in accordance with
Dormann et al. [49].

Outliers were detected with fitted values versus standard-
ized residuals plots. Exclusion criterion was a standardized
residual that exceeds the 3-fold standard deviation. To check
for excessively influential data points, leverage versus stan-
dardized residuals plots were used. Leverage describes the
influence of observed values on the fitted values for the same
data points [50]. Cook’s Distance derives from a combination
of standardized residuals and the leverage of data points. It
measures the effect that deleting an observation has on the
prediction parameters of a model [51]. Exclusion criterion for
influential data points was Cook’s Distance exceeding 0.5.

The normality of the random component was checked
with 𝑞-𝑞 normal plots. The violation of independence
and identically distributed random components would bias
parameter estimates and increase the risk of type 𝐼 errors
(falsely rejecting the null hypothesis of no effect) [52]. This
assumption has got two facets. On the one hand, constant
standard deviation was checked by residuals versus fitted
values plots. On the other hand, spatial autocorrelation of the
residuals was checked by spatial plots of the residuals and
Moran’s 𝐼. Moran’s 𝐼 calculates the correlation of the data
points within certain distance classes. Similarly to Pearson’s
correlation coefficient, positive values indicate positive spatial
autocorrelation and vice versa, with values of zero indicating
no spatial autocorrelation [53]. For the largest distance
classes, Moran’s 𝐼 is large due to small sample size—for these
classesMoran’s 𝐼 cannot reliably detect spatial autocorrelation
and has thus to be discarded [49]. This analysis calculated
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Moran’s 𝐼 for distance classes of 250m and considered
absolute values >0.3 as indicator of autocorrelation. Spatial
autocorrelation plots and Moran’s 𝐼 were calculated with the
𝑅 package ncf.

2.3.2. Random Forest. Random forest repeatedly fits trees to
bootstrap samples of the predictor data of randomly selected
predictors and then averages the predictions [43]. Due to
the bootstrapping procedure, only a subset of the data is
used to fit every particular tree. For fitting the random
forest models, the 𝑅 package randomForest with a squared
error loss function was used. Random forest contains several
tuning parameters, some of which control internal random
processes: number of randomly selected predictors used to fit
each tree (“mtry”), minimum node size (“nodesize”), size of
the bootstrap sample (“sampsize”), and number of trees fitted
(“ntree”).

Despite these tuning parameters, it has been argued that
random forest does not need much tuning effort, because
decision tree methods are said to be robust, if not immune
against noise variables [37]. Therefore, many authors argue
that no predictor selection was required [38, 54]. However,
some predictors in the preliminary random forest models
were assigned negative importance scores. Secondly, it is
frequently said that random forest does not overfit [8, 38, 55,
56]. However, Hastie et al. [37] state that this conclusion was
misconceived. Indeed random forest would not overfit when
increasing ntree but would approach the expectation of the
prediction. Yet, they emphasize that the expectation of the
prediction can nevertheless overfit the data.

Therefore, several modelling procedures were employed
for comparison.

(1) Nopredictor selection andno tuning (𝑅default values
formtry, nodesize, and sampsize).

(2) Predictor selection, but no tuning. For predictor
selection, the𝑅 packageBorutawas employed. Boruta
compares the importance scores of original predictors
with the importance scores of their counter variables.
Boruta renders three importance classes of variables,
“confirmed,” “tentative” (decision algorithm noncon-
verging), and “rejected” [57]. All confirmed and tenta-
tive predictors were used.

(3) No predictor selection, but tuning of sampsize. Samp-
size was tuned by fitting 18 models with different
sampsizes (5, 10, . . . , 90) and choosing the parameter
value that renders the lowest prediction error.

(4) No predictor selection, but tuning of mtry. mtry
is suggested as a potentially sensitive parameter by
Breiman and Cutler [58] and thus is used for regular
tuning [38, 55, 56]. It was tuned by using the function
tuneRF.

The rank order of procedure complexity is thus (1) < (2)
= (3) = (4). Procedures (2) to (4) are of a similar level of
complexity, yet both are more complex than (1). Throughout
the analysis ntree has been set to 2000 in order tomake sure it
is large enough. As there are inherently stochastical processes

in building random forest models, each of these four fitting
procedures was conducted in 100-fold replication. A 5-fold
cross-validatedRMSEwas used as ameasure of the prediction
error.

Rather than testing the RMSE distributions for signif-
icant differences, it was decided to boxplot them and to
visually determine the superior fitting procedure according
to the following criteria: median and variance of the RMSE
distributions and complexity of the modelling procedure.
The following decision rule was applied to select the best
procedure: the model with the lowest median prediction error
was selected unless the upper hinge of its boxplot was worse
than the upper hinge of the boxplot of the model with the
second-lowest median prediction error. If there were several
procedures with lowest yet about equal median prediction
errors, the one with the better upper boxplot hinge was selected.
In case of both similar median prediction errors and similar
upper hinges, the model with the lower complexity rank was
selected.

2.3.3. Gradient Boosting. Boosting draws bootstrap samples
of the predictor data, fits a tree, and subtracts the prediction
from the original data. The trees are iteratively fitted to the
residuals and the predictions summed up [37]. Measures to
prevent overfitting are thus crucial because the sequential
nature of boosting (in contrast to merging models as in
random forest) allows trees to be added until the model is
completely overfitted [52].

The boosting models were fitted by using the code
published by Elith et al. [43], which is based on the pack-
age gbm. As in random forest there is a range of tuning
parameters: interaction depth determines the number of splits
in each tree and shrinkage reduces the contribution of each
individual tree to the final model.The smaller the latter is, the
lower the prediction risk and the more trees and calculation
time are required [37]. Ridgeway [59] recommends setting
shrinkage to 0.01–0.001. Elith et al. [43] recommend setting
it small enough to allow at least for 1000 trees. Hence, for
all procedures, shrinkage was set to the lower end of the
recommendations (0.001), as this parameter can apparently
not be set too low except for computational reasons. This
generally allowed for more than a thousand trees. The
subsampling rate determines the size of the bootstrap sample:
Elith et al. [43] recommend 0.5–0.75; the 𝑅 default is 0.75.
The number of trees (ntree) is more relevant than for random
forest, as gradient boosting overfits if ntree is excessive.
Hence, ntree has to be determined for each individual appli-
cation. However, the function gbm.step does so automatically.
Therefore, tuning ntree is of no concern in the subsequent
steps.

Regarding tuning of other parameters, Elith et al. [43]
provide data that tuning interaction depth and shrinkage
has some (yet for small datasets not much) effect on the
prediction error. Regarding variable selection, Elith et al.
[43] argue that, for small datasets in particular, redundant
predictors would degrade the prediction by increasing its
variance. Therefore, a scheme was developed to compare
several modelling procedures.
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(1) No variable selection and no tuning.
(2) The optimal model of procedure (1), but checked

whether variable selection with the function
gbm.simplify improves the prediction.

(3) The optimal model from procedure (2), but with a
subsampling rate of 0.5.

(4) The optimal model from procedure (2), but with an
interaction depth of 2.

The rank order of procedure complexity thus is (1) <
(2) < (3) = (4). The RMSE of a 5-fold cross-validation was
used to evaluate the runs. This scheme was run in 100-
fold repetition to account for the variation resulting from
the involved stochastic processes. The superior modelling
procedure was identified by the decision rule described for
random forests.

2.3.4. Model Comparison and Validation. In order to com-
pare model performance and to estimate modelling uncer-
tainty of the three applied methods, a 5-fold cross-validation
scheme was computed. The cross-validation covers the com-
plete modelling procedures selected in the previous sections,
including predictor selection. The cross-validation was con-
ducted in 100-fold repetition to account for the effect of
external (e.g., sample attribution to cross-validation groups)
and internal (e.g., bootstrapping) random events and to
derive ameasure of the variance of themodelling procedures.
Therefore, a root mean square error (RMSE) distribution of
the completemodelling procedurewas obtainedwhich covers
a large sample of random configurations. To allow absolute
judgement of model performance, the RMSE distribution of
the mean of the data was calculated by the same scheme.

Rather than assessing the model’s performance by using
common indicators such as the coefficient of determination
(𝑅2) or the Nash-Sutcliffe Model Efficiency [60], a graphical
approach was selected because of its higher information
content.Therefore, the RMSEdistributions resulting from the
100-fold repetitions of the cross-validation were box-plotted,
adding the boxplot parameters of the RMSE distribution
of the mean as baseline. The method rendering the most
useful predictions was determined by the same decision rule
that was used for determining the best modelling procedure,
exempting the complexity criterion, which does not apply
here.

2.4. Prediction. From the three modelled texture classes,
the one with the smallest reduction of the median RMSE
prediction error is dropped and the pertinent class is derived
as the difference between 100% and the sum of the remaining
two classes. Therefore, the three classes always add up to
100%, and no scaling or logit transformation is required.

3. Results and Discussion

3.1. Data Overview. The interquartile ranges clearly differen-
tiate the rather low clay contents 8.3–18.7% from the higher
sand contents 22.8–41.7% and the even higher silt contents
47.0–59.9% (Figure 2). Thus texture data showed that most
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Figure 2: Boxplots of soil texture.

analysed soils are rather loamy which is in accordance with
Schrumpf et al. [25].

3.2. Model Adaptation

3.2.1. Linear Regression. According to the minimal Mallow’s
Cp, the best performing models for sand (𝑆) and clay content
(𝐶) contained two predictors each, while silt (𝑆

𝑖
) was best

explained by three predictors. The full formulas of the
selected models are displayed in

𝑆 = −13.131 + 0.016 ⋅ EL + 0.616 ⋅ LS + Error,

𝑆
𝑖
= 96.729 − 0.008 ⋅ EL − 11.989 ⋅ 𝛼 − 2.744 ⋅ SWI + Error,

𝐶 = 37.945 − 0.009 ⋅ EL − 7.959 ⋅ 𝛼 + Error.
(1)

From calculated Pearson’s correlation coefficients of the
predictors none exceeded 0.7. Therefore, the models were
unbiased by collinearity and the assumption of indepen-
dent predictors was not violated. The residuals showed no
heteroscedasticity; the random components were normally
distributed and no outliers were determined. The maps of
the residuals (Figures 3(a)–3(c)) seem to show some spatial
autocorrelation. However, Moran’s 𝐼 (Figures 3(d)–3(f)) did
not exceed the threshold criterion of 0.3 for any of the
distance classes.

3.2.2. Random Forest. Figure 4 displays the prediction error
distributions of the four modelling procedures. Predictor
selection only had a slightly positive effect on the prediction
error distribution for silt content, without a marked increase
in the variance of the prediction error. Tuning reduced
the prediction error of the silt model even further. Despite
literature recommendations and the frequent use of mtry
as the main tuning parameter, the effect of tuning sampsize
was larger than of tuning mtry (Figure 4(b)). Regarding the
sand and clay models, predictor selection as well as tuning
impaired model performance (Figures 4(a) and 4(c)).
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Figure 3: Spatial distribution of residuals in % of the maximum absolute residual value (red = negative values, green = positive values, top)
and Moran’s 𝐼 (bottom). Models from linear regression for ((a) + (d)) sand content, ((b) + (e)) silt content, and ((c) + (f)) clay content.

In general, the impact of the variable selection and
the tuning steps was relatively small for all responses. The
application of the decision rule led to the selection of the
following modelling procedures: for sand and clay content,
modelling procedure (1) was selected; concerning silt content,
modelling procedure (3) was selected.

Figure 5 displays the maps of the residuals and Moran’s 𝐼
for the selected random forest models.The autocorrelation of
the residuals did not exceed Moran’s 𝐼 > 0.3.

3.2.3. Gradient Boosting. Figure 6 shows a comparison of
the cross-validated prediction error distributions of the four
boosting procedures.The improvement of the median RMSE
was rather small.The variance remained constant throughout
all four procedures but was relatively high in relation to
the small differences in median prediction error. Predictor
selection had a positive effect, whilst additional tuning did
rather not improve or even impaired the predictions.

The application of the decision rule led to the identifica-
tion of the following modelling procedures: for sand and silt
content procedure (2) was chosen; for clay content procedure
(4) was chosen. The selected procedures and the usage of
the full dataset to fit the final models resulted in 4050 trees

for sand content, 2250 trees for silt content, and 950 trees
for clay content. Hence, Elith et al.’s [43] recommendation to
set shrinkage low enough to allow for at least 1000 trees was
accounted for except in the case of clay that required slightly
less than 1000 trees, presumably due to the model allowing
first-order interactions. The maps of the residuals (Figures
7(a)–7(c)) andMoran’s 𝐼 (Figures 7(d)–7(f)) did not show any
autocorrelation.

3.3. Model Comparison and Validation. Figure 8 compares
the 5-fold cross-validated prediction error distributions of
the selected linear regression, random forest, and gradient
boosting models to the mean.

Linear regression predictions for sand and clay and ran-
dom forest predictions for clay were generally better than the
mean but still overlapped partly with the RMSE distributions
of the mean. The exception is the linear regression for silt,
which has been clearly overfitting. The boosting prediction
was the superior method according to the decision rule, was
in all responses better than the mean, and showed hardly
any overlap with its RMSE distributions except for silt, even
though absolute differences to the other methods remained
small. This contrasts with the finding of Viscarra Rossell
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Figure 4: Prediction error distributions as RMSE of the four random forest modelling procedures.
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Figure 5: Spatial distribution of residuals in % of the maximum absolute residual value (red = negative values, green = positive values, top)
and Moran’s 𝐼 (bottom). Models from random forest for ((a) + (d)) sand content, ((b) + (e)) silt content, and ((c) + (f)) clay content.

and Behrens [8] who reported boosting to perform worse
than random forest in predicting soil properties from remote
sensing data. However, the median reduction of the cross-
validated RMSE of the boosting procedures compared to the
mean was only 5%.

3.4. Prediction. The boosting models were used to predict
the response variable for the full extent of the DEM. The silt

model was dropped as it provides the smallest reduction of
the median RMSE prediction error. Instead, the silt content
was derived as the difference between 100% and the sum of
the sand and the clay prediction for each cell. Maps of the
three soil texture classes are displayed in Figures 9(a)–9(c).
Despite relying on different predictors, two effects can be
detected visually, on the one hand elevation dependencies (a
finding was also stated byWilcke et al. [61] and Ließ et al. [7])
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Figure 6: Cross-validated prediction error distributions as RMSE of the four boosting procedures.
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Figure 7: Spatial distribution of residuals in % of the maximum absolute residual value (red = negative values, green = positive values, top)
and Moran’s 𝐼 (bottom). Models from gradient boosting for ((a) + (d)) sand content, ((b) + (e)) silt content, and ((c) + (f)) clay content.

and on the other hand clear differentiations between ridges
and hillslopes.

Marginal dependence plots of the predictors selected by
the boosting procedure (Figure 9(d)) help to specify the pre-
dicted patterns. While keeping all other predictors constant
the sand content rises stepwise with elevation from 30 to 43%,
which is clearly visible in the map (Figure 9(a)). However,
the ridges did not comply with this simple description; their
sand content was lower than of surrounding sites, despite
their higher altitude. From a valley depth of 0 to 30m, sand
contents show a steep rise before settling around 38% for

deeper valley structures. North and northeast exposed hill-
slopes show higher sand contents than all other expositions,
38% compared to about 33%.

The relation between clay content and elevation
(Figure 9(e)) is opposite to that between sand content and
elevation as can be also observed in themap (Figure 9(c)). For
low to medium inclinations, clay contents are predicted with
ca. 15% and sharply drop to ca. 13% for medium to high incli-
nations (Figure 9(e)).The effect of slope resulted in increased
predicted clay contents for the platform-like areas of low
inclination along the ridges.The combination of the effects of
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Figure 8: 5-fold cross-validated RMSE distributions of the selected modelling procedures. LM: linear regression; RF: random forest; BO:
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Figure 9: Soil texture maps predicted by gradient boosting with overlaid hillshading from north, (a) sand content, (b) silt content, and (c)
clay content and marginal dependence plots displaying the importance of predictors for the sand content (d) and the clay content (e).

these two predictors and their interaction resulted in overall
clay content predictions between 10% and 17%.

The conceptual model proposed by Simonson [62] con-
ceives soil development as a function of four classes of
processes: addition, removal, translocation, and transfor-
mation. In the case of relief-induced processes, particle
transformations and translocations are most obviously rele-
vant. Translocation processes according to Simonson’s [62]
classification have strong ties to the concept of soil catenas,
perceiving the relief as driver for soil development by causing
the redistribution of energy and matter along a slope [4].
Accordingly, the longer the slope length is, the more the
colluvium tends to accumulate [4]. This process explains the
overall pattern of increasing sand and decreasing clay con-
tent with elevation. The positive correlation of precipitation
intensity and elevation [18] as well as Bauer’s [63] conclusion

that considerable amounts of precipitation are translocated
by shallow subsurface water flow further strengthen this
finding. The low predicted sand contents on ridges stand in
contrast to this explanation. However, Ruhe [64] presented
a modified catena sequence of five slope elements in which
summit positions experience minimal erosion or accretion
andmostly chemical weathering, thus not suffering from clay
removal and actually being rich in fine-grainedmaterial.This
extension of the catena model fits quite well to the predicted
patterns.

Furthermore, the frequency of landslides could also
contribute to coarser grain sizes on slopes compared to the
ridges, as they tend to leave the ridges unaffected, to originate
on the slope shoulders, bringing the lower horizons of the
backslope area to daylight and mixing the horizons in the
downslope area. Another reason explaining the rather low
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clay contents at higher altitudes might be the predominating
sand stones of this area. However, Ließ et al. [7] checked the
influence of parent material on soil texture prediction. They
found that it is not a relevant predictor for topsoil texture,
most probably due to the small-scale variation in parent
material and the frequent translocation of soil material by
landslides [65].

4. Conclusions

The applied modelling design is useful, even though the
applied cross-validation does not allow generalizations to
other areas. Whilst all three methods performed similarly
in absolute terms, boosting showed superior performance
for all three response variables, predicting more precisely
than themean across almost all repetitions. Linear regression
performed well for sand and clay but overfitted the silt
response. It is thus recommended to test modified linear
regression modelling designs that include interactions and
use other indicators than Mallow’s Cp for model selection.
Random forest did not overfit the expectation of the data,
yet only the clay model exceeded the prediction performance
of the mean. However, even the variance explained by the
boosting model reduced the cross-validated RMSE of the
mean by only around 5%. Therefore, DSM applications in
tropical mountain areas remain a challenge, even within the
area used for model calibration, and it is recommended to
extend the suite of predictors to factors of soil development
other than relief features.

The most important predicted patterns were elevation
dependencies and contrasts between ridges and slopes. Top-
soil texture tended to be coarsest at high elevations, medium
at low elevations, and finest at ridges. The predicted texture
patterns can be interpreted as catena sequence, resulting from
down slope eluviation of fine grain sizes initiating at the
slope shoulder. According to this model the ridge areas were
left unaffected by such sorting processes due to a lack of
translocating water flow. Landslides are assumed to increase
grain size at slope sites due to mixing the mineral soil
horizons.
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