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Prime fuzzy ideals, prime fuzzy k-ideals, and prime fuzzy h-ideals are roped in one condition. It is shown that this way better
fuzzification is achieved. Other major results of the paper are: every fuzzy ideal (resp., k-ideal, h-ideal) is contained in a prime
fuzzy ideal (resp., k-ideal, h-ideal). Prime radicals and nil radicals of a fuzzy ideal are defined; their relationship is established. The
nil radical of a fuzzy k-ideal (resp., an h-ideal) is proved to be a fuzzy k-ideal (resp., h-ideal). The correspondence theorems for
different types of fuzzy ideals of hemirings are established. The concept of primary fuzzy ideal is introduced. Minimum imperative
for proper fuzzification is suggested and it is shown that the fuzzifications introduced in this paper are proper fuzzifications.

1. Introduction

This paper is, in some sense, an extended version of
the article “On Fuzzification of Prime Ideals with Special
Reference to Semirings” in SciTopics and something more.

Several attempts have been made to fuzzify the concepts
of prime ideals/k-ideals/h-ideals of a semiring [1–7], prime
ideals of a ring [8–15], and prime ideals of a semigroup
[16–18]. We have discussed elsewhere [6], in detail, the
deficiencies in the definition of a prime fuzzy h-ideal
proposed in [7]. The definition suffers from three major
drawbacks. First, it is very restrictive in the sense that the
fuzzy h-ideals, which are prime according to the definition,
are 2-valued function. Secondly, since one of the two values
is always 1 (the greatest element of the lattice), the function
is determined by only one value, thus, severely curtailing
its fuzziness. Third, when the zero element of the valuation
lattice is not a prime element (and this happens in many
important lattices), even the characteristic function of a
prime ideal fails to be a prime fuzzy ideal. The technique
adopted for the fuzzification by Zhan and Dudek in [7]
and by others in [1–3, 5] is identical. Therefore, their prime
fuzzy ideals inherit the same drawbacks. In [6] we have
redefined prime fuzzy left h-ideal so that these deficiencies
are completely removed. (It should be thankfully mentioned
that one of the referees of the present paper has pointed out
that in [4] two similar definitions of prime fuzzy ideal are
stated. However, while proving major results of the paper,

only 2-valued prime fuzzy ideals are used.) In this paper,
we show that the problem of fuzzification of left ideal,
left k-ideal, and left h-ideal need not be tackled separately.
One single condition governs all the three. We also “refine”
our definitions so that they look more compact, elegant,
and easy for application. We prove that every proper fuzzy
ideal (resp., k-ideal, h-ideal) is contained in a prime fuzzy
ideal (resp., k-ideal, h-ideal). We introduce the concepts of
fuzzy prime radical (or to be more precise, prime radical
of a fuzzy ideal) and fuzzy nil radical (or nil radical of a
fuzzy ideal), and fuzzy primary ideal. The prime and the nil
radicals of a fuzzy k-ideal coincide when the valuation lattice
is linearly ordered (e.g., when it is [0, 1]). An analogous
result holds for fuzzy h-ideals. We establish a correspondence
between fuzzy ideals (resp., k-ideals, h-ideals) of a hemiring
and those of its homomorphic image. The correspondence
preserves prime, semiprime, and primary fuzzy ideals/k-
ideals/h-ideals. Fuzzifications introduced in this paper can be
labeled as “proper fuzzifications”.

2. Preliminaries

2.1. Ideals of a Semiring. In the following discussion, (S, +, ·)
stands for a semiring. That is, (S, +) is a commutative
monoid having identity element 0 and (S, ·) is a semigroup
satisfying the following identities: a(b + c) = ab + ac, (a +
b)c = ac + bc, and 0 · x = 0 = x · 0. A commutative
semiring with unity is a semiring (S, +, ·) such that (S, ·) is
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a commutative monoid. We denote the identity element of
(S, ·) by 1. With abuse of notation, we denote (S, +, ·) by S.
A left ideal A of S is a nonempty set A which is closed under
the addition of S and is such that, for all x ∈ S and a ∈ A
we have xa ∈ A. A left ideal A of S is called a left k-ideal,
if for all x ∈ S, x + a ∈ A, and a ∈ A ⇒ x ∈ A. It is
called a left h-ideal, if for all x, z ∈ S, x + a + z = b + z,
and a, b ∈ A ⇒ x ∈ A. A right ideal (resp., k-ideal, h-ideal)
is similarly defined. Whenever a statement is made about left
ideals, it is to be understood that the analogous statement
is made about right ideals. An ideal is one, which is both
right and left ideal. A left ideal P is called prime left ideal,
if it satisfies the following conditions:

(i) P /= S and

(ii) for all left ideals A & B of S, we have

AB ⊆ P =⇒ either A ⊆ P or B ⊆ P. (I)

It is natural to call P a k-prime (resp., h-prime) left ideal, if
the condition (I) holds for left k-ideals (resp., h-ideals) A and
B.

Clearly, every prime left ideal is k-prime and every k-
prime left ideal is h-prime. However, as will be seen in
Example 1, the reverse implications, in general, are not true.

Example 1. (a) If S = {0,α,β, 1} is the Boolean lattice of four
elements, then 0 is not a k-prime ideal, as the condition (I)
fails for k-ideals A = {0,α} and B = {0,β}. However, S being
the only h-ideal of S, 0 is h-prime. Clearly, 0 is neither prime
nor an h-ideal.

(b) Consider the semiring S = {0, 1, 2, 3}, where the
binary operations ⊕ and ⊗ are defined as follows: a ⊕ b =
Min{a + b, 3} and a ⊗ b = Min{ab, 3}. One can easily see
that S has only three proper ideals, namely, 0, A = {0, 2, 3},
and B = {0, 3}. Since we have AA ⊆ B and A /⊆B, B is not
a prime ideal. However, 0 and S being the only k-ideals of
S, one can see that B is a k-prime ideal. Again, B is neither
prime nor a k-ideal.

We shall soon see that the concepts of primeness and k-
primeness (resp., h-primeness) coincide for k-ideals (resp.,
h-ideals).

Proposition 2 (see [5, 7]). If S is a semiring and A and B
are left ideals of S, then k(AB) = k(k(A)k(B)) and h(AB) =
h(h(A)h(B)), where k(A) and h(A), respectively, denote k-
closure and h-closure of A.

Using Proposition 2 we get the following.

Theorem 3. Let P be a proper left k-ideal (resp., h-ideal) of a
semiring S. The following statements are equivalent.

(a) P is prime.

(b) P is k-prime (resp., h-prime).

(c) For all a, b ∈ S, aSb ⊆ P implies a ∈ P or b ∈ P.

Proof. We prove the statement: “(b) implies (c)”, for h-ideals.
Suppose P is a proper h-prime left h-ideal such that

aSb ⊆ P for a, b ∈ S. Clearly, we have SaSb ⊆ P. Our

first claim is that for A = h(Sa) and B = h(Sb), where
h(I) stands for the h-closure of a left ideal I of S, we have
AB ⊆ P. Suppose we have x ∈ A and y ∈ B. Then for
some s, t,u, v, z, z′, in S, we have x + sa + z = ta + z
and y + ub + z′ = vb + z′ and, therefore, the equalities:
ay + aub + az′ = avb + az′, and xy + say + zy = tay + zy.
As aub and avb are elements of P and P is an h-ideal, ay
is in P. Therefore, say, tay and consequently, xy are in P.
It, then, follows that AB ⊆ P and, P being h-prime, we
have either A ⊆ P or B ⊆ P. Suppose A ⊆ P. If 〈a〉 is
the left ideal generated by a, then we have 〈a〉〈a〉 ⊆ Sa
and hence, h(〈a〉)h(〈a〉) ⊆ h(h(〈a〉)h(〈a〉)) = h(〈a〉〈a〉) ⊆
h(Sa) = A ⊆ P. Since P is h-prime, we have h(〈a〉) ⊆ P and
consequently, a ∈ P.

Using Zorn’s Lemma one can prove the following.

Theorem 4. Every proper ideal (resp., k-ideal, h-ideal) of a
commutative hemiring S with unity is contained in a prime
ideal (resp., k-ideal, h-ideal) of S.

Theorem 5. If T is a multiplicatively closed set in a commuta-
tive hemiring S with unity, disjoint from an ideal (resp., k-ideal,
h-ideal) I of S, then there exists a prime ideal (resp., k-ideal, h-
ideal) P of S such that I ⊆ P and P ∩ T = ∅.

2.2. Prime Ideals of N. In the hemiring N of nonnegative
integers, obviously, an ideal I is a k-ideal if and only if it is
an h-ideal. Moreover, I is a k-ideal if and only if I = nN for
some n ∈ N. The prime k-ideals of N are either pN where p
is a prime number in N or the zero ideal. For each prime p
the ideal pN is a maximal k-ideal [19]. Clearly, pN is not a
maximal ideal of N.

Proposition 6. Let p be a prime integer in N and P = N ∼
{1}. There is no prime ideal I of N such that pN ⊂ I ⊂ P.

Proof. We first prove that the proposition holds for p = 2.
Assuming the contrary, let I be a prime ideal such that 2N ⊂
I ⊂ P. Let x be the smallest element of I ∼ 2N. Then x = 2n+
1 for some positive integer n. Let J = {z ∈ N | z ≥ 2n}∪{0}.
Since 2, 2n and 2n + 1 are in I and I is closed under addition,
we have J ⊂ I. Clearly, if n = 1, then J = P. Therefore, we
have n /= 1 and x ≥ 5. Consider y = 3. For sufficiently large
value of s, we have ys is in J and hence, in I. Since I is a prime
ideal, we have y ∈ I. This contradicts the assumption that x
is the smallest element of I ∼ 2N. Therefore, I is not a prime
ideal.

Consider a prime integer p ≥ 3 and a prime ideal I such
that pN ⊂ I ⊂ P. Let x be the smallest element of I ∼ pN.
Then, x = pn + r for some n ∈ N and r = 1, 2, . . . , p − 1.
Consider x = pn + 1. Clearly, n /= 0 and thus, we have x ≥ 4.
Let J = {z ∈ N | z ≥ (p − 1)pn} ∪ {0}. Observe that for all
r = 1, 2, . . . , p− 1 we have (p− 1)pn+ r = (p− (r + 1))pn+
r(pn + 1). Therefore (p − 1)pn + r ∈ I . However, I contains
pN and therefore, J. Now set y = 2. Since we assume I to be
a prime ideal, we get y ∈ I ∼ pN. This contradicts the choice
of x as the smallest element in I ∼ pN. Therefore, x /= pn+ 1.
Consider x = pn+ r for 1 < r ≤ p− 1. Then, clearly, we have
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x ≥ 2. We claim that x /= 2. If x = 2, then 2N ⊆ I. Obviously,
we have 2N /⊂I. On the other hand, if 2N = I, then, we get
the absurd result that pN ⊆ 2N for p /= 2. Now set, as before,
y = 2 to get the contradiction to the assumption that x is the
smallest element of I ∼ pN and complete the proof.

Theorem 7. P = N ∼ {1} is the only prime ideal of N which
is not a k- ideal (resp., an h-ideal).

Proof. One easily observes that P is a prime ideal and is not
a k-deal. Let I be any other ideal of N, which is not a k-
ideal. Clearly, then, we have 0 ⊂ I ⊂ P. Therefore, there exist
x ∈ I such that 0 /= x /= 1. Let x = pα1

1 , . . . , pαnn be the prime
factorization of x. If I is prime, there is at least one prime
integer p in I. Therefore, we have pN ⊆ I ⊂ P. As I is not a k-
ideal we have pN /= I. On the other hand, by Proposition 6 we
cannot have a prime ideal I such that pN ⊂ I ⊂ P. Therefore,
I is not a prime ideal.

2.3. Fuzzy Ideals of a Semiring. Throughout this paper L
stands for a complete Heyting algebra, that is, a complete
lattice such that for all subsets T of L and all b ∈ L, ∨{a∧b |
a ∈ T} = (∨{a | a ∈ T}) ∧ b and ∧{a ∨ b | a ∈ T} =
(∧{a | a ∈ T}) ∨ b. An L-fuzzy subset (or simply an L-
fuzzy set) A of a set X is a function A : X → L; a fuzzy
set is an L-fuzzy set when L is the unit interval [0, 1]. If
α ∈ L, then the set {x ∈ X | A(x) ≥ α} is called α-level
cut or in short α-cut of A and is denoted by Aα. The strict
α-level cut of A is the set Aα+ = {x ∈ X | A(x) > α}. An
L-fuzzy left ideal J of S is an L-fuzzy set J : S → L such
that for all a, b ∈ S the following conditions are satisfied: (i)
J(a+b) ≥ J(a)∧ J(b), (ii)J(ab) ≥ J(b). An L-fuzzy left ideal J
of S is called an L-fuzzy left k-ideal, if the following condition
is satisfied: x + a = b ⇒ J(x) ≥ J(a)∧ J(b) for all x, a, b,∈ S.
It is an L-fuzzy left h-ideal, if x + a + z = b + z ⇒ J(x) ≥
J(a)∧ J(b) for all x, a, b, z ∈ S. An L-fuzzy right ideal (resp.,
k-ideal, h-ideal) is similarly defined. Whenever a statement is
made about L-fuzzy left ideals, it is to be understood that the
analogous statement is made about an L-fuzzy right ideals.
An L-fuzzy ideal is one, which is both L-fuzzy right and L-
fuzzy left ideal.

3. Prime Fuzzy Ideals

We defined L-fuzzy prime h-ideal in [6]. We extend the
definition to L-fuzzy ideals and k-ideals.

Definition 8. An L-fuzzy left ideal (resp., k-ideal, h-ideal) P of
S is called a prime L-fuzzy left ideal (resp., k-ideal, h-ideal), if
it is nonconstant and, for all a, b ∈ S and α ∈ L, the following
condition is satisfied:

P(asb) ≥ α, ∀s ∈ S =⇒ P(a) ≥ α or P(b) ≥ α. (1)

Proposition 9. A nonconstant L-fuzzy left ideal (resp., k-ideal,
h-ideal) P of S is prime if and only if its every nonempty level
cut of P is either a prime left ideal (resp., k-ideal, h-ideal) of S
or S itself.

Corollary 10. A left ideal (resp., k-ideal, h-ideal) P of S is
prime if and only if its characteristic function χP is an L-
fuzzy prime left ideal (resp., k-ideal, h-ideal) for every complete
Heyting algebra L.

Proposition 9 is proved for L-fuzzy left h-ideal in [6].
Let P be an L-fuzzy prime (two sided) ideal of S. Then

P(asb) ≥ P(a)∨P(b) for all s ∈ S and, therefore,∧{P(asb) |
s ∈ S} ≥ P(a)∨ P(b). On the other hand, for ∧{P(asb) | s ∈
S} = α, we have:

P(asb) ≥ α, ∀s ∈ S =⇒ P(a) ≥ α or P(b) ≥ α

=⇒ P(a)∨ P(b) ≥ α = ∧{P(asb) | s ∈ S}.
(2)

Therefore, ∧{P(asb) | s ∈ S} = P(a)∨ P(b).
Let, further, P(a) ≥ α. Then, P(a) ≥ α = ∧{P(asb) | s ∈

S} ≥ {P(a)∨ P(b)} ≥ P(b).
Thus, P(S) is totally ordered.
Conversely, let P(S) be totally ordered and ∧{P(asb) |

s ∈ S} = P(a)∨ P(b). Then,

P(asb) ≥ α, ∀s ∈ S =⇒ P(a)∨ P(b) = ∧{P(asb) | s ∈ S}
≥ α =⇒ P(a) ≥ α or P(b) ≥ α.

(3)

Therefore, P is a prime L-fuzzy ideal.
This leads to the following elegant characterizations of

prime fuzzy ideals.

Proposition 11. Let P be a nonconstant L-fuzzy ideal (resp.,
k- ideal, h- ideal) of S, and a, b ∈ S.

(1) P is prime if and only if ∧{P(asb) | s ∈ S} = P(a) ∨
P(b) and P(S) is totally ordered.

(2) Let S be commutative hemiring with unity. P is prime
if and only if P(ab) = P(a) ∨ P(b) and P(S) is totally
ordered.

(3) A nonconstant fuzzy ideal (resp., k- ideal, h- ideal)
P is prime if and only if Inf{P(asb) | s ∈ S} =
Max{P(a),P(b)}.

(4) Let S be commutative hemiring with unity. A noncon-
stant fuzzy ideal (resp., k- ideal, h- ideal) P is prime if
and only if P(ab) = Max{P(a),P(b)}.

The following example shows that the condition that
P(S) is totally ordered is necessary for P to be prime.

Example 12. Let L = {0,α,β, 1} be the Boolean algebra of
four elements. Consider the L-fuzzy ideal J : N → L defined
as follows:

J(x) = 1 if x ∈ 6N,

= α if x ∈ 2N ∼ 6N,

= β if x ∈ 3N ∼ 6N,

= 0 everywhere else.

(4)

Clearly, the L-fuzzy h-ideal J is not prime, though P(ab) =
P(a)∨ P(b) holds for all a, b ∈ N.
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Remark 13. While fuzzifying the condition (I) of “prime-
ness” stated in §2.1 three types of products of fuzzy left
ideals A and B of S, are used in the literature: namely,
AoB, AokB, and AohB [1–3, 5, 7]. They are defined as
follows:

AoB(x) = Sup{Min{A(a),B(b)} | x = ab, a, b ∈ S},
AokB(x) = Sup

{
Min

{
A(a),B(b),A(a′),B(b′)

} | x + ab

= a′b′; a, b, a′, b′ ∈ S
}

,

AohB(x) = Sup
{

Min
{
A(a),B(b),A(a′),B(b′)

} | x + ab + z

= a′b′ + z; a, b, a′, b′, z ∈ S
}

, ∀x ∈ S.
(5)

This was needed, because the problem of fuzzification of
left ideals, left k-ideals, and left h-ideals were treated as
three separate problems. Theorem 3 allows us to rope all the
three in one and leads us to a compact characterization of
primeness given in Proposition 11.

A semiprime fuzzy ideal, now defines itself.

Definition 14. An L-fuzzy left h-ideal J of S is called
semiprime, if J is nonconstant and, for all a ∈ S and α ∈ L,
the following condition is satisfied:

J(asa) ≥ α, ∀s ∈ S =⇒ J(a) ≥ α. (6)

It follows that a nonconstant L-fuzzy ideal (resp., k-ideal, h-
ideal) I of S is semiprime if and only if ∧{I(asa) | s ∈ S} =
I(a) for all s ∈ S. In case S is commutative hemiring with
unity, the above equation is further simplified to I(a2) =
I(a). Analogues of Proposition 9 and Corollary 10 can easily
be proved.

Theorem 15. Every nonconstant fuzzy ideal (resp., k-ideal,
h-ideal) of a commutative ring with unity is contained in a
minimal prime fuzzy ideal (resp., k-ideal, h-ideal).

Proof. As usual we prove the result for fuzzy h-ideals. Let J
be a nonconstant fuzzy h-ideal of a commutative ring S with
unity and J = {x ∈ S | J(x) > J(1)}. Let P be a prime h-ideal
containing J. Define a fuzzy ideal P : S → [0, 1] by

P(x) = 1 if x ∈ P

= J(1) if x /∈ P.
(7)

Clearly, P is a prime fuzzy h-ideal containing J and, thus,
the class C of all prime fuzzy h-ideals containing J is non-
empty. We partially order C by reverse containment, that is,
we define P ≤ P′ if and only if P′ ⊆ P for all P, P′ ∈ C, and
consider a totally ordered subset {Pλ | λ ∈ Λ} of C. Then, the
set {Pλ

α | λ ∈ Λ} of the α-level cuts of Pλ is a totally ordered
set consisting of prime h-ideals (and possibly of S) for each
α ∈ [0, 1]. Therefore,∩{Pλ

α | λ ∈ Λ} is either a prime h-ideal
of S or S itself. By Proposition 9, ∩{Pλ | λ ∈ Λ} is a prime
fuzzy h-ideal containing J . Since ∩{Pλ | λ ∈ Λ} is an upper
bound of the family {Pλ | λ ∈ L}, C has a maximal element
which, clearly, is a minimal prime fuzzy h-ideal containing
J .

Remark 16. Example 12 will testify that Theorem 15 is not
valid when L /= [0, 1], in general.

4. Prime Radicals of a Fuzzy Ideal

In this section, we assume S to be a commutative hemiring
with unity.

Definition 17. If J is an L-fuzzy ideal of S, then the
intersection of all prime L-fuzzy ideals (resp., k-ideals, h-
ideals) of S containing J is called the prime (resp., k-prime,
h-prime) radical of J . We denote it by r(J) (resp., rk(J), rh(J)).
If the set of prime L-fuzzy ideals (resp., k-ideals, h-ideals) of
S containing J is empty, we define r(J) (resp., rk(J), rh(J)) to
be χS.

Note that r(J), (resp., rk(J), rh(J)) is a semiprime fuzzy
ideal (resp., k-ideal, h-ideal) containing J . Clearly r(J) ⊆
rh(J) ⊆ rk(J). However, the following examples show that
strict containment holds.

Example 18. Let p be a prime integer. Consider α,β ∈ [0, 1]
and β < α. Define a fuzzy set P : N → [0, 1] by

P(x) = 1 if x = 0,

= α if x ∈ pN ∼ {0},
= β if x /∈ pN.

(8)

By Proposition 9, P is a prime fuzzy ideal (also k-ideal and
h-ideal), for all 0 ≤ β < α ≤ 1. We will call the fuzzy ideal
P a prime fuzzy k-ideal induced by the prime number p and
denote it by (pN)αβ.

Example 19. Suppose α,β, γ ∈ [0, 1] and γ < β < α. Define a
fuzzy set Q : N → [0, 1] by

Q(x) = 1 if x = 0,

= α if x ∈ pN ∼ {0},

= β if x ∈ N ∼ (pN∪ {1}),
= γ if x = 1.

(9)

By Proposition 9, Q is a prime fuzzy ideal which is neither a
fuzzy k-ideal nor a fuzzy h-ideal, for all 0 ≤ γ < β < α ≤ 1.
We will call the fuzzy ideal Q a prime fuzzy ideal induced by
the prime integer p and denote it by (pN)αβγ. Note that, in
the light of Theorem 7, these are the only prime fuzzy ideals
of N which are not fuzzy k-ideals.

Example 20. Consider a fuzzy ideal defined by J : N → [0, 1]:

J(x) = 1 if x = 0,

= 0.5 if x ≥ 3,

= 0 if x = 1 or 2.

(10)



Advances in Fuzzy Systems 5

Let 0 ≤ α < 1 and Oα be the fuzzy k-ideal defined by Oα :
N → [0, 1]:

Oα(x) = 1 if x = 0,

= α if x /= 0.
(11)

Let X = {Oα | 0.5 ≤ α < 1} ∪ {(pN)αβ | p is prime,
0.5 ≤ β < α ≤ 1} and Y = {(pN)αβγ | 0 ≤ γ ≤ 0.5 <
β ≤ α ≤ 1, p is prime}. Clearly, X is the set of all prime fuzzy
k-ideals of N containing J and Y is the set of all those prime
fuzzy ideals containing J , which are not fuzzy k-ideals. Since
rh(J) = rk(J) = ∩{P | P ∈ X} and r(J) = ∩{P | P ∈ X∪Y},
it is mundane to verify that rh(J) = rk(J) = O0.5 and r(J) is
the fuzzy ideal defined by r(J) : N → [0, 1]:

r(J)(x) = 1 if x = 0,

r(J)(x) = 0.5 for x ≥ 2,

r(J)(x) = 0 if x = 1.

(12)

Clearly, r(J) ⊂ rk(J) = rh(J).

Example 21. Let S = {0,α,β, 1} be the Boolean algebra of
four elements. Consider the prime fuzzy ideal defined by J :
S → [0, 1] J(0) = 1 = J(α) and J(β) = J(1) = 0.5. Then,
J being a prime fuzzy k-ideal rk(J) = J . Since all the fuzzy
ideals of S are fuzzy k-ideals, we have r(J) = rk(J). Since the
set of fuzzy h-ideals of S is empty, rh(J) = χS.

Clearly, r(J) = rk(J) ⊂ rh(J).

5. Nil Radicals of a Fuzzy Ideal

In this section, we assume S to be a commutative hemiring
with unity.

Recall that if I is an ideal of S, then its radical (also called
nil radical) is defined as

√
I = {x ∈ S | xn ∈ I , for some

integer n > 0}.
We define the fuzzy analogue of nil radical as follows.

Definition 22. If J is an L-fuzzy ideal of S, then the L-fuzzy
set
√
J : S → L defined by

√
J(x) = ∨{J(xn) | n > 0} is called

the L-fuzzy (nil) radical of J .
Through series of propositions we prove that, when L is

totally ordered and J is a fuzzy k-ideal (resp., h-ideal) of S, so
is
√
J .
The following results are the direct consequences of

Definition 22.

Proposition 23. If I is an ideal of S, then
√

(χI) = χ
√
I ,

where χI and χ
√
I are the characteristic functions of I and

√
I ,

respectively.

Proposition 24. If P is a prime L-fuzzy ideal, then
√
P = P.

Proposition 25. If J and K are L-fuzzy ideals of a hemiring,
then, the following statements hold.

(a)
√

(
√
J) = √J .

(b) If J ⊆ K , then
√
J ⊆ √K .

(c)
√

(J ∩ K) = √J ∩√K .

Proposition 26. Let J be an L- fuzzy ideals of S and 0 ≤ α < 1.
Then, the following statements hold.

(i)
√

(Jα) ⊆ (
√
J)α.

(ii) If L is a totally-ordered set, then (
√
J)α+ = √

(Jα+),
where Jα+ and (

√
J)α+ are strict level cuts.

Proof. We prove only (ii):

x ∈ (
√
J)α+ ⇐⇒

√
J(x) > α

⇐⇒ ∨{J(xn) | n > 0} > α

⇐⇒ J(xn) > α for some n > 0

⇐⇒ xn ∈ Jα+ for some n > 0

⇐⇒ x ∈ √(Jα+).

(13)

The following example shows that the set inclusion in
Proposition 26(i) can be strict.

Example 27. Let N be the hemiring of non-negative integers,
L = [0, 1], and p ∈ N a prime number. Let 〈pn〉 denote the
ideal of N generated by pn.

Define a fuzzy ideal as follows:

J : N −→ L

J(x) = 0, if x /∈ 〈p〉,

J(x) = n

n + 1
, if x ∈ 〈pn〉 ∼ 〈pn+1〉, n = 1, 2, . . .

J(0) = 1.

(14)

Since
√
J(p) = sup{n/(n + 1) | n = 1, . . .} = 1, we have p ∈

(
√
J)1. On the other hand, for each n, J(pn) = (n/(n+1)) < 1

and thus, pn /∈ J1, for any n. Consequently, we have p /∈ √J1.

Theorem 28. If L is totally ordered and J an L-fuzzy k-ideal
(resp., h-ideal) of S, then

√
J coincides with rk(J) (resp., rh(J)).

Proof. As usual we restrict our discussion to h-ideals. If
P is an L-fuzzy prime h-ideal containing J , then, by
Proposition 26, we have (

√
J)α+ =

√
(Jα+) = rh(Jα+), where

rh(Jα+) is the h-prime radical of the (scrisp) ideal Jα+. On the
other hand, for any x ∈ S and n > 0, we have J(xn) ≤ P(xn) =
P(x) and therefore, we have

√
J ⊆ rh(J).

Suppose
√
J /= rh(J). Then, there exists a ∈ S, such that

(
√
J)(a) < rh(J)(a). Let (

√
J)(a) = α. Since a /∈ rh(Jα+), there

exists a prime h-ideal say P such that Jα+ ⊆ P and a /∈ P.
Consider the following prime L-fuzzy h-ideal:

P : S −→ L

P(x) = 1, if x ∈ P,

= α, if x /∈ P.

(15)
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Clearly, if x ∈ P, then we have J(x) ≤ P(x). On the other
hand, if x /∈ P, then we have x /∈ Jα+ and J(x) ≤ α = P(x).
Thus, we get J ⊆ P and consequently, rh(J) ⊆ P.

However, this leads to the following contradiction,√
J(a) < rh(J)(a) ≤ P(a) = α = √J(a).

Hence, we have
√
J = rh(J).

Corollary 29. Let L be a totally ordered set. If J is an L-fuzzy
k-ideal (resp., h-ideal) of S, then, so is

√
J .

6. Correspondence Theorems

In this section, f : S → S′ is a homomorphism of hemirings,
J is an L-fuzzy left ideal of S, and J ′ is an L-fuzzy left ideal of
S′.

In [20, Proposition 3.11], Zhan claims that if J is an L-
fuzzy h-ideal with sup property, then f (J) is an L-fuzzy h-
ideal of f (S). The following example does not substantiate
the claim.

Example 30. Let S be the hemiring given in Example 1 (b), N
be the hemiring of non-negative integers, and f : N → S be
the epimorphism given by f (x) = min{x, 3} for all x ∈ N.

Define a mapping J : N → [0, 1] by

J(x) = 1 if x = 0,

= 1
2

if x = 2n /= 0,

= 0 if x = 2n + 1, ∀n ∈ N.

(16)

Since f (x) = x for all x ≤ 3 and f (x) = 3 for all x ≥ 3, it can
be verified that f (J)(0) = 1, f (J)(2) = f (J)(3) = 1/2, and
f (J)(1) = 0.

One can readily see that J is an L-fuzzy h-ideal with sup
property; but f (J) is not an L-fuzzy h-ideal. For, we have 1⊕
2⊕ 3 = 0⊕ 3 and f (J)(2)∧ f (J)(0) � f (J)(1).

Example 30 raises a natural question: What are the
sufficient conditions for a homomorphic image of an h-ideal
(resp., k-ideal) to be an h-ideal (resp., k-ideal)? In order to
answer this question, we introduce the following definition.

Definition 31. Let f : S → S′ be a homomorphism of
hemirings. An L-fuzzy left ideal J of S is called f-compatible
if, for all x, a, b, z ∈ S, f (x + a + z) = f (b + z) ⇒ J(x) ≥
J(a)∧ J(b).

Recall that J is f -invariant, if f (a) = f (b) implies J(a) =
J(b). We leave it to the reader to prove that an f -compatible
fuzzy left ideal is f -invariant.

Proposition 32. Let f : S → S′ be a homomorphism
of hemirings and J and J ′ L-fuzzy left ideals of S and S′,
respectively. Then, the following statements hold.

(1) f −1(J ′) is an f-invariant L-fuzzy left ideal of S.

(2) If J ′ is an L-fuzzy left k-ideal, then so is f −1(J ′).

(3) If J ′ is an L-fuzzy left h-ideal, then f −1(J ′) is an f -
compatible L-fuzzy left h-ideal of S.

(4) If J is f-invariant (in particular if J is f-compatible),
then f (J) f (x) = J(x) and therefore, f −1( f (J)) = J .

(5) If f is an epimorphism, f ( f −1(J ′)) = J ′.

Proof. We prove (4) and (5). If J is f -invariant and x ∈
S, then it is obvious that f (J) f (x) = ∨{J(z) | f (z) =
f (x)} = J(x). This proves (4). Moreover, if x′ = f (x),
then f ( f −1(J ′))(x′) = f −1(J ′)(x) = J ′( f (x)) = J ′(x′). It,
then, follows that if f is an epimorphism, then f ( f −1(J ′)) =
J ′.

This leads to the following correspondence theorem for
L-fuzzy left k-ideals and h-ideals.

Theorem 33. Let f : S → S′ be an epimorphism of hemirings.

(1) There is one-to-one correspondence between the set of
L-fuzzy left ideals (resp., k-ideals) of S′ and that of f-
invariant L-fuzzy left ideals (resp., k-ideals) of S.

(2) There is one-to-one correspondence between the set of
L-fuzzy left h-ideals of S′ and that of f-compatible L-
fuzzy left h-ideals of S.

The above correspondence preserves prime and semiprime L-
fuzzy left ideals (resp., k-ideals, h-ideals).

Proof. Suppose Jand J ′ are L-fuzzy left ideals of S and S′. By
Proposition 32, the correspondence is given by J ↔ f (J) and
J ′ ↔ f −1(J ′). We only need to verify that, when J is an L-
fuzzy left ideal (resp., k-ideals, h-ideal), then so is f (J), under
the conditions specified for J . A reader may easily prove
that, when J is f-invariant, f (J) is an L-fuzzy left ideal. Let,
moreover, J be an L-fuzzy k-ideal, x′ + a′ = b′, f (x) = x′,
f (a) = a′, and f (b) = b′. Then f (x + a) = f (b) and
therefore, we have J(x + a) = J(b). Let α = J(a) ∧ J(b)
and consider Jα. Clearly, a, b ∈ Jα. Since J(x + a) = J(b),
we have x + a ∈ Jα and Jα being a k-ideal x ∈ Jα. Therefore,
J(x) ≥ J(a)∧ J(b). But, by Proposition 32 (4), this inequality
is equivalent to f (J)(x′) ≥ f (J)(a′)∧ f (J)(b′). Thus, f (J) is
an L-fuzzy left k-ideal.

On similar lines, one can prove that, when J is an f-
compatible L-fuzzy left h-ideal of S, f (J) is an L-fuzzy left
h-ideal of S′.

7. Primary Fuzzy Ideals

In this section, we assume that S is a commutative hemiring
with unity.

Recall that an ideal Q of a hemiring S is primary, if (i)
Q /= S and (ii) xy ∈ Q ⇒ x ∈ Q or yn ∈ Q for some positive
integer n.

We define primary fuzzy ideal as follows.

Definition 34. A nonconstant L-fuzzy ideal/k-ideal/h-ideal Q
of S is primary, if Q(xy) = Q(x) or Q(xy) ≤ Q(yn) for some
positive integer n.

The following propositions are immediate consequences
of Definition 34.
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Proposition 35. A nonconstant L-fuzzy ideal of S is a primary
L-fuzzy ideal (resp., k-ideal, h-ideal) if and only if each of its
nonempty level cuts is either a primary ideal (resp., k-ideal, h-
ideal) of S or S itself.

Proposition 36. Let Q be an ideal of S. The characteristic
function χQ is a primary L-fuzzy ideal (resp., k-ideal, h-ideal)
of S if and only if Q is primary ideal (resp., k-ideal, h-ideal), for
every complete Heyting algebra L.

Proposition 37. Every prime L- fuzzy ideal (resp., k-ideal, h-
ideal) is a primary L-fuzzy ideal (resp., k- ideal, h-ideal).

The fuzzy ideal J in Example 27 is primary but not prime,
as every nonempty, proper level-cut of the fuzzy ideal is primary
but not prime.

The proof of the following proposition is straightforward.

Proposition 38. Let f : S → S′ be a homomorphism of
hemirings and Q and Q′ L-fuzzy ideals of S and S′, respectively.

(a) If Q′ is primary, then f −1(Q′) is primary f-invariant.

(b) Let f be an epimorphism and Q be f-invariant. If Q is
a primary, then f (Q) is primary.

(c) If f is an epimorphism and Q is an f-compatible
primary fuzzy h-ideal, then f (Q) is a primary L-fuzzy
h-ideal.

Thus, the correspondence theorems in the previous section
preserve primary fuzzy ideals as well.

8. Minimum Imperative for Fuzzification

In this paper, we fuzzified the concepts of prime ideal,
semiprime ideal, and primary ideal of a hemiring. Some of
these concepts have been fuzzified earlier in different ways.
Therefore, it is pertinent to ask: What constitutes “proper
fuzzification” of a concept? Our answer is the following:

Suppose I is a (crisp) ideal with property p of a hemiring
S and Ĩ is its fuzzification which inherits property p̃. If it is the
best fuzzification, it should satisfy the following properties.

(1) For every Heyting algebras L, the characteristic
function of I satisfies the property p̃ if and only if I
has property p.

(2) Ĩ satisfies the property p̃, whenever every nonempty
levelcut of Ĩ different from S satisfies the property p
and conversely.

(3) The set Ĩ(S) has more than two elements.
Let f : S → S′ be a homomorphism of hemirings.

(4) If an L-fuzzy ideal J ′ of S′ has property p̃, then
f −1(J ′), as an L-fuzzy ideal of S, has property p̃.

(5) If L-fuzzy ideal J of S has property p̃, then f (J) is an
L-fuzzy ideal of f (S) with property p̃, under some
preassigned condition(s). The condition(s) is (are)
suggested by the corresponding crisp situation.

The last sentence needs some elaboration. If I is a (crisp)
ideal of S, f (I) is an ideal of f (S) provided that it satisfies

the condition: f (x) = f (y) and y ∈ I implies x ∈ I.
The f -invariance of J stated above is a “fuzzification” of the
condition on the crisp ideal I. If I is an h-ideal, then f (I)
is an h-ideal of f (S) provided that it satisfies the condition:
f (x + a + z) = f (b + z) and a, b ∈ I implies x ∈ I. The f-
compatibility is a “fuzzification” of the condition on the ideal
I.

As proved earlier, the different types of prime,
semiprime, and primary L-fuzzy ideals defined in this
paper fulfill the above five conditions and, therefore, they are
the best fuzzifications of the concepts.
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