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2 Posgrado en Ciencia e Ingenieŕıa de la Computación, Universidad Nacional Autónoma de México, México, DF, Mexico
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Copyright © 2012 H. Benı́tez-Pérez et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Nowadays network control systems present a common approximation when connectivity is the issue to be solved based on time
delays coupling from external factors. However, this approach tends to be complex in terms of time delays. Therefore, it is necessary
to study the behavior of the delays as well as the integration into differential equations of these bounded delays. The related
time delays needs to be known a priory but from a dynamic real-time behavior. To do so, the use of priority dynamic Priority
exchange scheduling is performed. The objective of this paper is to show a way to tackle multiple time delays that are bounded
and the dynamic response from real-time scheduling approximation. The related control law is designed considering fuzzy logic
approximation for nonlinear time delays coupling, where the main advantage is the integration of this behavior through extended
state space representation keeping certain linear and bounded behavior and leading to a stable situation during events presentation
by guaranteeing stability through Lyapunov.

1. Introduction

Nowadays real-time restrictions are the most certain defini-
tions in terms of time delays where general considerations
tend to be periodic and repeatable.

The control design and stability analysis of network-
based control systems (NCSs) have been studied in recent
years, based upon codesign strategy [1]. The main advan-
tages of this kind of systems are their low cost, small
volume of wiring, distributed processing, simple installation,
maintenance, and reliability.

In a NCS, one of the key issues is the effect of network-
induced delay in the system performance. The delay can be
constant, time varying, or even random; this depends on
the scheduler, network type, architecture, operating systems,
and so forth. One strategy to be followed is the codesign
since it takes both desired procedures to be followed. Nilsson
analyzes several important facets of NCSs. Nilsson [2]

introduces models for the delays in NCS, first as a fixed delay,
afterward as an independently random, and finally like a
Markov process. The author introduces optimal stochastic
control theorems for NCSs based upon the independently
random and Markovian delay models. In [3], Walsh et
al. introduces static and dynamic scheduling policies for
transmission of sensor data in a continuous-time LTI system.
They introduce the notion of the maximum allowable transfer
interval (MATI), which is the longest time after which a
sensor should transmit a data. Walsh et al. [3] derived
bounds of the MATI such that the NCS is stable. This MATI
ensures that the Lyapunov function of the system under
consideration is strictly decreasing at all times. In [4], Zhang
et al. extend the work of Walsh, they developed a theorem
which ensures the decrease of a Lyapunov function for a
discrete-time LTI system at each sampling instant, using two
different bounds. These results are less conservative than
those of Walsh, because they do not require the system
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Lyapunov function to be strictly decreasing at all time.
Nevertheless, a number of different linear matrix inequality
(LMI) tools for analyzing and designing optimal switched
NCSs are introduced.

Alternatively Zhu [5] takes into consideration both the
network-induced delay and the time delay in the plant a
controller design method is proposed by using the delay-
dependent approach. An appropriate Lyapunov functional
candidate is utilized to obtain a memoryless feedback
controller; this is derived by solving a set of Linear Matrix
Inequalities (LMIs). In [6], Wang and Sun, model the
network-induced delays of the NCSs as interval variables
governed by a Markov chain. Using the upper and lower
bounds of the delays, a discrete-time Markovian jump system
with norm-bounded uncertainties is presented to model
the NCSs. Based on this model, the H∞ state feedback
controller can be constructed via a set of LMIs. Recently
Fridman and Shaked [7] introduce a new (descriptor) model
transformation for delay-dependent stability for systems
with time-varying delays in terms of LMIs, and they also
refine recent results on delay-dependent H∞ control and
extend them to the case of time-varying delays. Based upon
this review, this paper defines a model that integrates the
time delays for a class of nonlinear system, therefore, this
paper presents Fuzzy Control for NCSs [4, 8] considering
time delay induced by the computer network as result of
online reconfiguration the stability analysis is revised as well.

Since NCS is modified according to time delays, reconfig-
uration is a transition that modifies the structure of a system
so it changes its representation of states. Here, it is used as a
feasible approach for time delay modification.

In control systems, several modeling strategies for man-
aging time delay within control laws have been studied by
different research groups. Nilsson [2] proposes the use of
a time delay scheme integrated to a reconfigurable control
strategy, based on a stochastic methodology. Jiang and Zhao
[9] describe how time delays are used as uncertainties,
which modify pole placement of a robust control law.
Izadi-Zamanabadi and Blanke [10] present an interesting
case of fault tolerant control approach related to time
delay coupling. Blanke et al. [11] study reconfigurable
control from the point of view of structural modification,
establishing a logical relation between dynamic variables and
the respective faults. Finally, Thompson [12] and Benı́tez-
Pérez and Garcı́a-Nocetti [13] consider that reconfigurable
control strategies perform a combined modification of
system structure and dynamic response, and, thus, this
approach has the advantage of bounded modifications over
system response.

Normally, when a fault occurs during the operation of
a system, a respective fault tolerance strategy is applied.
However, applying such a fault tolerance strategy is not
enough to maintain the performance of the system, since
dynamic conditions are modified. Therefore, it is seems
necessary to take into account current conditions in order to
keep system performance, even degraded. Thus, this paper
proposes a novel technique based on Fuzzy control and
considering bounded variable time delays.

Table 1: First example for Priority Exchange.

Name Consumption (in units) Period (in units)

Task 1 2 9

Task 2 1 9

Task 3 2 10

Server 1 6

The objective of this paper is to present a reconfiguration
control strategy developed from the time delay knowledge,
following scheduling approximation where time delays are
known and bounded according to used scheduling algo-
rithm. The novelty of this approximation is to guarantee
schedulability as well as stability in the presence of bounded
time delays. This is feasible since time delays are bounded
according to scheduler response.

2. Scheduling Approximation

Classical Earliest Deadline First plus Priority exchange (PE)
algorithms are used to decompose time lines and the
respective time delays when present. For instance, time delays
are supervised as follows, for a number of tasks:

c1 −→ cnT1 −→ Tn, (1)

where priority is given as the well known Earliest Deadline
First [14] algorithm which established as the process with the
closest deadline has the most important priority. However,
when a nonperiodic tasks appear it is necessary to deploy
other algorithms to cope with concurrent conditions. To do
so, Priority Exchange algorithm is pursuit in order to manage
spare time from EDF algorithm. Priority exchange [15] algo-
rithm uses a virtual server that deploys a periodic task with
the highest priority in order to provide enough computing
resources for aperiodic tasks. This simple procedure gives a
proximity, deterministic, and dynamic behaviour within the
group of included processes. In this case, time delays can be
deterministic, and bounded. As an example, consider a group
of tasks as shown in Table 1. In this case consumption time,
as well as period, is given in terms of units that are entered.
Remember that server task is the time given for an aperiodic
task to take place on the system.

The result of the ordering based upon PE is presented in
Figure 1.

Based upon this dynamic scheduling algorithm, time
delays are given as current calculus in terms of task ordering.
In this case, every time that scheduling algorithm takes
place global time delays are modified in the short and long
term. This behavior allows time delays to be known and
bounded for different periods of time since current and
future responses are established. On the other hand, if any
aperiodic event would take place, this will be considered
in terms of the server to be attended in a global periodic
manner with the related time delay cost. For instance, follow
next example where four tasks are settled and two aperiodic
tasks take place at different times, giving different events with
different time delays (see Table 2).
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Task 1
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Aperiodic task happening at 6.3 units
It has a duration of 1unit

Figure 1: Related organization for PE with respect to Table 1.

Table 2: Second example of PE.

Name Consumption (in units) Period (in units)

Task 1 2 9

Task 2 1 9

Task 3 2 10

Server 1 6

Aperiodic task 1 (ap1) 0.9 It occurs at 9

Aperiodic task (ap2) 1.0 It occurs at 13

The following task ordering is shown in Figure 2, using
PE algorithm where clearly time delays appear.

Now from this resulting ordering different tiny time
delays are given for two scenarios as shown in Figure 3.

These two scenarios present two different local time
delays that need to be taken into account beforehand in order
to settle the related delays according to scheduling approach
and control design. These time delays can be expressed in
terms of local relations amongst dynamical systems. These
relations are the actual and possible delays bounded as
marked limit of possible and current scenarios. Then, delays
may be expressed as local summations with a high degree
of certainty for each specific scenario. In this case, if any
new event takes place its response would be delayed until
the server would place sometime for its requirements, giving
the system a guarantee in terms of time delays and current
response.

Now, in terms of this last example, during second
scenario total delay is given as follows:

Total delay = consumption time delay aperiodic task1

+ consumption time delay task1 + tsc2

+ consumption time delay task2

+ consumption time delay aperiodic task2

+ consumption time delay task3.
(2)

From this example lp is equal to 2 and lc is equal to 3. lp
and lc are the total number of local delays within one scenario

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 22
     Aperiodic task 
happening at 9 units

 It has a duration of 0.9 unit

      Aperiodic task 
happening at 13 units

 It has a duration of 1unit

Task 1

Task 2

Task 3

Server

Figure 2: Task organization considering second example for PE.

from sensor to control and from control to actuator respec-
tively. Moreover, consumption time delay task1, consump-
tion time delay task2, and consumption time delay task3
are related to the actual time delays from Figure 3 when
one particular scenario is presented. The same situation
is presented with consumption time delay aperiodic task2.
This simple example shows how total time delays play a
key role in the dynamical system; however, these are no
monolithic since are composed through different local and
dynamic delays.

Since aperiodic as well as sporadic events are capable
to be attended in terms of a virtual server per node
involved on the network giving a bounded response, the
resulting behaviour is only dependant on inherent bounded
and systematic time delays that can be aggregated in laps.
Now, the computer network is only dependant on the
synchronization of the network, which is a topic that is out
of the scope of this paper and to be reviewed in future work.

The important issue to be determined in this section
is that communicating time delays are to be known and
bounded even in sporadic situations. Since this modelling
is possible, what is left is how to incorporate the aggregate
delays (either local or global) onto the dynamic modelling
of the system. This strategy is proposed thorough Fuzzy
Control since this technique provides the necessary elements
to guarantee current global stability even in conditions of
sporadic time delays since these are bounded according to
the use of virtual server.

3. Fuzzy Control Design Considering
Time Delays

Having defined time delays as result of scheduling approxi-
mation, several scenarios are potentially presented following
this time delay behavior since this is bounded. In fact,
the number of scenarios is finite since the combinatorial
formation is bounded. Therefore, any strategy, in order
to design a control law, needs to take into account gain
scheduling approximation. To do so, Fuzzy Control strategy
is based upon Takagi-Sugeno. Therefore based upon Fuzzy
Control systems [16] stays as

1 < i < m, 1 < j < m, µi j(xi(t)), (3)
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Figure 3: Related time delays are depicted according to both scenarios.
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Figure 4: Network control system diagram.

where x are the states, m is the number of inputs, and µ is the
related membership function. One has

gj =
m∏

i=1

{
µi j[xi(k)]

}
, (4)

hj =
gj∑m
j=1 gj

, (5)

x(k + 1) =
m∑

j=1

[
hj

{
A

p
j x(k) + B

p
j u(k)

}]
, (6)

where x(k) and u(k) are the state and input vectors, and A
p
j

and B
p
j are the plant representation per scenario according to

current time delays following Figure 4.
Now, considering current time delays as tca j which is

current time delay from controller to actuator and tsc j which
is current time delay from sensor to controller. In here,
current time delays are local aggregations of current behavior
from scheduling strategy in any condition regardless of
the event as long as this is prevented onto virtual server
processes. One has

xp(k + 1) =
m∑

j=1

[
hj

{
A

p
j xp(k) + B

p
j up

(
k − tca j

)}]
,

xc(k + 1) =
m∑

j=1

[
h
p
j

{
Ac

jxc(k) + Bc
juc
(
k − tsc j

)}]
,

(7)
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Figure 5: Systems response to those different time delay scenarios.

where Ac
j and Bc

j are the controller representation per
scenario, xp(k + 1) and up(k + 1) are state vector and input
vector of the plant, and xc(k+1) and uc(k+1) are state vector
and input vector of the controller.

From [17] remember that time delay representation in
terms of discrete observe the following equations:

B
p
j =

lp∑

i=1

[∫ ti+1

ti
Bc
je
Ac

j tdt

]
,

Bc
j =

lc∑

i=1

[∫ ti+1

ti
B
p
j e

Ac
j tdt

]
.

(8)

Remember that lp and lc are the total number of local
time delays that appears per scenario. These are defined in
last section as local time delays that can be aggregated as in
(1) or they maybe presented as shown in (8). In any case final
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result is shown in (10) and (11). One has

ypi = cipxp(k),

yci = cicxc(k),
(9)

where lp and lc are the number of local time delays; cic and
cip are the gains related to observable states; the outputs are
gathering as

yp =
m∑

j=1

[
hj

{
c
j
pxp(k)

}]
, (10)

yc =
m∑

j=1

[
hj

{
c
j
cxc(k)

}]
, (11)

up

(
k − tca j

)
−→ yc = ccxc(k), (12)

uc
(
k − tsc j

)
−→ yp = cpxp(k), (13)

xp(k + 1) =
m∑

j=1

[
hj

{
A

p
j xp(k) + B

p
j u
(
k − tca j

)}]
, (14)

=
m∑

j=1

[
hj

{
A

p
j xp(k) + B

p
j Ccxc

(
k − tca j

)}]
. (15)

From last equation, the related dynamics are expressed AC
j

as BC
j and C

j
c where j is the index with respect to each

scenario. These scenarios are the related events presented in
last section and are the result of local time delays and possible
use of virtual server. In any case, (16) shows the holistic
representation of the plant in conditions of potential time
delays as well as the current dynamic modifications result
from each scenario. One has

xp(k + 1) =
m∑

j=1

⎡
⎣hj

⎧
⎨
⎩A

p
j xp(k) + B

p
j

⎧
⎨
⎩

m∑

i=1

hj

(
cicxc(k − tcai)

)
⎤
⎦

(16)

from state of the controller

xc(k + 1) =
m∑

i=1

[
hi
{
Ac
i xc(k) + Bc

i uc(k − tsci)
}]

,

xc(k + 1) =
m∑

i=1

⎡
⎣hi

⎧
⎨
⎩A

c
i xc(k)

+Bc
i

⎛
⎝

m∑

j=1

hj

[
c
j
pxp
(
k − tsc j

)]
⎞
⎠

⎫
⎬
⎭

⎤
⎦

(17)

and in terms of the plant xp

xp(k + 1) =
m∑

j=1

⎡
⎣hj

⎧
⎨
⎩A

p
j xp(k) +

m∑

i=1

hiB
p
j

(
cicxc(k − tcai)

)
⎫
⎬
⎭

⎤
⎦,

xp(k + 1) =
m∑

j=1

m∑

i=1

[
hjhi

[
B
p
i

(
cicxc(k − tcai)

)]
+ hjA

p
j xp(k)

]
.

(18)

For xc,

xc(k + 1) =
m∑

j=1

⎛
⎝hj

⎧
⎨
⎩A

c
jxc(k)

+hiBc
j

⎛
⎝

m∑

j=1

hj

(
cipxp

(
k − tsc j

))
⎞
⎠

⎫
⎬
⎭

⎞
⎠,

xc(k + 1) =
m∑

j=1

m∑

i=1

⎡
⎣hjhi

⎡
⎣Bp

j

⎛
⎝c jcxc(k) +

m∑

i=1

hiB
c
i

⎞
⎠
⎤
⎦

×
⎛
⎝

m∑

j=1

hj

(
cipxp

(
k − tsc j

))
⎞
⎠
⎤
⎦,

xc(k + 1) =
m∑

j=1

m∑

i=1

[
hjhiB

c
j

(
cipxp(k − tsci)

)
+ hjA

c
jxc(h)

]
,

(19)

where the tca j is current time delay from controller to
actuator and tsc j is current time delay from sensor to
controller. Moreover, Ac

j is the related dynamic Matrix of
Control law. Now, the second main point presented in this
work is the following: since the delays are bounded and can
be known it is possible to develop a dynamic representation
by using augmented states in terms of current control law
and the related state space representation.

X =
[
xc
xp

]
,

xc(k + 1)
xp(k + 1)

=

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

m∑

j=1

m∑

i=1

[
hjhi

[
B
p
j

(
cicxc(k − tcai)

)]
+ hjA

p
j xp(k)

]

m∑

j=1

m∑

i=1

[(
hjhiB

c
j

(
Ci
pxp(k − tsci)

)
+ hjA

c
jxc(k)

)]
.

(20)

Now, the delays (tcai, tsci) are independent based upon
the time obtained from scheduling approximation. This
condition is very important for two reasons; firstly time
delays are strictly local and may be aggregated differently per
scenario or event and secondly these are bounded to inherent
sampling time of dynamic benchmarking. Therefore, any
aggregation must be bounded as presented.

tca1 + tsc1 < tca2 + tsc2 < · · · < tcam + tscm < T. (21)

Now, in terms of the stability which is necessary to guarantee
system response in several conditions, it is pursued the use of
classical Lyapunov candidate since one the main conditions
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is system bounded response as linear inherent behavior.
Therefore, the derivative of a candidate Lyapunov function
is expressed as

Δu(k) = V(k + 1)−V(k), (22)

and the related Lyapunov function is proposed as

V(k) = X(k)TPX(k). (23)

Now in terms of the augmented states and the related fuzzy
rules

V(k) =
[
xc
xp

]T

P

[
xc
xp

]
, (24)

where each of the fuzzy rules is given as an expression of local
delays (which are the results of local time delays that can
be aggregate per event) from current condition from plant
towards controller and vice verse. One has

[
xc
xp

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xc(k)
xc(k − tca1)
xc(k − tca2)

...
xc(k − tcam)

xp(k)
xp(k − tsc1)
xp(k − tsc2)
xp(k − tsc3)

...
xp(k − tscm)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (25)

Now for each rule, it exists a delay related to a particular
condition (which is expressed as event in terms of Section 2)
involving the plant and controller. This delay is unique on
every specific time. In this case, these are associated to a
particular relationship of last equation.

V(k + 1)−V(k) =
[
xc(k + 1)
xp(k + 1)

]T

P

[
xc(k + 1)
xp(k + 1)

]

−
[
xc(k)
xp(k)

]T

P

[
xc(k)
xp(k)

]
,

V(k + 1)−V(k)

=

⎡
⎢⎢⎢⎢⎢⎣

m∑

j=1

m∑

i=1

(
hjhi

(
BP
j

(
cicxc

(
k − tca j

)))
+ hjA

P
j xp(k)

)

m∑

j=1

m∑

i=1

(
hjhi

(
Bc
j

(
cipxp

(
k − tsc j

)))
+ hjA

c
jxc(k)

)

⎤
⎥⎥⎥⎥⎥⎦

T

P

×

⎡
⎢⎢⎢⎢⎢⎣

m∑

j=1

m∑

i=1

(
hjhi

(
BP
j

(
cicxc

(
k − tca j

)))
+ hjA

P
j xp(k)

)

m∑

j=1

m∑

i=1

(
hjhi

(
Bc
j

(
cipxp

(
k − tsc j

)))
+ hjA

c
jxc(k)

)

⎤
⎥⎥⎥⎥⎥⎦

−
[
xc(k)
xp(k)

]T

P

[
xc(k)
xp(k)

]
.

(26)

Remember hj and hi are defined following (5). Therefore

V(k + 1)−V(k) =
[
xc(k + 1)
xp(k + 1)

]T

P

[
xc(k + 1)
xp(k + 1)

]

−

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xc(k)
xc(k − tca1)
xc(k − tca2)

...
xc(k − tcam)

xp(k)
xp(k − tsc1)
xp(k − tsc2)
xp(k − tsc3)

...
xp(k − tscm)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

× P

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xc(k)
xc(k − tca1)
xc(k − tca2)

...
xc(k − tcam)

xp(k)
xp(k − tsc1)
xp(k − tsc2)
xp(k − tsc3)

...
xp(k − tscm)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(27)

Now considering the fuzzy system representation in terms of
local time delays as well as local plants and control laws,

V(k + 1)−V(k)

=

⎡
⎢⎢⎢⎢⎢⎣

m∑

j=1

m∑

i=1

(
hjhi

(
BP
j

(
cicxc

(
k − tca j

)))
+ hiA

P
i xp(k)

)

m∑

j=1

m∑

i=1

(
hjhi

(
Bc
j

(
cipxp

(
k − tsc j

)))
+ hiA

c
i xc(k)

)

⎤
⎥⎥⎥⎥⎥⎦

T

× P

⎡
⎢⎢⎢⎢⎢⎣

m∑

j=1

m∑

i=1

(
hjhi

(
BP
j

(
cicxc

(
k − tca j

)))
+ hiA

P
i xp(k)

)

m∑

j=1

m∑

i=1

(
hjhi

(
Bc
j

(
cipxp

(
k − tsc j

)))
+ hiA

c
i xc(k)

)

⎤
⎥⎥⎥⎥⎥⎦

−

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xc(k)
xc(k − tca1)
xc(k − tca2)

...
xc(k − tcam)

xp(k)
xp(k − tsc1)
xp(k − tsc2)
xp(k − tsc3)

...
xp(k − tscm)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

P

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xc(k)
xc(k − tca1)
xc(k − tca2)

...
xc(k − tcam)

xp(k)
xp(k − tsc1)
xp(k − tsc2)
xp(k − tsc3)

...
xp(k − tscm)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(28)
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Now if only one of the time delays is considered. This
condition is possible since time delays are bounded and
strictly less than sampling time of dynamic system. Therefore
at any case following inequality is always kept true. One has

0 >

[
xc(k + 1)
xp(k + 1)

]T

P

[
xc(k + 1)
xp(k + 1)

]

−

⎡
⎢⎢⎢⎢⎣

xc(k)

xc
(
k − tca j

)

xp(k)

xp
(
k − tsc j

)

⎤
⎥⎥⎥⎥⎦

T

P

⎡
⎢⎢⎢⎢⎣

xc(k)

xc
(
k − tca j

)

xp(k)

xp
(
k − tsc j

)

⎤
⎥⎥⎥⎥⎦
.

(29)

Therefore this may be expressed as follows:

0 >

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎡
⎣hjhi

(
BP
j

(
cic
))

hiA
P
i 0 0

0 0 hjhi
(
Bc
j

(
cip
))

hiA
c
i

⎤
⎦

×

⎡
⎢⎢⎢⎢⎣

xc
(
k − tca j

)

xp(k)

xp
(
k − tsc j

)

xc(k)

⎤
⎥⎥⎥⎥⎦

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

T

× P

⎡
⎣hjhi

(
BP
j

(
cic
))

hiA
P
i 0 0

0 0 hjhi
(
Bc
j

(
cip
))

hiA
c
i

⎤
⎦

×

⎡
⎢⎢⎢⎢⎣

xc
(
k − tca j

)

xp(k)

xp
(
k − tsc j

)

xc(k)

⎤
⎥⎥⎥⎥⎦

−

⎡
⎢⎢⎢⎢⎣

xc
(
k − tca j

)

xp(k)

xp
(
k − tsc j

)

xc(k)

⎤
⎥⎥⎥⎥⎦

T

P

⎡
⎢⎢⎢⎢⎣

xc
(
k − tca j

)

xp(k)

xp
(
k − tsc j

)

xc(k)

⎤
⎥⎥⎥⎥⎦
.

(30)

and based upon this particular case, state representation may
given as

0 >

⎡
⎢⎢⎢⎢⎣

xc
(
k − tca j

)

xp(k)

xp
(
k − tsc j

)

xc(k)

⎤
⎥⎥⎥⎥⎦

T

×
⎡
⎢⎣

⎡
⎣hjhi

(
BP
j

(
cic
))

hiA
P
i 0 0

0 0 hjhi
(
Bc
j

(
cip
))

hiA
c
i

⎤
⎦
T

×P
⎡
⎣hjhi

(
BP
j

(
cic
))

hiA
P
i 0 0

0 0 hjhi
(
Bc
j

(
cip
))

hiA
c
i

⎤
⎦− P

⎤
⎥⎦

×

⎡
⎢⎢⎢⎢⎣

xc
(
k − tca j

)

xp(k)

xp
(
k − tsc j

)

xc(k)

⎤
⎥⎥⎥⎥⎦
.

(31)

Because only one specific delay is possible on current time,
only one state condition is available and is expressed as before
following LMI conditions matrix; Gi

j .

Gi
j =

⎡
⎣hjhi

(
BP
j

(
cic
))

hiA
P
i 0 0

0 0 hjhi
(
Bc
j

(
cip
))

hiA
c
i

⎤
⎦. (32)

The core of current representation is expressed as

0 >

⎡
⎢⎣

⎡
⎣hjhi

(
BP
j

(
cic
))

hiA
P
i 0 0

0 0 hjhi
(
Bc
j

(
cip
))

hiA
c
i

⎤
⎦
T

×P
⎡
⎣hjhi

(
BP
j

(
cic
))

hiA
P
i 0 0

0 0 hjhi
(
Bc
j

(
cip
))

hiA
c
i

⎤
⎦− P

⎤
⎥⎦,

(33)

0 > Gi
j
T
PGi

j − P. (34)

Remember that in terms of LMI this consideration should be
globally stable in terms of index performance.

4. Experimental Setup

The following is a setup to demonstrate how achievable
this combination to make a suitable approximation for time
delays managements is. The number of periodic tasks is equal
to 5 and the number of aperiodic tasks is 7. Following table
presents tasks conditions.

Now based upon plant dynamics this is given as

A =
⎡
⎢⎣
−0.3 0 3
−4 −2 0.1
0.1 0.3 −1

⎤
⎥⎦,

B =
⎡
⎢⎣

0.1
0.3
0.2

⎤
⎥⎦,

ẋ = Ax + Bu,

y = cu.

(35)

Time delays are determined per scenario with each local
delay considered. The number of scenarios is 13 (as shown in
Figure 6), where each columns is one scenario and the related
time delays are amongst each sensor following (8). The given
control design following (34) is expressed as follows, where
time delays tend to be constant per scenario:
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Time delays =[0.001 0.0000 0.0 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
    0.0012 0.0001 0.0003 0.00075 0.0001 0.000101 0.00009 0.00002 0.00002 0.000012 0.00003 0.00001 0.000109 
    0.003 0.0002 0.001  0.0009 0.00018 0.0001601 0.000109 0.000102 0.0000222 0.0000212 0.000063 0.000061 0.000209 
    0.004 0.0012 0.00232 0.00101 0.00021 0.0020101 0.000209 0.000302 0.000062 0.0000412 0.000073 0.000101 0.000309 
    0.005 0.002  0.004  0.0013 0.00031 0.0030101 0.000609 0.000602 0.000082 0.0000712 0.000303 0.000201 0.000609 
    0.00611 0.00302 0.0055 0.00244 0.00041 0.0040101 0.000809 0.001002 0.000102 0.0000812 0.000503 0.001001 0.001009 
    0.007 0.006  0.0065 0.0033 0.00101 0.0050101 0.001009 0.003002 0.0001202 0.0005012 0.000703 0.002001 0.003009 
    0.00811 0.0072 0.0085 0.0044 0.00201 0.0060101 0.003009 0.004002 0.000402 0.0008012 0.000903 0.003001 0.004009 
    0.0095 0.008 0.0095 0.0066 0.00401 0.0070101 0.0039009 0.006002 0.000602 0.0020012 0.002003 0.005001 0.005009 
    0.0099 0.009 0.0099 0.008 0.00501 0.0080101 0.006009 0.007002 0.004002 0.0050012 0.005003 0.007001 0.009009 
    0.010 0.01 0.01000 0.01 0.00701 0.008990101 0.007009 0.030002 0.040002 0.0070012 0.010003 0.070001 0.090009]

Figure 6

k =
⎡
⎢⎣

0.1
−0.2
−1.2

0.11 0.001 0.01
−0.11 0.1 −1.1
−1.1 −1.1 −0.2

0.1 0.01 −0.001
−0.2 −0.5 −1.1
−0.13 −2.1 −0.9

−0.01 0.0 −0.0
−0.9 0.1 −0.01
−2.1 −1.01 −1.1

−2.2
−0.1
−0.2

⎤
⎥⎦. (36)

Fuzzy variables as well as the number of rules are determined
following Méndez-Monroy and Benı́tez-Pérez [16]; here final
approximation is determined by similar error following time
delay approach and the related system response. Now the
response of system according to First output is shown in
Figure 5.

5. Conclusions

Current time delays can be modeled using real-time dynamic
scheduling algorithms; however the resulting delays are
time varying and stationary, therefore related local control
laws need to be designed according to this characteristic
and time integration is the key global issue to be taken
into consideration. Global stability is reached by the use
of Takagi-Sugeno Fuzzy Control Design where nonlinear
combination is followed by current situation of the states
which are partially delayed due to communication behavior.

The main contribution on this paper is the capability
to determine local time delays that can be aggregated per
event since a scheduling algorithm contributes to bound
time response. Therefore Fuzzy Control may be attractive to
guarantee global stability since any condition is bounded to
be less than sampling period at the worst case scenario with
no loose of generality.

The use of dynamic scheduling approximation allows
the system to be predictable and bounded; therefore, time
delays can be modeled in these terms. Moreover, the resulting
dynamic representation tackles the inherent switching per
scenario. This approximation has the main drawback that
context switch may be invoked every time a periodic task
takes place and it is possible to be executed; in this case
inherent time delays to this action are taken into account to
be processed as uncertainties.
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