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This study develops the water resources management model for conjunctive use of surface and subsurface water using a fuzzy
inference system (FIS). The study applies the FIS to allocate the demands of surface and subsurface water. Subsequently, water
allocations in the surface water system are simulated by using linear programming techniques, and the responses of subsurface
water system with respect to pumping are forecasted by using artificial neural networks.The operating rule for the water systems is
that themore abundant water system suppliesmore water. By using the fuzzy rule, the FIS conjunctive usemodel easily incorporates
expert knowledge and operational polices intowater resourcesmanagement.The result indicates that the FISmodel ismore effective
and efficient when comparedwith the decoupled conjunctive use and simulation-optimizationmodels. Furthermore, the FISmodel
is an alternative way to obtain the conjunctive use policies between surface and subsurface water.

1. Introduction

The objective of the study is to develop a fuzzy rule-based
method for the conjunctive use of surface and subsurface
water systems. Zadeh [1] applied the fuzzy theory to math-
ematically deal with the imprecision and uncertainty. Fuzzy
logic extends upon traditional Boolean logic and deals with
the imprecision in human experience [2]. The fuzzy infer-
ence system (FIS) is an artificial intelligence technique that
combines the fuzzy set, fuzzy logic, and fuzzy reasoning [1, 3–
6]. The FIS utilizes linguistic variables, fuzzy rules, and fuzzy
reasoning and provides a tool for knowledge representation
based on degrees of membership [7]. During the past decade,
the FIS application ranged from runoff forecasting to surface
water supply [3–6, 8, 9]. Shrestha et al. [3] developed a FIS to
determine a real-world reservoir operation.They constructed
a fuzzy rule-based model to derive operation rules for a mul-
tipurpose reservoir. Their research used reservoir storages,
estimated inflows, and demands as the premises and took
reservoir releases as the consequences. The finding showed
that the fuzzy-based structure was ordinary and time-
saving in computation. Russell and Campbell [4] developed

the FIS for a simplified hydroelectric reservoir. The results
also showed that fuzzy logic seemingly offered a way to
improve the existing operating practices, which was relatively
easy to explain and understand when compared with the
complex optimization model. Panigrahi and Mujumdar [5]
used a FIS for a reservoir operation model. The study incor-
porated expert knowledge for framing the fuzzy rule from an
explicit stochastic model. Russell and Campbell [4] applied
the Adaptive-Network-Based FIS (ANFIS) to water resources
management and used the genetic algorithm to search
the optimal reservoir operation based on a given inflow
series. They used FIS for determining optimal water release
according to reservoir depth and inflow. However, previous
studies [3–5]mentioned that applying fuzzy logic to reservoir
operation could remain limited to a single reservoir system.

Conjunctive use of surface and subsurface water is a
challenging work for water resources management [10–14].
Conjunctive water management reduces the deficiencies
by using subsurface water to supplement scarce surface
water supply during the drought. The conjunction use
enhances the reliability of water supplies by providing
independent sources. Başaǧaoǧlu andMariño [10] developed
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a simulation-optimization model of a hypothetical river
basin to determine optimal operating policies for jointly
using surface and subsurface water supplies. The simulation
model was the response function to incorporate the transient
hydraulic interaction between stream and aquifer. The
response function coefficients were derived from results of
the numerical simulation model. Peralta et al. [11] employed
simulation-optimization models to maximize total annual
allocation of surface and subsurface water yield. They used
the models in attempt to satisfy temporally increasing
water needs for alternative future management scenarios.
Philbrick and Kitanidis [12] proposed the gradient dynamic
programming to solve the minimal operating cost problem
by regarding surface and subsurface storages as state variables
for realizing the impact of conjunctive use. Nishikawa [15]
developed a simulation-optimization model for managing
water resources for the city of Santa Barbara in a five-year
planning horizon. Moreover, subsurface water simulation is
linked with linear programming (LP). The model addressed
the cost in water supply to meet demands and control seawa-
ter intrusion. Azaiez [16] developed the model for the con-
junctive use of surface and subsurface water with an artificial
recharge and integrated opportunity costs for the unsatisfied
demand on the limitation of the final subsurface water level.
The problem was simplified to be formulated as a convex
program with linear constraints. Watkins andMcKinney [14]
applied decomposition algorithms to conjunctively managed
surface and subsurface water systems, with reference to
cost functions including both discrete and nonlinear terms.
The complexity had mainly arisen from integrating surface
and subsurface water, that is, two reservoirs and a confined
aquifer.Their study incorporated the subsurface water system
into the management model using the response matrix
approach. However, many studies applied the artificial neural
networks (ANNs) to model hydrology field complexity [17–
22] including rainfall-runoff modeling [22, 23] and ground-
water flow and transport [24]. The current work trained an
ANN to predict the time-varying subsurface water level in
response to management alternatives [18–21]. Coppola et al.
[18] trained an ANN with MODFLOW simulation data to
predict subsurface water levels at locations under various
pumping conditions. The ANN forecasted subsurface water
levels at the next time based on management alternatives
including control and state variables at the current time.

Utilizing fuzzy rules, the FIS provides a tool to incorpo-
rate human expert experience for modeling a conjunctive use
of surface and subsurface water. The FIS obtained allocated
demand of ground and surface water in each stage simulta-
neously. Then, the simulator (i.e., LP and ANN) determined
the future state of system, such as reservoir storages and
hydraulic heads at the next time. Moreover, the LP simulated
the operation of surfacewater system, and theANNpredicted
hydraulic head variations under time-varying pumping.

2. Methods

Figure 1 illustrates the procedure of the FIS conjunctive use
model. The FIS conjunctive use model comprises the control

and simulation levels. Firstly, the FIS, which is in the control
level, determines the assigned demand among surface and
subsurface water each time step. After determining the
assigned demands, the subsurface water submodel deter-
mines the hydraulic head using ANN [19], and the surface
water allocation submodel obtains the reservoir supply and
future reservoir storage using LP [25, 26].

2.1. Fuzzy Inference System (FIS). The FIS is composed of five
functional blocks [5]: (1) a rule base containing a number of
fuzzy if-then rules; (2) a relational database which defines
membership functions of the fuzzy set used in the fuzzy
rules; (3) a fuzzification interface which transforms crisp
inputs into degrees of match with linguistic values; (4) a
fuzzy reasoning which performs inference operations on the
rules; in FIS applications, the max-min and max product
compositional operators are used most commonly because
of their computational simplicity and efficiency; and (5)
a defuzzification interface which transforms a combined
output of fuzzy rules into a crisp value [2, 10, 22].The current
study uses the centroid method to defuzzify the aggregate
fuzzy set, directly computing the real valued output as a
normalized combination of membership values.

The study follows a typical process in developing the fuzzy
system; for example, (1) define the linguistics variables; (2)
construct the fuzzy rule structures; (3) determine the fuzzy
set parameters; (4) encode the fuzzy sets, fuzzy rules, and
the procedures; and (5) evaluate and tune the system [2]
(Figure 2). In this study, the operation rule is the concept of
water level index balance that the water system reaching the
highest levels at the current time has a priority for supply at
the next time [27, 28].The FIS follows the following rule; that
is, the abundant water system supplies more and the scarce
water system supplies less water. In the study, the premises
of the fuzzy rule are surface and subsurface water states, and
the consequence is the assigned demand of each well.The 𝑘th
fuzzy rule in each time step is given as:

if(∑
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where 𝑉𝑡
𝑖
is the storage of the 𝑖th reservoir; IF𝑡

𝑖
is the inflow

of the 𝑖th reservoir; ℎ
𝑡

is the average subsurface water level
in the observation wells; 𝐷𝑡 is the assigned demand of each
well in the subsurface water system; and 𝐴
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, 𝐵
𝑘
and, 𝐶

𝑘
are

linguistic values in the 𝑘th rule.
The premises and consequences are assigned as the

triangular membership functions as in Figure 3. Two input
variables are surface water state and subsurface water state,
that is, average hydraulic head in the observations. The fuzzy
membership functions of the inputs are divided into five
categories, that is, “Low, Low Med., Medium, High Med. and,
High.” Triangular functions with equal base widths are the
simplest possible, and these are often selected for practical
applications [4]. In the study, the surface water state ranges
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Figure 1: Flowchart of the FIS conjunctive use model.

from 0 to 120 × 106m3 and the average hydraulic head
ranges from 70 to 94m in the observation wells. The output
variable is the assigned demand of each well from subsurface
water which ranges from 0 to 0.3 cms and is divided into
four categories in the membership function, that is, Low,
Low Med., Medium, and High. The FIS computes the weights
of each triggered rule, accumulating weights and outputs
for each rule, and finally computing the weighted output
for each rule [6]. Moreover, fuzzy sets provide a means of
translating linguistic descriptors into a usable numerical form
[26]. Table 1 shows the fuzzy rules; for example, If surface
water state is Low, andsubsurface water level isHigh, then the
assigned demand from subsurface water is High. After the
FIS determines subsurface water demand, the surface water
demand could be represented as

𝐷
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= 𝐷
𝑡
− 𝐷
𝑡

× 𝑁
𝑝
, (2)

where𝐷𝑡 is the whole water requirement in the tth time step;
𝐷𝑡 is the surface water assigned demand in the tth time step;
and𝑁

𝑃
is the number of pumping wells.

2.2. Surface Water Submodel. The surface water allocation
model is represented as
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where SH𝑡
𝑗
is the shortage in demand 𝑗 at the 𝑡th time step,
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Figure 2: Procedure of developing the fuzzy system.

the study, 𝑗 = 1.𝐺𝑡
𝑖𝑘
is the difference betweenwater level index

(WLI) of the reservoirs 𝑖 and 𝑘 at the 𝑡th time step [27, 28]
and𝑁

𝑆
is the reservoir storage node set; if 𝑖 = 𝑘, then 𝐺𝑡

𝑖𝑘
= 0

otherwise.𝑍𝑡
𝑖
is the ratio of residual volume to the capacity in

reservoir 𝑖 at the 𝑡th time step: (𝑉max
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𝑖
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are the weight coefficients applied to the shortage, surface-
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ratio, respectively (𝑐
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are minimum and maximum capacity of
the reservoir 𝑖. 𝑋min
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𝑖,𝑗
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discharge of the pipe from node 𝑖 to 𝑗 and Ω is the node set
of the system network. The surface water demand considers
hedging rule at time step 𝑡. The hedging rule is illustrated as
follows:

if 𝑉𝑡joint ≥ 𝑉2, then 𝐷𝑡 = 𝐷𝑡,
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2
𝐷
𝑡
,

(8)

where𝑉𝑡joint is the joint storage in all reservoirs;𝑉
1
is the sum

ofmaximum storage (upper limit) among the reservoirs;𝑉
2
is

Table 1: Rule table for the operation in conjunctive use operation
using FIS within high usage of subsurface water.

Surface water state
Low Low Med. Medium High Med. High

Subsurface water state
Low Low Low Low Low Low
Low Med. High High Low Low Low
Medium High High Low Low Low
High Med. High High Low Low Low
High High High Low Low Low

the sum of target storage (lower limit) among the reservoirs;
and 𝑉

3
is the sum of firm storage (critical limit) among the

reservoirs; 𝜔
1
and 𝜔

2
are the rationing factors. In the study,

𝜔
1
and 𝜔

2
are 0.85 and 0.75.

This study uses the linear programming (LP) to simulate
the surface water system in (3)∼(8).The formulation is as fol-
lows. Equation (3) specifies the objective function consisting
of three subobjectiveswhich include the total shortage in each
time step, the difference between the reservoir water level,
and the ratio of the residual water volume to the capacity of
each reservoir. Equations (4) and (5) list the mass balance
equation and the demand constraint of each reservoir in
each time step. Equation (6) specifies the capacity constraints
for each reservoir in each time step. Equations (7) and (8)
specify the constraints on the flow through the pipes and
hedging rule in each time step. In the study, the model first
determines the demand with the hedging rule (8), and then
the LP determines the flows in the system at 𝑡while satisfying
the demand with the hedging rule.

2.3. Subsurface Water Submodel. The current study uses
ANN to serve as the simulator for modeling nonlinear
and time-varying groundwater flow. An ANN consists of a
number of neurons arranged in an input layer, an output layer,
and one hidden layer. The inputs are state vectors, which are
the set of hydraulic head (ℎ𝑡) and the pumping rate vector
(𝑃𝑡). The output is the hydraulic head vector at the next
time step (ℎ𝑡+1). The subsurface water model is illustrated as
follows:

ℎ
𝑡+1
= 𝑓 (ℎ

𝑡
, 𝑃
𝑡
) , (9)

𝑃
𝑡

𝑖
≤ 𝐷
𝑡

, (10)

where ℎ𝑡 and ℎ𝑡+1 are subsurface water level vectors at time 𝑡
and 𝑡 + 1; 𝑃𝑡 is the supply vector offered from the pumping
well; and 𝑃𝑡

𝑖
is the supply at the well 𝑖 in the 𝑡th time

step. Equation (9) represents the subsurface water transient
equation with the artificial neural networks. Equation (10)
represents the demand-supply of constraint each well at time
𝑡. Pumping rate of eachwell is assumed to be less than or equal
to assigned demand with the FIS in the study.

The ANN was trained by the back-propagation learning
algorithm [29] for subsurface water table prediction. The
typical processes of the ANN parameters identification such
as the number of hidden layers and the neurons are listed
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in Negnevitsky [2]. This ANN consists of a three-layer feed-
forward network and one hidden layer in which the layer
contains twenty neurons.

2.4.The Simulation-OptimizationModel. To compare the FIS
with the simulation-optimization model, this study further
formulates the problem (1)∼(10) into the sequential opti-
mization problem. As previously stated, this investigation
integrates sequential optimization and simulation models to
solve the problem defined as follows:
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(11)

where 𝑆𝐺𝑡 represents the difference between WLI of surface
and subsurface water systems at time step 𝑡 and 𝑐

4
is the

weight coefficient applied to WLI difference between surface
and subsurface water systems (𝑐

4
= 10). In the model, the

pumping rates are first obtained by the heuristic optimization
(i.e., genetic algorithm (GA)). Then, the release of each
reservoir and next time-step states are determined by (4)∼
(10) using the LP and ANN.

2.5. Case Study. This study performs numerical analysis on a
water supply problem to verify effectiveness of the proposed
methodology. The planning horizon in the study is twenty
years and each time step is ten days. Figure 4 shows the
conjunctive use system including two reservoirs and an
aquifer. Reservoirs 1 and 2 contain a capacity of 7.0×107 (m3)
and 5.0×107 (m3). Reservoir operation rules will be designed
to vary with periods [30]. Figures 5(a) and 5(b) are operation
rule curves for Reservoirs 1 and 2, respectively. Full of water
in reservoirs is assumed as the initial condition. Figure 6
shows both reservoirs inflows that reflect the hydrological
dynamics of Taiwan. The inflow ratio of drought season
to wet season is 0.32 (Reservoir 1) and 0.20 (Reservoir 2).
Moreover, the capacity factor (i.e., effective capacity/average
annual flow) of Reservoir 1 is 0.24 while that of Reservoir 2
is 0.35. Figure 7 demonstrates a hypothetical homogeneous
unconfined aquifer with dimensions of 17 km by 17 km.
The case contains 170 × 170 finite-difference meshes along
with five pumping wells (red blocks) and five observation
wells (black blocks). The boundary conditions on the north
and south sides are no-flow boundaries. The west and east
constant-head boundaries are 100m and 80m, respectively.
Aquifer properties and simulation parameters are shown in
Table 2.

3. Results and Discussion

3.1. Comparison of Decoupled and Coupled Conjunctive Use
Operations. Table 3 demonstrates the series of models under
the same water requirement amount, 1.5 × 107 (m3/ten-
day). Case 1 considers decoupled operation that surface

Table 2: Aquifer properties and simulation parameters.

Parameter Value
Aquifer thickness (m) 110
Specific yield 0.2
Porosity 0.2
Horizontal hydraulic conductivity (m/s) 0.0001
Vertical hydraulic conductivity (m/s) 0.0001
Simulation time step length (days) 10
Maximum pumping rate (cms) 0.3

Table 3: Case abstract in the study.

Case
number Description

1 Decoupled conjunctive use operation

2 Conjunctive use operation using FIS within high usage
of subsurface water

3 Conjunctive use operation using a
simulation-optimization model

4 Conjunctive use operation using FIS within low usage
of subsurface water

water is supplied in advance, and subsurface water is then
supplied. Case 2 considers the conjunctive use of surface and
subsurface water simultaneously by using FIS based on fuzzy
rules (Table 1). Table 4 presents the water supply and shortage
index (SI) [31, 32] which, proposed by the US Army Corps of
Engineers, could represent the severity of the long-termwater
shortage from surface and subsurface water.The result shows
that the 10-day and annual SI of Case 2 are lower than those of
Case 1. It implies that the FIS could improve water shortage
in the case study. Compared with Case 1, Case 2 decreases
the shortage by 26.23%, and the FIS makes a significant drop
in deficit risk. This indicates that the FIS conjunctive use of
surface and subsurface water is more efficient. The FIS speci-
fies how much water is supplied from surface and subsurface
water to achieve system demand requirement. According
to the fuzzy rules, water is supplied from surface water in
normal time and from subsurface water during the drought.
Figure 8 implies the relationship between subsurface water
supply and shortage in decoupled and coupled conjunctive
use models (Cases 1 and 2). Furthermore, subsurface water is
supplied earlier in coupled conjunctive use model (Case 2)
than in the decoupled conjunctive use model (Case 1)
during the drought. The result indicates that timing of water
allocation is significantly important. Considering the FIS
conjunctive operation (Case 2), water supply from subsurface
water in advance may reduce the impact of shortage under
a long-term operation. Ponnambalam et al. [33] compared
general operating rules developed by both fuzzy rules and
regression-based rules. Their results demonstrate that the
FIS rules perform much better than the regression rules
for dealing with uncertainty of inflows. Fuzzy sets provide
a nonfrequentist approach to considering uncertainty [34].
The FIS conjunctive use of surface and subsurface water
can enhance the reliability of water supplies by providing
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Table 4: The shortage indices and the supply of water system in the cases.

Case 1 2 3 4
10-day SI 2.09 1.44 1.50 1.84
Annual SI 0.61 0.45 0.48 0.59

Number of 10 days in shortage 262 234 241 250

Surface water (104m3) 10-day supply 1345.25 1345.07 1343.68 1347.77
Annual supply 48429.10 48422.62 48372.49 48519.6

Subsurface water (104m3) 10-day supply 49.77 73.44 65.60 56.80
Annual supply 1791.56 2643.77 2361.48 2044.84
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Low Medium

HighMed
High

6 00

1
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LowMedLow Medium HighMed
High

(b)

0
0 0.1 0.2

Low LowMed High

1

Medium

0.3
(cms)

(c)

Figure 3: Fuzzy membership function for (a) input 1: surface water state, (b) input 2: subsurface water state, and (c) output: pumping rate.
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Figure 4: Schematic diagram of water resources system.
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Figure 5: The operation rule curve of (a) Reservoir 1 and (b) Reservoir 2.

1 51 101 151 201 251 301 351 401 451 501 551 601 651 701
10-day

Reservoir 1
Reservoir 2

00.E + 00

05.E + 06

10.E + 06

20.E + 06

15.E + 06

25.E + 06

In
flo

w
 (m

3
)

Figure 6: Reservoir inflows in surface water system.

independent sources. Surface and subsurface water systems
contain distinctly different characteristics; for example, sur-
face water is rapid fluctuations and subsurface water varies
gradually. Considering the fuzzy rules that abundant water
system supplies more water, the FIS is efficiently applicable to
the management of surface and subsurface water.

3.2. Comparison of FIS and Simulation-Optimization Model.
This study compares the FIS and simulation-optimization
models to verify effectiveness of the proposed FIS method-
ology for conjunctive use of surface and subsurface water.
Simulation-optimization approach is used in Case 3 for
minimizing the water shortage and balancing the usages
between surface and subsurface water (11). In the simulation-
optimizationmodel, the surface and subsurfacewater simula-
tion models including the LP and ANN are embedded in the
genetic algorithm (GA) to determine the pumping rate and
water allocation in each time step sequentially. For the details
of GA refer to McKinney and Lin [35], Chen et al. [36], and
Chang et al. [37].

The result reveals that 10-day and annual SI of the FIS and
simulation-optimization model (Cases 2 and 3) are similar
(Table 4). Both models can decrease the water shortage more
than 20% in comparison Case 1. This information allows the
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Figure 7: Model of subsurface water system, observation, and
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decisionmakers to control water supply for a long term by the
FIS. Similar to the simulation-optimization model, the fuzzy
operating rules specify how water is managed throughout
the system to achieve system demand requirement. During
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Table 5: Validation results in subsurface water ANN model.

MSE (m2) RMSE (m) AME (m)
Obs. 1 0.42 0.65 0.51
Obs. 2 0.45 0.67 0.53
Obs. 3 1.04 1.02 0.82
Obs. 4 0.43 0.65 0.52
Obs. 5 0.47 0.69 0.54
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Figure 9: Comparison of average hydraulic heads in Case 2 and 4.

the drought, subsurface water is used in advance, and surface
water is saved. Water supply using the FIS will reduce
the impact of shortage. However, problem solving requires
hundreds to thousands of numerical simulation runs for
searching water supply strategies in the GA approach. For
example, the maximum number of generations is twenty, and
the population size for each generation is fifty chromosomes.
Therefore, 1000 searching possibilities at most are needed
in each time step. The computation is more effective using
the FIS than the GA. However, the FIS approach obtains
near-optimal solutions and saves considerable computational
time. The FIS provides an alternative way for conjunctive
operations that offer the good chances for water supply
management [3–5]. The FIS is easy to apply and extend to a
complex water system [3], utilized in controlling humanistic
systems in water resources management, and offers an alter-
native way for conjunctive operation.

3.3. Subsurface Water Table Simulation by ANN and Control
by FIS. The ANN inputs include the hydraulic heads in five
observation wells and pumping rates in five pumping wells
at current time, and the outputs are hydraulic heads in the
observations at next time. The data are generated by the
MODFLOW and sets of input-output patterns are generated
by a random pumping rate between the minimum and
maximum (from 0 to 0.3 cms).TheMODFLOW, is a physical
finite-difference numerical flow model and a computer pro-
gram developed by the US Geological Survey [38]. Moreover,
a network training function updates weight and bias values
according to Levenberg-Marquardt optimization [39]. The
transfer functionswith a hidden layer and the output layer are
hyperbolic tangent. If the training stop criteria (i.e., MSE =
10
−7) are not met, the learning algorithm continues.

Table 6: Rule table for the operation in conjunctive use operation
using FIS within low usage of subsurface water.

Surface water state

Low Low
Med. Medium High

Med. High

Subsurface water state
Low Low Low Low Low Low
Low Med. Medium Medium Low Low Low
Medium Medium Medium Low Low Low
High Med. Medium Medium Low Low Low
High Medium Medium Low Low Low

The total available data has been divided into two sets,
training and validation sets: 2,500 samples were used to
train the ANN, and 1,000 samples were used for validation.
Table 5 presents the ANN validation results. Accuracy of
the ANN model can be quantified when compared with
MODFLOW. Comparing relative errors reveals that, among
the table, Observation 1 is the lowest error in the estimation.
Results demonstrate that relative error with respect to average
subsurface water level is 1.3% or less. After the validation,
the ANN simulates the subsurface water level with time
behind the FIS operating. Accordingly, the ANN obtains
better results, and the computing time of the ANN model is
about 1/53 of a traditionalMODFLOW.This result reveals that
the ANN predicts hydraulic heads efficiently at the selected
control locations under variable pumping but condensed
surrogate for subsurface water flow model in interesting
cells [18, 21]. Results show the ANN approach has a great
potential to predict subsurface water level because it permits
developing complex and nonlinear models.

Figure 9 shows time-varying hydraulic heads in the two
FIS cases (Cases 2 and 4) under various pumping strategies.
The fuzzy rules for high and low usages in Cases 2 and 4 are
represented in Tables 1 and 6. Overall, the average hydraulic
heads vary with dry-wet cycles. In Cases 2 and 4, a fuzzy
rule-based system determines the pumping rate considering
hydraulic head constraint implicitly. Moreover, the FIS will
decide to pump a large volume of subsurface water in Case
2 and pump a small volume of subsurface water in Case 4;
therefore the hydraulic head in Case 4 is higher than that
in Case 2. Appropriate subsurface water usage makes water
resources sustainable. Moreover, subsurface water overdraft
causes land subsidence problems in many places; therefore
preventing the consequences of aquifer exploitation is essen-
tial [40, 41]. Results show that the minimum hydraulic head
in Case 2 is around 73m and that in Case 4 is around 81m
(Figure 9), representing that hydraulic head is under control
using the FIS. As a result, fuzzy rules consider hydraulic
head constraints implicitly for environmental conservation.
Accordingly, the FIS is the intelligent control model based
on the fuzzy rule and controls humanistic systems in water
resources management. In the FIS approach, the rules with
the expert experience can satisfy demand and environmental
conservation adaptively. The FIS offers the ability for the
adaptive management so that the system follows the fuzzy
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rule and adapts the supply water based on the states of the
system. Thus, the managers can adjust the fuzzy operation
strategy to satisfy the water demand and environmental
conservation.

4. Conclusions

This study applied a fuzzy inference system (FIS) for the
conjunctive use of surface and subsurface water. The FIS
determines operating policies between surface and subsur-
face water based on the current states. The approach with
the expert knowledge could obtain efficient and near-optimal
solutions when compared to the simulation-optimization
approach. After assigning the demand of surface and subsur-
face water, the ANN and LP simulate the surface and sub-
surface water states.

Results show that the FIS enhances reliability of water
supply and provides a decision for utilizing twowater sources.
To minimize the impacts of consequential shortages, the FIS
follows the operation rules in which abundant water system
supplies more, but scarce water system supplies less. The
FIS improves shortage performance because the FIS supplies
subsurface water early and retains surface water during dry
season. The FIS controls the supply between surface and
subsurface water and reduces the impact of overpumping
of subsurface water. Therefore, the FIS is best utilized in
controlling humanistic systems whose behavior is influ-
enced by expert knowledge for water resources management.
Direction for future studies could consider an autotuning
technology and a neural learning technology or parameter
optimization approaches further acquiring the rule from
expert knowledge [42].
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