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This paper presents a spatiotemporal analysis of hotspot areas based on the Extended Fuzzy C-Means method implemented in a
geographic information system. This method has been adapted for detecting spatial areas with high concentrations of events and
tested to study their temporal evolution. The data consist of georeferenced patterns corresponding to the residence of patients in
the district of Naples (Italy) to whom a surgical intervention to the oto-laryngopharyngeal apparatus was carried out between the
years 2008 and 2012.

1. Introduction

In a GIS, the impact of phenomena in a specific area due to
the proximity of the event (e.g., the study of the impact area of
an earthquake, or the area constraint around a river basin) is
performed using buffer area geoprocessing functions. Given a
geospatial event topologically represented as a georeferenced
punctual, linear, or areal element, an atomic buffer area is
constituted by circular areas centered on the element. For
example, if the event is the epicenter of an earthquake,
georeferenced by a point, a set of buffer areas is formed by
concentric circular areas around that point; the radius of each
circular buffer area is defined a priori.

When it is not possible to define statically an area of
impact and we need to determine what is the area affected
by the presence of a consistent set of events, we are faced
with the problem of detecting this area as a cluster on which
the georeferenced events are thickened as well. These clusters

are georeferenced, represented as polygons on the map, and
called hotspot areas.

The study of hotspot areas is vital in many disciplines
such as crime analysis [1–3], which studies the spread on
the territory of criminal events, fire analysis [4], which
analyzes the phenomenon of spread of fires on forested areas,
and disease analysis [5–7], which studies the localization
of focuses of diseases and their temporal evolution. The
clustering methods mainly used for detecting hotspot areas
are the algorithms based on density (see [8, 9]); they can
detect the exact geometry of the hotspots, but are highly
expensive in terms of computational complexity, and in the
greatmajority of cases, it is not necessary to determine exactly
the shape of the clusters. The clustering algorithmmore used
for its linear computational complexity is the Fuzzy C-Means
algorithm (FCM) [10], a partitive fuzzy clustering method
that uses the Euclidean distance to determine prototypes
cluster as points.
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Using the Lagrange multipliers method for minimizing the
objective function (1), we obtain the following solution for the
center of each cluster prototype:

k
𝑖
=

∑

𝑁

𝑗=1
𝑢

𝑚

𝑖𝑗
x
𝑗

∑

𝑁

𝑗=1
𝑢

𝑚

𝑖𝑗

, (3)

where 𝑖 = 1, . . . , 𝐶 and for membership degrees 𝑢
𝑖𝑗
,

𝑢
𝑖𝑗
=

1

(∑

𝑐

ℎ=1
(𝑑

2

𝑖𝑗
/𝑑

2

ℎ𝑗
))

2/(𝑚−1) (4)

subjected to the constraints:

𝐶

∑

𝑖=1

𝑢
𝑖𝑗
= 1, ∀𝑗 ∈ {1, . . . , 𝑁} ,

0 <

𝑁

∑

𝑗=1

𝑢
𝑖𝑗
< 𝑁, ∀𝑖 ∈ {1, . . . , 𝐶} .

(5)

Initially, the 𝑢
𝑖𝑗
’s and the v

𝑖
are assigned randomly and

updated in each iteration. If 𝑈

(𝑙)
= (𝑢

(𝑙)

𝑖𝑗
) is the matrix U

calculated at the 𝑙-th step, the iterative process stops when
󵄩
󵄩
󵄩
󵄩
󵄩

U(𝑙) − U(𝑙−1)󵄩󵄩󵄩
󵄩
󵄩

= max
𝑖,𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

𝑢

(𝑙)

𝑖𝑗
− 𝑢

(𝑙−1)

𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

< 𝜀, (6)

where 𝜀 > 0 is a prefixed parameter.
This algorithm has a linear computational complexity;

however, it is sensitive to the presence of noise and outliers;
furthermore, the number of cluster 𝐶 is fixed a priori and
needs to use a validity index for determining an optimal value
for the parameter 𝐶.

In order to overcome these shortcomings, in [11, 12], the
EFCM algorithm is proposed, where the cluster prototypes
are hyperspheres in the case of the Euclidean metric. Like
FCM, the EFCM algorithm is characterized by a linear com-
putational complexity; furthermore, it is robust with respect

A − (A ∩ B)

= A − B

A ∩ B
B − (A ∩ B) =

B − A

Figure 1: Intersections of two hotspots detected for events that
happened in two consecutive periods.

to the presence of noise and outliers, and the final number of
clusters is determined during the iterative process.

In [13, 14], the authors propose the use of the EFCM
algorithm for detecting hotspot areas. The final hotspots are
identified as the detected cluster prototypes and shown on the
map as circular areas. In [4], the authors analyze the spatio-
temporal evolution of the hotspots in the fire analysis. The
pattern event dataset is partitioned according to the time
of the event’s detection; so each subset is corresponding to
a specific time interval. The authors compare the hotspots
obtained in two consecutive years by studying their inter-
sections on the map. In this way, it is possible to follow the
evolution of a particular phenomenon.

The cluster prototypes detected from EFCM method are
circular areas on themap that can approximate a hotspot area.
Figure 1 shows an example of two circular hotspots, obtained
as clusters.

Figure 1 shows three different regions.

(i) An area in which the hotspot 𝐴 is not intersected
by the hotspot 𝐵 (corresponding to 𝐴 − (𝐴 ∩ 𝐵) =

𝐴−𝐵): this region can be considered as a geographical
area in which prematurely detected event disappears
successively.

(ii) The region of intersection of the two hotspots 𝐴 ∩ 𝐵:
this region can be considered a geographical area in
which the event continues to persist.

(iii) An area in which the hotspot B is not intersected by
the hotspotA (corresponding to 𝐵−(𝐴∩𝐵) = 𝐵−𝐴):
this region can be considered as a geographical area in
which the prematurely undetected event propagates
successively.

We can study the spatio-temporal evolution of the hotspots
by analyzing the interactions between the corresponding
circular cluster prototypes obtained for consecutive periods,
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and detecting the presence of new hotspots in regions previ-
ously not covered by hotspots and the absebce of hotspots in
regions previously spatially included in hotspot areas.

In this research, we present a method for studying
the spatio-temporal evolution of hotspots areas in disease
analysis; we apply the EFCM algorithm for comparing,
in consecutive years, event datasets corresponding to oto-
laryngopharyngeal diseases diagnosis detected in the district
of Naples (I). Each event corresponds to the residence of the
patient who contracted the disease.

We study the spatio-temporal evolution of the hotspots
analyzing the intersections of hotspots corresponding to
two consecutive years, the displacement of the centroids,
the increase or reduction of the hotspots areas, and the
emergence of new hotspots.

In Section 2, we give an overview of the EFCM algo-
rithm. In Section 3, we present our method for studying the
spatio-temporal evolution of hotspots in disease analysis. In
Section 4, we present the results of the spatio-temporal evolu-
tion of hotspots for the otolaryngologist-laryngopharyngeal
diseases diagnosis events detected in the district of Naples (I).
Our conclusions are in Section 5.

2. The EFCM Algorithm

In the EFCM algorithm, we consider clustering prototypes
given by hyperspheres in the 𝑛-dimensional feature’s space.
The 𝑖th hypersphere is characterized by a centroid v
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However, the usage of (12) produces the negative effect of
diminishing the objective function (10) when a meaningful
number of features are placed in a cluster and this fact can
prevent the separation of the clusters. Then a solution to this
problem consists in the assumption of a small starting value
of 𝑟
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and then it is increased gradually with the factor𝛽(𝑙)/𝐶(𝑙),
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The 𝑘

∗th row can be removed from the matrix 𝑈

(𝑙). In
other words, the EFCM algorithm can be summarized in the
following steps.

(1) The user assigns the initial number of clusters 𝐶
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,
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(2) The membership degrees 𝑢

(0)

𝑖𝑗
(𝑗 = 1, . . . , 𝑁 and 𝑖 =

1, . . . , 𝐶(0)) are assigned randomly.
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Figure 2: Example of events georeferenced on a road network.

(3) The centers of the clusters V
𝑖
are calculated by using

(3).
(4) The radii of the clusters are calculated by using (9).
(5) 𝑢
𝑖𝑗
is calculated by using (12).

(6) The indexes 𝑖∗ and 𝑘

∗ are determined in such a way
that 𝑆(𝑙)
𝑖
∗
𝑘
∗ assumes the possible greatest value at the 𝑙th

iteration.
(7) If |𝑆(𝑙)

𝑖
∗
𝑘
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(𝑙)

𝑖
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𝑘
∗ > 𝛼(𝑙) = 1/(𝐶

(𝑙−1)
− 1),

then the 𝑖∗th and 𝑘

∗th clusters aremerged via (14) and
the 𝑘∗th row is deleted from 𝑈

(𝑙).
(8) If (6) is satisfied, then the process stops; otherwise, go

to the step (3) for the (𝑙 + 1)th iteration.

3. Hotspots Detection and Evolution in
Disease Analysis

Each pattern is given by the event corresponding to the
residence of the patient to whom a specific disease has been
detected. The two features of the pattern are the geographic
coordinates of the residence.

The first step of our process is a geocoding activity
necessary for obtaining the event dataset starting by the street
address of the patients.

To ensure an accurate matching for the geopositioning of
the event, we need the topologically correct road network and
the corresponding complete toponymic data.

The starting data include the name of the street and the
house number of the patient’s residence. After the matching
process, each data is converted in an event point georefer-
enced on the map.

In Figure 2, the road network of the district of Naples is
shown; the name of the street is labeled on themap; the events
are georeferenced as points on the map.

Figure 3 shows the data corresponding to an event
selected on the map.

After geo-referencing each event, the event dataset can
be split, partitioning them by time interval. For example, the
event in Figure 3 can be split by the field “Year.”

For each subset of events, we apply the EFCM algorithm
to detect the final cluster prototypes.

Figure 3: Data associated to an event on the map.

Figure 4: A form created in theGIS Tool ESRIArcGIS formanaging
the EFCM process.

In this research, we point out the analysis of the temporal
evolution and spread of oto-laryngo-pharyngeal diseases
detected within the district of Naples. The datasets, divided
by time sequences corresponding to periods of one year,
are made up of patterns for different events georeferenced
corresponding to ailments encountered in patients for which
an intervention and the subsequent histological examination
were pointed out as well. The event refers to the geoposition-
ing of the location of the patient.

The data have been further divided by the type of the
disease for analyzing the distribution and evolution of each
specific disease on the area of the study.

The EFCM algorithm has been encapsulated in the GIS
platform ESRI ArcGIS. Figure 4 shows the mask created for
setting the parameters and running the EFCM algorithm.

We can set other numerical fields for adding other
features to the geographical coordinates.

Initially, we set the initial number of clusters, the fuzzifier
m, and the error threshold for stopping the iterations. After
running EFCM, the number of iterations, the final number
of clusters, and the error calculated at the last iteration are
reported. The resultant clusters are shown as circular areas
on the map and can be saved in a new geographic layer.

The final process concerns the comparative analysis of
the hotspots obtained by the clusters corresponding to each
subsets of events.
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Figure 5: Analysis of the spatio-temporal evolution of hotspots
detected in two consecutive periods.

Figure 6: Edema of bilateral Reinke disease—year 2011: display of
the hotspots on the map.

Figure 5 shows an example of display on the map of
hotspots obtained as final clusters for two consecutive subset
of events.

In order to assess the expansion and the displacement
of a hotspot, we measure the radius of the hotspot and the
distance between the centroids of two intersecting hotspots.

In the next section, we present the results obtained by
applying this method for the data corresponding to surgical
interventions to the oto-laryngo-pharyngeal apparatus in
patients residents in the district of Naples between the years
2008 and 2012.

We divide the dataset per year and analyze various types
of diseases.

Among the types of the most frequent diseases, the
following were analyzed:

(i) carcinoma,
(ii) edema of bilateral Reinke,
(iii) hypertrophy of the inferior turbinate,
(iv) nasal polyposis,
(v) bilateral vocal fold prolapse.

In the next section, we show the most significant results
obtained by applying this method to the each partitioned
dataset of events.

Figure 7: Edema of bilateral Reinke disease—year 2012: display of
the hotspots on the map.

Table 1: Endema of bilateral Reinke disease—final number of
clusters and final error for year.

Year Initial number
of clusters

Final number
of clusters |𝑈

(𝑙)
− 𝑈

(𝑙−1)
| 𝜀

2008 15 4 0.48 × 10

−2
1 × 10

−2

2009 15 4 0.55 × 10

−2
1 × 10

−2

2010 15 4 0.71 × 10

−2
1 × 10

−2

2011 15 4 0.67 × 10

−2
1 × 10

−2

2012 15 3 0.53 × 10

−2
1 × 10

−2

4. Test Results

Wepresent the results obtained on the event dataset described
above in the period between the years 2008 and 2012.

We consider first the subset of data corresponding to the
edema of bilateral Reinke disease.

We fix the fuzzifier parameter to 0.1, the initial number of
clusters to 15, and the final iteration error to 1 × 10−2.

Table 1 shows the results obtained for each year.
We present the details relating to the comparison of the

hotspots obtained by considering the event data for the years
2011 and 2012.

Figures 6 and 7 show, respectively, the hotspots obtained
by using the pattern subset of events that occurred in the years
2011 and 2012.

Figure 8 shows the overlap of the hotspots obtained for
the two years: in red, the hotspots corresponding to the year
2011; in blue, the ones corresponding to the year 2012.

Table 2 shows in the first two columns the labels of the
hotspots in 2011 and 2012, in third (resp., fourth) column the
radius obtained in 2011 (resp., 2012), and the distance between
the centroids is given in the fifth column.

The results show that only hotspot 3 obtained for the year
2011 remains almost unchanged in the year 2012. Instead,
hotspots 1 and 2 seem to merge into a single larger hotspot
(the hotspot 1 obtained for the year 2012), and hotspot 4, that
shifts about 1 km, is expanded; the radius of this hotspot in
2012 is about 6.5 km (hotspot 3 obtained for the year 2012 in
Figure 8).
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Figure 8: Edema of bilateral Reinke disease—years 2011 and 2012:
display of the two hotspots’ series.

Table 2: Endema of bilateral Reinke disease—comparison results of
the hotspots obtained for the years 2011 and 2012.

2011
hotspot

Intersecting
2012 hotspot

Radius 2011
hotspot (km)

Radius 2012
hotspot (km)

Centroid’s
distance (km)

1 1 1.724 3.848 1.759
2 1 1.943 3.848 1.507
3 2 3.434 3.453 0.074
4 3 3.591 6.519 1.115

Table 3: Nasal polyposis—comparison results of the hotspots
obtained for the years 2011 and 2012.

2011
hotspot

Intersecting
2012 hotspot

Radius 2011
hotspot (km)

Radius 2012
hotspot (km)

Centroid’s
distance (km)

1 1 3.087 4.951 2.656
2 2 4.915 7.103 1.052

Now we show the results obtained for the disease nasal
polyposis.

Figure 9 shows the overlap of the hotspots obtained for
the two years, 2011 and 2012.

In Table 3, the comparison’s results are reported.
The results in Figure 9 show that in 2011 and 2012 there

are two hotspots: the one covering an area of the city of
Naples and the other coveringmanyVesuvian towns.The two
hotspots, which in 2011 covered a circular area with a radii of
about 3 and 5 km, respectively, in 2012 cover a circular area
with radii of about 5 and 7 km, respectively.

The histogram in Figure 10 shows the trend of the radii of
the two hotspots in the course of time.

It is relevant the spread in recent years of the hotspot that
surrounds the Vesuvian towns (the radius of this hotspot,
from about 2 km in the year 2008, is about 7 km in the year
2012).

Another significant trend concerns the hotspots obtained
for the carcinoma disease.

Also, in this case, the two main hotsposts cover the city
of Naples and many Vesuvian towns. In in this case, we have
a very high spread of the hotspot covering the city of Naples

Figure 9: Nasal polyposis disease—years 2011 and 2012: display of
the two hotspots’ series.
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Figure 10: Nasal polyposis disease—histogram showing the varia-
tion of the radius of the two hotspots over time.

(cfr. Figure 11); in recent years, the radius of this hotspot is
increased up to 9.5 km.

5. Conclusions

The hyperspheres obtained as clusters (circles in case of
two dimensions) by using EFCM can represent hotspots in
hotspot analysis; this method has a linear computational
complexity and is robust to noises and outliers. In hotspots
analysis, the patterns are bidimensional and the features are
formed by geographic coordinates; the cluster prototypes are
circles that can represent a good approximation of hotspot
areas and can be displayed as circular areas on the map.

In this paper, we present a new method that uses the
EFCM algorithm for studying the spatio-temporal evolution
of hotspots in disease analysis.
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Figure 11: Carcinoma disease—histogram showing the variation of
the radius of the two hotspots over time.

We consider the residence’s information of patients in
the district of Naples (Italy) to whom a surgical intervention
to the oto-laryngo-pharyngeal apparatus was carried out
between the years 2008 and 2012. A geocoding process is
used for geo-referencing the data; then, the georeferenced
dataset is partitionedper year and type of disease; we compare
the hotspots obtained for each pair of consecutive years and
analyze the trend of each hotspot over time measuring the
variation of the radius and the distance between intersecting
cluster centroids concerning two consecutive years.

The results show a consistent spread in the last years of
the nasal polyposis disease hotspot covering some Vesuvian
towns and of the carcinoma disease hotspot covering the city
of Naples.
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