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We use a new method based on discrete fuzzy transforms for coding/decoding frames of color videos in which we determine
dynamically the GOP sequences. Frames can be differentiated into intraframes, predictive frames, and bidirectional frames, and we
consider particular frames, calledΔ-frames (resp., R-frames), for codingP-frames (resp., B-frames) by using two similaritymeasures
based on Lukasiewicz 𝑡-norm; moreover, a preprocessing phase is proposed to determine similarity thresholds for classifying the
above types of frame. The proposed method provides acceptable results in terms of quality of the reconstructed videos to a certain
extent if compared with classical-based F-transforms method and the standard MPEG-4.

1. Introduction

A video can be considered as a sequence of frames of sizes
𝑁 ×𝑀; a frame is an image that can be compressed by using
a lossy compression method. We can classify each frame as
intraframe (for short, I-frame), predictive frame (for short, P-
frame), and bidirectional frame (for short, B-frame) which is
more compressible than I-frame. A B-frame can be predicted
or interpolated from an earlier and/or later frame. In order
to avoid a growing propagation error, a B-frame is not used
as a reference to make further predictions in most encoding
standards except in AVC [1]. A frame can be considered
as a P-frame if it is “similar” to the previous I-frame in
the frame sequence; otherwise, it must be considered as a
new I-frame. This similarity relation between a P-frame and
the previous I-frame is fundamental in video-compression
processes because a P-frame has values in its pixels very
close to the pixels of the previous I-frame. This suggests
to define a frame containing differences between a P-frame
and the previous I-frame, called Δ-frame which has a low
quantity of information and hence it can be coded with a
low compression rate. A P-frame is decoded via the previous
I-frame and the Δ-frame. In the MPEG-4 method [2, 3],
that adopts the JPEG technique [4] for coding/decoding
frames, the I-frames, P-frames, and B-frames are arranged
in a Group of Picture (for short, GOP) sequence. A B-frame

is reconstructed by using either the previous or successive
I-frame. Here the results of [5] are improved by using a
technique based on F-transforms for coding B-frames. For
convenience, we assume that the first frame of a video is an
I-frame. We assign an ID number to each frame of the video.
Thenwe can say that the 𝑘th frame is a B-frame or a P-frame if
it is “very similar” to the previous 𝑖th I-frame in the sense that
its similarity Sim(𝑖, 𝑘) a parameter defined on the Lukasiewicz
𝑡-norm (see formula (12)) is greater than a threshold value
Sim𝑃 [5]; otherwise the 𝑘th frame is assumed to be a new I-
frame as the first frame of the successive GOP sequence.

The first algorithm is used for determining the GOP
sequences; the second algorithm is used for determining the
type of P-frame or B-frame. The first frame of the GOP
sequence is always an I-frame and the last frame is a P-frame.
The function “analyze GOP sequence (ID1, ID2)” reported
in Algorithm 1 describes this process, where ID1 is the ID of
the first I-frame and ID2 is the ID of the last P-frame in the
GOP sequence. This function is used for determining if the
𝑘th frame in the GOP sequence, where ID1 < 𝑘 < ID2, is a
B-frame or a P-frame. We define a threshold similarity Sim𝐵,
and we compare it with the frame whose ID is formed from
the integer [𝑀𝑠] contained in the mean𝑀𝑠 of the previous I-
frame or P-frame and the 𝑘th frame by obtaining a similarity
value Sim(𝑘, [𝑀𝑠]). In the array element NP[𝑘] we insert the
ID number of the last frame after the 𝑘th frame for which



2 Advances in Fuzzy Systems

Sim(𝑘, [𝑀𝑠]) < Sim𝐵 holds. The variable 𝑖 contains the
ID number of the previous I-frame or P-frame; it is initially
called ID1; the variable 𝑤 points to the last frame in the GOP
sequence; it is called ID2.

Algorithm 1 (analyze GOP sequence (ID1, ID2)). Pseudo-
code for determining a GOP sequence

(1) 𝑖 = ID of the first I-frame //𝑖 is the ID of first frame of
the video

(2) 𝑤 = number of frames //𝑤 is the ID of the last P-frame
of the video

(3) 𝑘 = 𝑖 + 1
(4) IF 𝑘 < 𝑤
(5) Calculate the similarity Sim(𝑖, 𝑘) between the 𝑘th

frame and the 𝑖th frame
(6) If Sim(𝑖, 𝑘) < Sim𝑃,

(a) the 𝑘th frame is a B-frame or a P-frame and is
inserted in the GOP sequence

(b) 𝑘 = 𝑘 + 1

(7) Else

(a) analyse GOP sequence (𝑖, 𝑘 − 1)
(b) 𝑖 = 𝑘
(c) go to (3)

(8) End.

Algorithm 2. Pseudo-code for determining type of frames

(1) 𝑖 = ID1//𝑖 is the ID of the first frame of the GOP
sequence

(2) 𝑤 = ID2//𝑤 is the ID of the last P-frame of the GOP
sequence

(3) For each 𝑘 in [𝑖 + 1, 𝑤 − 1]
NP[𝑘] = 𝑘//InitializeNP[𝑘]

(4) 𝑠 = 𝑘 + 1
(5) Create the [𝑀𝑠]th frame as a new frame whose

normalized pixels are obtained as the mean between
the normalized pixels of the 𝑖th and 𝑠th frames

(6) Calculate the similarity Sim(𝑘, [𝑀𝑠]) between the 𝑘th
and [𝑀𝑠]th frames. If Sim(𝑘, [𝑀𝑠]) < Sim𝐵,

(a) NP[𝑘] = 𝑠 − 1
(b) Else 𝑠 = 𝑠 + 1
(c) go to step (6)

(7) next for
(8) NPMin = min(NP[𝑘])
(9) The frames between the 𝑖th and NPMin-th frames are

labelled as B-frames
(10) The NPMin-th frame is labelled as a P-frame
(11) If NPmin < 𝑤 then

(a) 𝑖 = NPMin,
(b) go to step (2)

(12) End.

In our approach we determine a GOP sequence at each
step. The frame after the last P-frame is the I-frame of the
new GOP sequence. After determining the GOP sequences
of the color video, we use the F-transforms [5, 7–10] for
compressing the frames. The F-transform method has been
developed in [5]. In this paper each frame is converted in the
𝑌𝑈𝑉 space. Indeed, since the human eye perceives an image
mostly in the 𝑌 band (brightness) with respect to the 𝑈 and
𝑉 bands (chrominance), we can use a stronger compression
rate for coding the image in 𝑈 and 𝑉 bands with respect to
that one used for coding the image in the 𝑌 band, without
loss of information in the reconstructed image. In [5] the
authors show that the quality of the reconstructed images is
better than the one obtained using the F-transform method
directly in the 𝑅𝐺𝐵 space (see also [11, 12]). The proposed
method is widely discussed in Section 4. In Sections 2 and
3 the theory of F-transforms and its application are recalled
for image compression, respectively. In Section 5 the results
are deduced on a large color videos dataset.

2. Fuzzy Transforms

We recall from [9] some essential definitions. Let 𝑛 ≥ 3 and
𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
be points (nodes) of [𝑎, 𝑏] such that 𝑥

1
= 𝑎 <

𝑥
2
< ⋅ ⋅ ⋅ < 𝑥

𝑛
= 𝑏. The fuzzy sets 𝐴

1
, . . . , 𝐴

𝑛
: [𝑎, 𝑏] → [0, 1]

form a fuzzy partition of [𝑎, 𝑏] if
(1) 𝐴

𝑖
(𝑥
𝑖
) = 1 for any 𝑖 = 1, 2, . . . , 𝑛;

(2) 𝐴
𝑖
(𝑥) = 0 if 𝑥 ∉ (𝑥

𝑖−1
, 𝑥
𝑖+1
), where 𝑖 = 1, 2, . . . , 𝑛 and

𝑥
0
= 𝑥
1
= 𝑎, 𝑥

𝑛+1
= 𝑥
𝑛
= 𝑏;

(3) 𝐴
𝑖
(𝑥) is a continuous function on [𝑎, 𝑏];

(4) 𝐴
𝑖
(𝑥) is strictly increasing on the interval [𝑥

𝑖−1
, 𝑥
𝑖
] for

𝑖 = 2, . . . , 𝑛 and is strictly decreasing on the interval [𝑥
𝑖
, 𝑥
𝑖+1
]

for 𝑖 = 1, . . . , 𝑛 − 1;
(5) for any 𝑥 ∈ [𝑎, 𝑏], ∑𝑛

𝑖=1
𝐴
𝑖
(𝑥) = 1.

We say that {𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑛
} constitute a symmetric fuzzy

partition if the following hold:
(6) equidistance of the nodes, that is, 𝑥

𝑖
= 𝑎 + ℎ ⋅ (𝑖 − 1)

for 𝑖 = 1, 2, . . . , 𝑛, where ℎ = (𝑏 − 𝑎)/(𝑛 − 1);
(7) 𝐴

𝑖
(𝑥
𝑖
− 𝑥) = 𝐴

𝑖
(𝑥
𝑖
+ 𝑥) for any 𝑥 ∈ [0, ℎ] and 𝑖 =

2, . . . , 𝑛 − 1;
(8) 𝐴

𝑖+1
(𝑥) = 𝐴

𝑖
(𝑥 − ℎ) for any 𝑥 ∈ [𝑥

𝑖
, 𝑥
𝑖+1
] and 𝑖 =

1, 2, . . . , 𝑛 − 1.
Considering functions 𝑓 taking values on a finite set

𝑃 = {𝑝
1
, . . . , 𝑝

𝑚
} ⊆ [𝑎, 𝑏], 𝑓 : 𝑃 → [0, 1], we suppose

that 𝑃 is sufficiently dense with respect to a fuzzy partition
{𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑛
} of [𝑎, 𝑏], that is, if 𝑚 > 𝑛 and for each

𝑖 = 1, . . . , 𝑛 there exists an index 𝑗 ∈ {1, . . . , 𝑚} such that
𝐴
𝑖
(𝑝
𝑗
) > 0. Now let 𝑛,𝑚 ≥ 3, 𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑚
∈ [𝑐, 𝑑] be

other 𝑚 assigned nodes such that 𝑦
1
= 𝑐 < ⋅ ⋅ ⋅ < 𝑦

𝑚
= 𝑑.

Let 𝐶
1
, . . . , 𝐶

𝑚
: [𝑐, 𝑑] → [0, 1] be another fuzzy partitions

of [𝑐, 𝑑]. Let 𝑓 : 𝑃 × 𝑄 → [0, 1] be a function defined
on the finite set 𝑃 × 𝑄 = {𝑝

1
, . . . , 𝑝

𝑁
} × {𝑞

1
, . . . , 𝑞

𝑀
} ⊆

[𝑎, 𝑏] × [𝑐, 𝑑], with 𝑁 > 𝑛 and 𝑀 > 𝑚, where 𝑃 (resp.,
𝑄) is sufficiently dense with respect to some fuzzy partition
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{𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑛
} of [𝑎, 𝑏] (resp., {𝐶

1
, . . . , 𝐶

𝑚
} of [𝑐, 𝑑]). Then

[𝐹
𝑘𝑙
], 𝐹
𝑘𝑙
∈ [0, 1], 𝑘 = 1, . . . , 𝑛 and 𝑙 = 1, . . . , 𝑚, is the fuzzy

matrix which is defined as discrete F-transform of 𝑓 with
respect to {𝐴

1
, 𝐴
2
, . . . , 𝐴

𝑛
} and {𝐶

1
, . . . , 𝐶

𝑚
} if the following

holds:

𝐹
𝑘𝑙
=

∑
𝑀

𝑗=1
∑
𝑁

𝑖=1
𝑓 (𝑝
𝑖
, 𝑞
𝑗
)𝐴
𝑘
(𝑝
𝑖
) 𝐶
𝑙
(𝑞
𝑗
)

∑
𝑀

𝑗=1
∑
𝑁

𝑖=1
𝐴
𝑘
(𝑝
𝑖
) 𝐶
𝑙
(𝑞
𝑗
)

. (1)

Afterwards we define 𝑓𝐹
𝑛𝑚

: 𝑃 × 𝑄 → [0, 1] to be the
inverse F-transform of𝑓with respect to {𝐴

1
, 𝐴
2
, . . . , 𝐴

𝑛
} and

{𝐶
1
, . . . , 𝐶

𝑚
} as

𝑓
𝐹

𝑛𝑚
(𝑝
𝑖
, 𝑞
𝑗
) =

𝑛

∑

𝑘=1

𝑚

∑

𝑙=1

𝐹
𝑘𝑙
𝐴
𝑘
(𝑝
𝑖
) 𝐶
𝑙
(𝑞
𝑗
) . (2)

The following theorem holds.

Theorem 3. Let 𝑓 : 𝑃 ×𝑄 → [0, 1] be a function assigned on
𝑃 × 𝑄 = {𝑝

1
, . . . , 𝑝

𝑁
} × {𝑞
1
, . . . , 𝑞

𝑀
} ⊆ [𝑎, 𝑏] × [𝑐, 𝑑]. Then for

every 𝜀 > 0, there exist two integers 𝑛(𝜀), 𝑚(𝜀) with 𝑛(𝜀) < 𝑁,
𝑚(𝜀) < 𝑀 and some fuzzy partitions {𝐴

1
, 𝐴
2
, . . . , 𝐴

𝑛(𝜀)
} of

[𝑎, 𝑏] and {𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑚(𝜀)
} of [𝑐, 𝑑] for which 𝑃 and 𝑄 are

sufficiently dense with respect to these partitions, respectively,
and such that the following inequality holds for every 𝑖 =
1, . . . , 𝑁, 𝑗 = 1, . . . ,𝑀:

󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑝
𝑖
, 𝑞
𝑗
) − 𝑓
𝐹

𝑛(𝜀)𝑚(𝜀)
(𝑝
𝑖
, 𝑞
𝑗
)
󵄨󵄨󵄨󵄨󵄨
< 𝜀. (3)

3. The Coding/Decoding Process

Let 𝑅 be an image of sizes 𝑁 × 𝑀, considered as a fuzzy
relation 𝑅 : (𝑖, 𝑗) ∈ {1, . . . , 𝑁} × {1, . . . ,𝑀} → [0, 1]; that
is, 𝑅(𝑖, 𝑗) = 𝑃(𝑖, 𝑗)/𝐿

𝑡
, with 𝑃(𝑖, 𝑗) being the normalized value

of the pixel with respect to the length 𝐿𝑡 of the scale used.
For simplicity, let 𝑝

𝑖
= 𝑖, 𝑞

𝑗
= 𝑗, 𝑎 = 𝑐 = 1, 𝑏 = 𝑁,

and 𝑑 = 𝑀. Let the fuzzy sets 𝐴
1
, . . . , 𝐴

𝑛
: [1,𝑁] →

[0, 1] and 𝐶
1
, . . . , 𝐶

𝑚
: [1,𝑀] → [0, 1], with 𝑛 < 𝑁

and 𝑚 < 𝑀, form a fuzzy partition of [1,𝑁] and [1,𝑀],
respectively. Following [8], 𝑅 is subdivided in submatrices
𝑅
𝐵
of sizes 𝑁(𝑅

𝐵
) × 𝑀(𝑅

𝐵
), 𝑅
𝐵
: (𝑖, 𝑗) ∈ {1, . . . , 𝑁(𝑅

𝐵
)} ×

{1, . . . ,𝑀(𝑅
𝐵
)} → [0, 1], called blocks, coded to matrices

of sizes 𝑛(𝑅
𝐵
) × 𝑚(𝑅

𝐵
), (𝑛(𝑅

𝐵
) < 𝑁(𝑅

𝐵
), 𝑚(𝑅

𝐵
) < 𝑀(𝑅

𝐵
))

via the following discrete F-transforms [𝐹𝐵
𝑘𝑙
] for every (𝑘, 𝑙) ∈

{1, . . . , 𝑛(𝑅
𝐵
)} × {1, . . . , 𝑚(𝑅

𝐵
)} as

𝐹
𝐵

𝑘𝑙
=

∑
𝑀(𝑅𝐵)

𝑗=1
∑
𝑁(𝑅𝐵)

𝑖=1
𝑅
𝐵
(𝑖, 𝑗) 𝐴

𝑘
(𝑖) 𝐶
𝑙
(𝑗)

∑
𝑀(𝑅𝐵)

𝑗=1
∑
𝑁(𝑅𝐵)

𝑖=1
𝐴
𝑘
(𝑖) 𝐶
𝑙
(𝑗)

, (4)

and decode [𝐹𝐵
𝑘𝑙
] via 𝑅𝐹

𝑛(𝑅𝐵)𝑚(𝑅𝐵)
: (𝑖, 𝑗) ∈ {1, . . . , 𝑁(𝑅

𝐵
)} ×

{1, . . . ,𝑀(𝑅
𝐵
)} → [0, 1] defined as

𝑅
𝐹

𝑛(𝑅𝐵)𝑚(𝑅𝐵)
=

𝑀(𝑅𝐵)

∑

𝑗=1

𝑁(𝑅𝐵)

∑

𝑖=1

𝐹
𝐵

𝑘𝑙
𝐴
𝑘
(𝑖) 𝐶
𝑙
(𝑗) (5)

which approximates 𝑅
𝐵
in the sense of Theorem 3; that

is, there exist, for every 𝜀 > 0, two integers 𝑛(𝑅
𝐵
, 𝜀),

𝑚(𝑅
𝐵
, 𝜀) such that the following holds for every (𝑖, 𝑗) ∈

{1, . . . , 𝑁(𝑅
𝐵
)} × {1, . . . ,𝑀(𝑅

𝐵
)}:

󵄨󵄨󵄨󵄨󵄨
𝑅
𝐵
(𝑖, 𝑗) − 𝑅

𝐹

𝑛(𝑅𝐵,𝜀)𝑚(𝑅𝐵,𝜀)
(𝑖, 𝑗)

󵄨󵄨󵄨󵄨󵄨
< 𝜀. (6)

Unfortunately the previous theorem does not suggest a
method for finding such integers, and then we try to assign
values to 𝑛(𝑅

𝐵
) = 𝑛(𝑅

𝐵
, 𝜀) and 𝑚(𝑅

𝐵
) = 𝑚(𝑅

𝐵
, 𝜀) for getting

compression rates given by

𝜌 (𝑅
𝐵
) =

𝑛 (𝑅
𝐵
) ⋅ 𝑚 (𝑅

𝐵
)

𝑁 (𝑅
𝐵
) ⋅ 𝑀 (𝑅

𝐵
)

(7)

which are useful to code any original block 𝑅
𝐵
. The recom-

position of the blocks 𝑅𝐹
𝑛(𝑅𝐵)𝑚(𝑅𝐵)

gives the image 𝑅𝐹 whose
PSNR with respect to the original image 𝑅 is calculated via
the following well-known formula:

PSNR (𝑅, 𝑅𝐹)

= 20log
10

𝐿𝑡

√∑
𝑁

𝑖=1
∑
𝑀

𝑗=1
(𝑅 (𝑖, 𝑗) − 𝑅𝐹 (𝑖, 𝑗))

2

/𝑁 ×𝑀

.

(8)

In accordance with [8], in the proposed experiments the
best results are deduced with the symmetric fuzzy partitions
𝐴
1
, . . . , 𝐴

𝑛(𝑅𝐵)
: [1,𝑁(𝑅

𝐵
)] → [0, 1] and 𝐶

1
, . . . , 𝐶

𝑚(𝑅𝐵)
:

[1,𝑀(𝑅
𝐵
)] → [0, 1] defined as

𝐴
1
(𝑖) =

{

{

{

0.5 (cos 𝜋
ℎ
(𝑖 − 1) + 1) if 1 ≤ 𝑖 ≤ 𝑥

2
,

0 else,

𝐴
𝑘
(𝑖) =

{

{

{

0.5 (cos 𝜋
ℎ
(𝑖 − 𝑥

𝑘
) + 1) if 𝑥

𝑘
≤ 𝑖 ≤ 𝑥

𝑘+1
,

0 else,

𝐴
𝑛(𝑅𝐵)

(𝑖)

=
{

{

{

0.5 (cos 𝜋
ℎ
(𝑖 − 𝑥

𝑛(𝑅𝐵−1)
)+1) if 𝑥

𝑛(𝐵)−1
≤𝑖≤𝑁 (𝑅

𝐵
) ,

0 else,
(9)
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where 𝑘 = 2, . . . , 𝑛(𝑅
𝐵
) − 1, ℎ = (𝑁(𝑅

𝐵
) − 1)/(𝑛(𝑅

𝐵
) − 1),

𝑥
𝑘
= 1 + ℎ ⋅ (𝑘 − 1), and

𝐶
1
(𝑗) =

{

{

{

0.5 (cos 𝜋
𝑠
(𝑗 − 1) + 1) if 1 ≤ 𝑗 ≤ 𝑦

2
,

0 else,

𝐶
𝑡
(𝑗) =

{

{

{

0.5 (cos 𝜋
𝑠
(𝑗 − 𝑦

𝑡
) + 1) if 𝑦

𝑡−1
≤ 𝑗 ≤ 𝑥

𝑡+1
,

0 else,

𝐶
𝑚(𝑅𝐵)

(𝑗)

=
{

{

{

0.5(cos 𝜋
𝑠
(𝑗−𝑦
𝑚(𝑅𝐵)−1

)+1) if 𝑦
𝑚(𝑅𝐵)−1

≤𝑗≤𝑀(𝑅
𝐵
),

0 else,
(10)

where 𝑡 = 2, . . . , 𝑚(𝑅
𝐵
)−1, 𝑠 = (𝑀(𝑅

𝐵
)−1)/(𝑚(𝑅

𝐵
)−1), and

𝑦
𝑡
= 1 + 𝑠 ⋅ (𝑡 − 1).

4. Our Proposal

The proposed process includes the following steps:

(1) each color frame, seen as a fuzzy relation, is converted
from the space 𝑅𝐺𝐵 to the space 𝑌𝑈𝑉;

(2) a classification of the frames is made via the previous
algorithms;

(3) the compression rate 𝜌
𝐼
= 𝜌
𝐼
(𝑅
𝐵
) of the I-frames is

the mean of three (possibly different) compression
rates used in the three bands, that is, if any block
𝑅
𝐵
of an I-frame has sizes (say) 𝑁

𝐼𝑌
(𝑅
𝐵
) × 𝑀

𝐼𝑌
(𝑅
𝐵
)

in the band 𝑌 and is coded to a block of sizes (say)
𝑛
𝐼𝑌
(𝑅
𝐵
) ×𝑚
𝐼𝑌
(𝑅
𝐵
) for which the related compression

rate is given by 𝜌
𝐼𝑌
= 𝜌
𝐼𝑌
(𝑅
𝐵
) = (𝑛

𝐼𝑌
(𝑅
𝐵
) ⋅ 𝑚
𝐼𝑌
(𝑅
𝐵
)) ⋅

(𝑁
𝐼𝑌
(𝑅
𝐵
) ⋅ 𝑀
𝐼𝑌
(𝑅
𝐵
))
− and the analogous meaning

has the symbols 𝜌
𝐼𝑈
, 𝜌
𝐼𝑉
. Of course we have 𝜌

𝐼
=

(𝜌
𝐼𝑌
+𝜌
𝐼𝑈
+𝜌
𝐼𝑉
)/3. A similar meaning can be given to

𝜌
Δ
= 𝜌
Δ
(𝑅
𝐵
) (resp., 𝜌

𝑅
= 𝜌
𝑅
(𝑅
𝐵
)) for Δ-frames (resp.,

R-frames).

A color image in the𝑅𝐺𝐵 space with pixels normalized in
[0, 1] is converted to 𝑌𝑈𝑉 space via the formula [5]

[

[

𝑌

𝑈

𝑉

]

]

= [

[

0.299 0.587 0.114

−0.169 −0.332 0.500

0.500 −0.419 −0.0813

]

]

[

[

𝑅

𝐺

𝐵

]

]

+ [

[

0

0.5

0.5

]

]

. (11)

Since no misunderstanding can arise, a frame is denoted by a
capital letter instead of its ID number in a sequence of a video.
In step (2), the similarity measure adopted in [5] is used for
classifying the type of frame. It is based on the Lukasiewicz

𝑡-norm between two frames 𝐹 and 𝐺, with 𝐹, 𝐺 : (𝑖, 𝑗) ∈

{1, 2, . . . , 𝑁} × {1, 2, . . . ,𝑀} → [0, 1], defined as

Sim (𝐹, 𝐺) = (
𝑁

∑

𝑖=1

𝑀

∑

𝑗=1

{1 −max {𝐹 (𝑖, 𝑗) , 𝐺 (𝑖, 𝑗)}

+min {𝐹 (𝑖, 𝑗) , 𝐺 (𝑖, 𝑗)}})

× (𝑁 ×𝑀)
−1
.

(12)

In the 𝜇th band (𝜇 ∈ {𝑌, 𝑈, 𝑉}) we will use the symbol
Sim
𝜇
(𝐹, 𝐺). The authors [5] have shown that Lukasiewicz

𝑡-norm provides the best results with respect to other 𝑡-
norms as the classical Min and the arithmetical product. For
convenience, we assume that the first frame of a video is an
I-frame. For determining a GOP sequence in a single band, it
can be verified if the successive frame 𝐺 is a B-frame or a P-
frame, that is, if it is “very similar” to the preceding I-frame 𝐹
in the sense that Sim(𝐹, 𝐺) < Sim𝐵, with Sim𝐵 ∈ [0, 1] being
a prefixed threshold value; otherwise𝐺 is assumed to be a new
I-frame. We determine a GOP sequence in an assigned band
using (12) with the following process:

(1) we consider the first frame 𝐹 as an I-frame;
(2) we compare 𝐹 with the successive frame 𝐺;
(3) if Sim(𝐹, 𝐺) < Sim𝑃, the frame 𝐺 is a B-frame or a

P-frame and is enclosed in the GOP sequence. Then
we consider the successive frame𝐺 and go to step (2);
otherwise 𝐺 is a new I-frame. The previous frame is
a P-frame and represents the last frame of the GOP
sequence.

After determining the GOP sequence, we check if each
frame of the sequence is a B-frame or a P-frame by using
the previous algorithms. In step (3) we finally compress the
frames. In order to reduce the mean compression rate for a
P-frame, in [5] and references therein, the authors introduce
a “difference” frame D, called Δ-frame, between a P-Frame
𝐺 and I-frame 𝐹 by defining 𝐷 : (𝑖, 𝑗) ∈ {1, 2, . . . , 𝑁} ×

{1, 2, . . . ,𝑀} → [0, 1] as

𝐷(𝑖, 𝑗) =
[𝐹 (𝑖, 𝑗) − 𝐺 (𝑖, 𝑗) + 1]

2
. (13)

The usage of the Δ-frame has the advantage of using a
stronger compression rate for the P-frames with respect to
the I-frames; indeed a P-frame 𝐺 has values in its pixels very
close to the pixels of the previous I-frame. Hence theΔ-frame
𝐷 in (13) has a low quantity of information and it can be
coded with a low compression rate.Then, if𝐷󸀠 and 𝐹󸀠 are the
frames obtained after coding/decoding 𝐹 and 𝐷, the frame
𝐺
󸀠 (reconstruction of the frame 𝐺), with 𝐷󸀠, 𝐹󸀠, 𝐺󸀠 : (𝑖, 𝑗) ∈
{1, 2, . . . , 𝑁} × {1, 2, . . . ,𝑀} → [0, 1], is deduced from the
membership values of 𝐹󸀠 and𝐷󸀠 via the following formula:

𝐺
󸀠
(𝑖, 𝑗) =

max {0, 𝐹󸀠 (𝑖, 𝑗) − 2𝐷󸀠 (𝑖, 𝑗) + 1}
max {1, 𝐹󸀠 (𝑖, 𝑗) − 2𝐷󸀠 (𝑖, 𝑗) + 1}

. (14)
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(a) (b)

(c) (d)

Figure 1: (a) Frame 1 of “tennis2” [6], (b) Frame 1 in 𝑌 band, (c) Frame 1 in 𝑈 band, and (d) Frame 1 in 𝑉 band.
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Figure 2: Diff(PSNR) with the similarity in 𝑌, 𝑈, and 𝑉 bands.

Nowwe present a new schema for coding/decoding a B-frame
which is inserted in a GOP between an I-frame 𝐹 and a P-
frame 𝐺. Then we consider a frame 𝑅 given by

𝑅 (𝑖, 𝑗) =
[(𝐹 (𝑖, 𝑗) + 𝐺 (𝑖, 𝑗)) /2 − 𝐵 (𝑖, 𝑗) + 1]

2

(15)

and we code it. Let 𝑅󸀠 be the frame obtained after decoding
𝑅, with 𝑅󸀠 : (𝑖, 𝑗) ∈ {1, 2, . . . , 𝑁} × {1, 2, . . . ,𝑀} →

[0, 1]. All the coding/decoding processes are realized via the
F-transforms with the symmetric fuzzy partition given in
Section 3. We reconstruct the B-frame, say 𝐵󸀠, by combining
the membership values of 𝐹󸀠, 𝐺󸀠, and 𝑅󸀠 via the following
formula:

𝐵
󸀠
(𝑖, 𝑗) =

max {0, [𝐹󸀠 (𝑖, 𝑗) + 𝐺󸀠 (𝑖, 𝑗)] /2 − 2𝑅󸀠 (𝑖, 𝑗) + 1}
max {1, [𝐹󸀠 (𝑖, 𝑗) + 𝐺󸀠 (𝑖, 𝑗)] /2 − 2𝑅󸀠 (𝑖, 𝑗) + 1}

.

(16)

We use the formulas (14) and (16) for reconstructing the
P-frames and the B-frames in the videos, respectively. In
accordance with [5], we convert each image in the 𝑅𝐺𝐵 space
by using the formula

[
[

[

𝑅

𝐺

𝐵

]
]

]

=
[
[

[

1 0 1.4075

1 −0.3455 −0.7169

1 1.7790 0

]
]

]

[
[

[

𝑌

𝑈

𝑉

]
]

]

+
[
[

[

0.5

0.5

0.5

]
]

]

. (17)

For simplicity of presentation, in our tests here we adopt
𝑀(𝑅
𝐵
) = 𝑁(𝑅

𝐵
), 𝑚(𝑅

𝐵
) = 𝑛(𝑅

𝐵
). In [5] a preprocessing

phase is adopted for determining the threshold Sim𝑃 calcu-
lated with the following steps:
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(a) (b)

(c)

Figure 3: (a) Δ-frame from Frame 4 in 𝑌 band, (b) R-frame from Frame 2 in 𝑌 band, and (c) R-frame from Frame 3 in 𝑌 band.

(a) (b)

(c) (d)

Figure 4: (a) Δ-frame from Frame 6 in 𝑈 band, (b) R-frame from Frame 2 in𝑈 band, (c) R-frame from Frame 3 in𝑈 band, and (d) R-frame
from Frame 4 in 𝑈 band.
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(a) (b)

(c) (d)

Figure 5: (a) Δ-frame from Frame 5 in 𝑉 band, (b) R-frame from Frame 2 in 𝑉 band, (c) R-frame from Frame 3 in 𝑉 band, and (d) R-frame
from Frame 4 in 𝑉 band.

(1) if the initial frame 𝐹 is considered as an I-frame,
we compress 𝐹 in the 𝜇th band (𝜇 ∈ {𝑌, 𝑈, 𝑉})

with compression rate 𝜌
𝐼𝜇
; each successive frame is

a P-frame 𝐺 and we archive the similarity value
Sim
𝜇
(𝐹, 𝐺) calculated with formula (12); we compress

the Δ-frame𝐷 in the 𝜇th band with compression rate
equal to 𝜌

𝑃𝜇
(less than of 𝜌

𝐼𝜇
) and if 𝐷󸀠 is the related

decompressed frame, we derive the P-frame 𝐺󸀠 via
(14);

(2) each P-frame 𝐺 is also coded in the 𝜇th band
with compression rate 𝜌

𝑃𝜇
and let 𝐺󸀠󸀠 be the

decoded P-frame by using directly the F-transforms;
then we determine the difference diff(PSNR) =

|PSNR(𝐺󸀠󸀠, 𝐺) − PSNR(𝐺󸀠, 𝐺)|;

(3) the trend of diff(PSNR) is plotted with respect to
the similarity Sim

𝜇
(𝐹, 𝐺) in each band of the image.

As similarity threshold, we assume that value of
Sim
𝜇
(𝐹, 𝐺) such that diff(PSNR) does not exceed a

prefixed limit is equal to 3 (cf. [5] for details);

(4) then the threshold Sim𝑃 is given by

Sim𝑃 = max
𝐺∈GOP

{max {Sim
𝜇
(𝐹, 𝐺) : 𝜇 ∈ {𝑌, 𝑈, 𝑉}}} (18)

with 𝐹 being the first I-frame of the GOP sequence. In our
tests, in addition we put Sim𝐵 = Sim𝑃 in the preprocessing
phase.

5. The Results

For brevity of discussion, we show the results obtained for the
color video “tennis2” [6].We present all the results by assum-
ing 𝜌
𝐼
≈ 0.262 for the I-frames, 𝜌

Δ
≈0.027 for the Δ-frames,

and 𝜌
𝑅
≈ 0.020 for the R-frames. Figures 1(a)–1(d) show

the first frame of the video and the corresponding single-
band images in the 𝑌𝑈𝑉 space, respectively. As example of
Diff(PSNR), Figure 2 contains the plots of Diff(PSNR) ≤ 3
for the similarity values obtained in 𝑌, 𝑈, and 𝑉 bands for
which we choose Sim

𝑌
(𝐹, 𝐺) > 0.948 = Sim𝑃 (as average).

As examples we show some Δ-frames and R-frames in each
band.

(i) 𝑌 Band. The first P-frame is given by the fourth frame.
Figure 3(a) contains the Δ-frame obtained by using (13)
from the fourth frame and the first frame (an I-frame). The
second and the third frames are B-frames. Figure 3(b) (resp.,
Figure 3(c)) shows the R-frame obtained by using (15) from
the second (resp., third) frame, the first frame (an I-frame),
and the fourth frame (a P-frame).

(ii) 𝑈 Band. The first P-frame is given by the sixth frame.
Figure 4(a) contains the Δ-frame obtained by using (13) from
the sixth frame and the first frame (an I-frame).The frames 2,
3, and 4 are B-frames. Figures 4(b)–4(d) show the R-frames
obtained by using (15) from the first frame (an I-frame),
the B-frames 2, 3, and 4, and the sixth frame (a P-frame),
respectively.

(iii)𝑉 Band. The first P-frame is given by the fifth frame.
Figure 5(a) contains the Δ-frame obtained by using (13) from
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(a) (b)

(c)

Figure 6: (a) Frame 2 in the proposed method, (b) Frame 2 in F-transforms, and (c) Frame 2 in MPEG-4.

Table 1: Results for “tennis2” [6] in the proposed method.

Parameters Y band U band V band
Number of I-frames 15 7 8
Number of P-frames 31 23 23
Number of B-frames 54 70 69
Mean compression rate 𝜌(B) 0.1128 0.0236 0.0245
Mean PSNR for I-Frames 27.011 25.545 25.812
Mean PSNR for P-Frames 24.816 23.710 23.815
Mean PSNR for B-Frames 24.734 22.819 23.026

the sixth frame and the first frame (an I-frame). The frames
2, 3, and 4 are B-frames. Figures 5(b)–5(d) show the R-frames
obtained by using (15) from the first frame (an I-frame),
the B-frames 2, 3, and 4, and the fifth frame (a P-frame),
respectively.

All the results obtained for the video “tennis2” are
synthetized in Table 1.

Figures 6(a)–6(c) contain Frame 2 decoded with the
proposed method, classical F-transforms, and MPEG-4,
respectively.

In Table 2 we report the final PSNR index in the three
methods.

6. Conclusions

We present a new method for coding/decoding color videos,
in which we classify a frame in I-frame, P-frame, and

Table 2: Comparison with other methods for “tennis2” [6].

Parameters Proposed method F-transforms MPEG-4
Mean compression rate 0.053 0.058 0.055
Mean PSNR 23.915 22.801 23.431

B-frame using similarity measures for determining the GOP
sequences and the type of frames. Our method seems to be
fully comparable with classical F-transforms andMPEG-4 for
similar mean compression rates to a certain extent.
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