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We apply the concept of Fuzzy Transform (for short, F-transform) for improving the results of the image matching based on the
Greatest Eigen Fuzzy Set (for short, GEFS) with respect tomax-min composition and the Smallest Eigen Fuzzy Set (for short, SEFS)
with respect to min-max composition already studied in the literature. The direct F-transform of an image can be compared with
the direct F-transform of a sample image to be matched and we use suitable indexes to measure the grade of similarity between the
two images. We make our experiments on the image dataset extracted from the well-known Prima Project View Sphere Database,
comparing the results obtained with this method with that one based on the GEFS and SEFS. Other experiments are performed on
frames of videos extracted from the Ohio State University dataset.

1. Introduction

Solution methods of fuzzy relational equations have been
well studied in the literature (cf., e.g., [1–15]) and applied to
image processing problems like image compression [16–19]
and image reconstruction [7, 8, 20–22]. In particular, Eigen
Fuzzy Sets [23–25] have been applied to image processing
and medical diagnosis [2, 6, 7, 16]. If an image 𝐼 of sizes
𝑁 × 𝑁 (pixels) is interpreted as a fuzzy relation 𝑅 on the
set {1, 2, . . . , 𝑁} × {1, 2, . . . , 𝑁} → [0, 1], the concepts of the
Greatest Eigen Fuzzy Set (for short, GEFS) of 𝐼 with respect
to the max-min composition and of the Smallest Eigen Fuzzy
Set (for short, SEFS) of 𝑅 with respect to the min-max
decomposition [2, 24, 25] were studied and used in [26, 27]
for an image matching process defined over square images.
The GEFS and SEFS of the original image are compared with
the GEFS and SEFS of the image to be matched by using a
similarity measure based on the RootMean Square Error (for
short, RMSE). The advantage of using GEFS and SEFS is in
terms of memory storage is that we can indeed compress an
image dataset (in which each image has sizes 𝑁 × 𝑁) in a
dataset in which each image is stored by means of its GEFS
and SEFS which have total dimension 2𝑁.

The main disadvantage of using GEFS and SEFS is that
we cannot compare images in which the number of rows is
different from the number of columns. Our aim is to show

that we can use an F-transform for imagematching problems,
reducing an image dataset of sizes 𝑁 × 𝑀 (in general, 𝑀
is not necessarily equal to 𝑁) into a dataset of dimensions
comparable with that one obtained by using GEFS and SEFS
if𝑀 = 𝑁, so having convenience in terms ofmemory storage.

The F-transform based method [28–30] is used in the
literature for image and video compression [29, 31–33], image
segmentation [20], and data analysis [22, 34]; indeed, in
[31, 32] the quality of the decoded images obtained by using
the F-transform compression method is shown to be better
than that one obtained with the fuzzy relation equations and
fully comparable with the JPEG technique.

The main characteristic of the F-transform method is to
maintain an acceptable quality in the reconstructed image
even under strong compression rates; indeed in [20] the
authors show that the segmentation process can be applied
directly over the compressed images. Here we use the direct
F-transform in image matching analysis with the aim of
reducing the memory used to store the image dataset. In
fact, we compress a monochromatic image (or a band of a
multiband image) 𝐼 of sizes𝑁×𝑀 via the direct F-transform
to a matrix 𝐹 of sizes 𝑛 × 𝑚 using a compression rate 𝜌 =
(𝑛 × 𝑚)/(𝑁 ×𝑀).

By using a distance, we compare the F-transform of each
image with the F-transform of the sample image. We also
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Figure 1: The preprocessing phase.
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Figure 2: F-transform image matching process.

adopt a preprocessing phase for compressing each imagewith
several compression rates. In Figure 1 we show the prepro-
cessing phase on a dataset of color images. We compress
each color image in the three monochromatic components
corresponding to the three bands 𝑅, 𝐺, and 𝐵.

At the end of the preprocessing phase we can use
the compressed image dataset for image matching analysis.
Supposing that the original image dataset was composed by
s color images of sizes 𝑁 × 𝑀 using a compression rate
𝜌 = (𝑛 × 𝑚)/(𝑁 × 𝑀), we obtain that the dimension of the
compressed image dataset is constituted totally of 3𝑠(𝑛 × 𝑚)
pixels.

In Figure 2 we schematize the image matching process.
The sample image is compressed by the F-transformmethod;
then we compare the three compressed bands of each image
obtained via F-transform with those ones deduced for the
sample image by using the Peak Signal to Noise Ratio (for
short, PSNR). At the end of this process, we determine the

image in the dataset with the greatest overall PSNR with
respect to the sample image.

Here a monochromatic image or a band of a color image
𝐼 of sizes 𝑁 × 𝑀 is interpreted as a fuzzy relation 𝑅 whose
entries 𝑅(𝑥, 𝑦) are obtained by normalizing the intensity
𝐼(𝑥, 𝑦) of each pixel with respect to the length 𝐿 of the scale,
that is, 𝑅(𝑥, 𝑦) = 𝐼(𝑥, 𝑦)/𝐿. We show that our F-transform
approach can be also applied in image matching processes to
images of sizes𝑀×𝑁 (eventually,𝑀 ̸=𝑁), giving analogous
results with respect to that one obtained with GEFS and
SEFS based method. The comparison tests are made on the
256 × 256 color image dataset extracted from View Sphere
Database, an image dataset consisting in a set of images of
objects in which an object is photographed from various
directions by using a camera placed on a semisphere whose
center is the same considered object. We also use the Ohio
State University color video datasets sample for our tests.
Each video is composed by frames consisting of color images;
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we show the results for the Mom-Daughter and sflowg
motions. In Section 2we recall the concepts of F-transform in
two variables. In Section 3we recall theGEFS and SEFS based
method; in Section 4wepropose our imagematchingmethod
based on the F-transforms. Our experiments are illustrated in
Section 5, and Section 6 is conclusive.

2. F-Transforms in Two Variables

Following [29] and limiting ourselves to the discrete case, let
𝑛 ≥ 2 and 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
be a increasing sequence of points

(nodes) of [𝑎, 𝑏], 𝑥
1
= 𝑎 < 𝑥

2
< ⋅ ⋅ ⋅ < 𝑥

𝑛
= 𝑏. We say that

the fuzzy sets 𝐴
1
, . . . , 𝐴

𝑛
: [𝑎, 𝑏] → [0, 1] (basic functions)

form a fuzzy partition of [𝑎, 𝑏] if the following hold:

(1) 𝐴
𝑖
(𝑥
𝑖
) = 1 for every 𝑖 = 1, 2, . . . , 𝑛;

(2) 𝐴
𝑖
(𝑥) = 0 if 𝑥 ∉ (𝑥

𝑖−1
, 𝑥
𝑖+1
) for 𝑖 = 2, . . . , 𝑛 − 1;

(3) 𝐴
𝑖
(𝑥) is a continuous function on [𝑎, 𝑏];

(4) 𝐴
𝑖
(𝑥) strictly increases on [𝑥

𝑖−1
, 𝑥
𝑖
] for 𝑖 = 2, . . . , 𝑛

and strictly decreases on [𝑥
𝑖
, 𝑥
𝑖+1
] for 𝑖 = 1, . . . , 𝑛 − 1;

(5) ∑𝑛
𝑖=1
𝐴
𝑖
(𝑥) = 1 for every 𝑥 ∈ [𝑎, 𝑏].

The fuzzy partition {𝐴
1
, . . . , 𝐴

𝑛
} is said to be uniform if

(6) 𝑛 ≥ 3 and 𝑥
𝑖
= 𝑎+ℎ ⋅ (𝑖 − 1), where ℎ = (𝑏 − 𝑎)/(𝑛 − 1)

and 𝑖 = 1, 2, . . . , 𝑛 (equidistant nodes);

(7) 𝐴
𝑖
(𝑥
𝑖
− 𝑥) = 𝐴

𝑖
(𝑥
𝑖
+ 𝑥) for every 𝑥 ∈ [0, ℎ] and 𝑖 =

2, . . . , 𝑛 − 1;

(8) 𝐴
𝑖+1
(𝑥) = 𝐴

𝑖
(𝑥 − ℎ) for every 𝑥 ∈ [𝑥

𝑖
, 𝑥
𝑖+1
] and 𝑖 =

1, 2, . . . , 𝑛 − 1.

Let 𝑚 ≥ 2, 𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑚
∈ [𝑐, 𝑑] be 𝑚 nodes such that

𝑦
1
= 𝑐 < ⋅ ⋅ ⋅ < 𝑦

𝑚
= 𝑑. Furthermore, let𝐵

1
, . . . , 𝐵

𝑚
: [𝑐, 𝑑] →

[0, 1] be a fuzzy partition of [𝑐, 𝑑], and let 𝑓 : 𝑃 × 𝑄 →

reals be an assigned function, 𝑃 × 𝑄 ⊆ [𝑎, 𝑏] × [𝑐, 𝑑], with
𝑃 = {𝑝

1
, . . . , 𝑝

𝑁
} and 𝑄 = {𝑞

1
, . . . , 𝑞

𝑀
} being “sufficiently

dense” sets with respect to the chosen partitions; that is for
each 𝑖 = 1, . . . , 𝑁 (resp., 𝑗 = 1, . . . ,𝑀) there exists an index
𝑘 ∈ {1, . . . , 𝑛} (resp., 𝑙 ∈ {1, . . . , 𝑚}) such that 𝐴

𝑘
(𝑝
𝑖
) > 0
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Figure 4: Trend of PSNR with respect to 𝐷 index for the eraser
obtained from the comparison with the sample image at 𝜃 = 11

∘

and 𝜙 = 36∘.

(resp., 𝐵
𝑙
(𝑞
𝑗
) > 0). The matrix [𝐹

𝑘𝑙
] is said to be the direct F-

transform of 𝑓 with respect to {𝐴
1
, . . . , 𝐴

𝑛
} and {𝐵

1
, . . . , 𝐵

𝑚
}

if we have for each 𝑘 = 1, . . . , 𝑛 and 𝑙 = 1, . . . , 𝑚

𝐹
𝑘𝑙
=

∑
𝑀

𝑗=1
∑
𝑁

𝑖=1
𝑓 (𝑝
𝑖
, 𝑞
𝑗
)𝐴
𝑘
(𝑝
𝑖
) 𝐵
𝑙
(𝑞
𝑗
)

∑
𝑀

𝑗=1
∑
𝑁

𝑖=1
𝐴
𝑘
(𝑝
𝑖
) 𝐵
𝑙
(𝑞
𝑗
)

. (1)

Then the inverse F-transform of 𝑓 with respect to {𝐴
1
,

𝐴
2
, . . . , 𝐴

𝑛
} and {𝐵

1
, . . . , 𝐵

𝑚
} is the function 𝑓𝐹

𝑛𝑚
(𝑝
𝑖
, 𝑞
𝑗
) :

𝑃 × 𝑄 → reals defined as

𝑓
𝐹

𝑛𝑚
(𝑝
𝑖
, 𝑞
𝑗
) =

𝑛

∑

𝑘=1

𝑚

∑

𝑙=1

𝐹
𝑘𝑙
𝐴
𝑘
(𝑝
𝑖
) 𝐵
𝑙
(𝑞
𝑗
) . (2)

The following existence theorem holds [29].

Theorem 1. Let 𝑓 : 𝑃 × 𝑄 → reals be a given function,
𝑃 × 𝑄 ⊆ [𝑎, 𝑏] × [𝑐, 𝑑], with 𝑃 = {𝑝

1
, . . . , 𝑝

𝑁
} and 𝑄 =

{𝑞
1
, . . . , 𝑞

𝑀
}. Then for every 𝜀 > 0, there exist two integers

𝑛(𝜀), 𝑚(𝜀) and related fuzzy partitions {𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑛(𝜀)
} of

[𝑎, 𝑏] and {𝐵
1
, 𝐵
2
, . . . , 𝐵

𝑚(𝜀)
} of [𝑐, 𝑑] such that the sets 𝑃,𝑄 are

sufficiently dense with respect to such partitions and |𝑓(𝑝
𝑖
, 𝑞
𝑗
)−

𝑓
𝐹

𝑛(𝜀)𝑚(𝜀)
(𝑝
𝑖
, 𝑞
𝑗
)| < 𝜀 is satisfied for every 𝑖 ∈ {1, . . . , 𝑁} and

𝑗 ∈ {1, . . . ,𝑀}.

Let 𝑅 be a gray image of sizes 𝑁 × 𝑀, seen as 𝑅 :

(𝑖, 𝑗) ∈ {1, . . . , 𝑁} × {1, . . . ,𝑀} → [0, 1], with 𝑅(𝑖, 𝑗) being
the normalized value of the pixel 𝑃(𝑖, 𝑗) given by 𝑅(𝑖, 𝑗) =
𝑃(𝑖, 𝑗)/𝐿𝑡 if 𝐿𝑡 is the length of the gray scale. In [27] 𝑅 is
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Figure 5: Eraser at 𝜃 = 11∘ and 𝜙 = 36∘.

Figure 6: Eraser at 𝜃 = 10∘ and 𝜙 = 54∘.

compressed via the F-transform defined for each 𝑘 = 1, . . . , 𝑛
and 𝑙 = 1, . . . , 𝑚 as

𝐹
𝑘𝑙
=

∑
𝑀

𝑗=1
∑
𝑁

𝑖=1
𝑅 (𝑖, 𝑗) 𝐴

𝑘
(𝑖) 𝐵
𝑙
(𝑗)

∑
𝑀

𝑗=1
∑
𝑁

𝑖=1
𝐴
𝑘
(𝑖) 𝐵
𝑙
(𝑗)

, (3)

where 𝑝
𝑖
= 𝑖, 𝑞

𝑗
= 𝑗, 𝑎 = 𝑐 = 1, 𝑏 = 𝑁, 𝑑 = 𝑀, and

{𝐴
1
, . . . , 𝐴

𝑛
} (resp., {𝐵

1
, . . . , 𝐵

𝑚
}), 𝑛 ≪ 𝑁 (resp., 𝑚 ≪ 𝑀), is

a fuzzy partition of [1,𝑁] (resp., [1,𝑀]). The following fuzzy
relation is the decoded version of 𝑅 and it is defined as

𝑅
𝐹

𝑛𝑚
(𝑖, 𝑗) =

𝑛

∑

𝑘=1

𝑚

∑

𝑙=1

𝐹
𝑘𝑙
𝐴
𝑘
(𝑖) 𝐵
𝑙
(𝑗) (4)

for every (𝑖, 𝑗) ∈ {1, . . . , 𝑁} × {1, . . . ,𝑀}. We have subdivided
𝑅 in submatrices 𝑅

𝐵
of sizes 𝑁(𝐵) × 𝑀(𝐵), called blocks

(cf., e.g., [2, 16]), compressed to blocks 𝐹
𝐵
of sizes 𝑛(𝐵) ×
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Figure 7: Trend of PSNR with respect to distance (18) for the pen
obtained from the comparison with the sample image at 𝜃 = 10∘ and
𝜙 = 54

∘.

Figure 8: Pen at 𝜃 = 10∘ and 𝜙 = 54∘.

𝑚(𝐵)(𝑛(𝐵) < 𝑁(𝐵),𝑚(𝐵) < 𝑀(𝐵)) via [𝐹𝐵
𝑘𝑙
] defined for each

𝑘 = 1, . . . , 𝑛(𝐵) and 𝑙 = 1, . . . , 𝑚(𝐵) as

𝐹
𝐵

𝑘𝑙
=

∑
𝑀(𝐵)

𝑗=1
∑
𝑁(𝐵)

𝑖=1
𝑅
𝐵
(𝑖, 𝑗) 𝐴

𝑘
(𝑖) 𝐵
𝑙
(𝑗)

∑
𝑀(𝐵)

𝑗=1
∑
𝑁(𝐵)

𝑖=1
𝐴
𝑘
(𝑖) 𝐵
𝑙
(𝑗)

. (5)
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Figure 9: Pen at 𝜃 = 10∘ and 𝜙 = 18∘.

Figure 10: Frame 1 in Mom-Daughter.

The basic functions 𝐴
1
, . . . , 𝐴

𝑛(𝐵)
(resp., 𝐵

1
, . . . , 𝐵

𝑚(𝐵)
),

defined below, constitute a uniform fuzzy partition of [1,
𝑁(𝐵)] (resp., [1,𝑀(𝐵)]):

𝐴
1
(𝑥) =

{

{

{

0.5 (1 + cos 𝜋
ℎ
(𝑥 − 𝑥

1
)) , if𝑥 ∈ [𝑥

1
, 𝑥
2
] ,

0, otherwise,

𝐴
𝑘
(𝑥) =

{

{

{

0.5 (1 + cos 𝜋
ℎ
(𝑥 − 𝑥

𝑘
)) , if𝑥 ∈ [𝑥

𝑘−1
, 𝑥
𝑘+1
] ,

0, otherwise,

𝐴
𝑛
(𝑥) =

{

{

{

0.5 (1 + cos 𝜋
ℎ
(𝑥 − 𝑥

𝑛
)) , if𝑥 ∈ [𝑥

𝑛−1
, 𝑥
𝑛
] ,

0, otherwise,
(6)

where 𝑛 = 𝑛(𝐵), 𝑘 = 2, . . . , 𝑛, ℎ = (𝑁(𝐵) − 1)/(𝑛 − 1), 𝑥
𝑘
=

1 + ℎ ⋅ (𝑘 − 1), and

𝐵
1
(𝑦) =

{

{

{

0.5 (1 + cos 𝜋
𝑠
(𝑦 − 𝑦

1
)) , if𝑦 ∈ [𝑦

1
, 𝑦
2
] ,

0, otherwise,

𝐵
𝑡
(𝑦) =

{

{

{

0.5 (1 + cos 𝜋
𝑠
(𝑦 − 𝑦

𝑡
)) , if𝑦 ∈ [𝑦

𝑡−1
, 𝑦
𝑡+1
] ,

0, otherwise,

𝐵
𝑚
(𝑦) =

{

{

{

0.5 (1 + cos 𝜋
𝑠
(𝑦 − 𝑦

𝑚
)) , if𝑦 ∈ [𝑦

𝑚−1
, 𝑦
𝑚
] ,

0, otherwise,
(7)

where𝑚 = 𝑚(𝐵), 𝑡 = 2, . . . , 𝑚, 𝑠 = (𝑀(𝐵)−1)/(𝑚−1),𝑦
𝑡
= 1+

𝑠 ⋅ (𝑡−1). We decompress 𝐹
𝐵
to 𝑅𝐹
𝑛(𝐵)𝑚(𝐵)

of sizes𝑁(𝐵)×𝑀(𝐵)
by setting for every (𝑖, 𝑗) ∈ {1, . . . , 𝑁

𝐵
} × {1, . . . ,𝑀

𝐵
}

𝑅
𝐹

𝑛(𝐵)𝑚(𝐵)
(𝑖, 𝑗) =

𝑛(𝐵)

∑

𝑘=1

𝑚(𝐵)

∑

𝑙=1

𝐹
𝐵

𝑘𝑙
𝐴
𝑘
(𝑖) 𝐵
𝑙
(𝑗) (8)

which approximates 𝑅
𝐵
up to an arbitrary quantity 𝜀 in the

sense of Theorem 1, which, unfortunately, does not give a
method for finding two integers 𝑛(𝐵) and 𝑚(𝐵) such that
|𝑅
𝐵
(𝑝
𝑖
, 𝑞
𝑗
) − 𝑅

𝐹

𝑛(𝜀)𝑚(𝜀)
(𝑝
𝑖
, 𝑞
𝑗
)| < 𝜀. Then we prove several

values of 𝑛(𝐵) and 𝑚(𝐵). For every compression rate 𝜌, we
evaluate the quality of the reconstructed image via the PSNR
defined as

(PSNR)
𝜌
= 20 log

10

𝐿

(RMSE)
𝜌

, (9)

where (RMSE)
𝜌
is

(RMSE)
𝜌
=
√
∑
𝑁

𝑖=1
∑
𝑀

𝑗=1
(𝑅 (𝑖, 𝑗) − 𝑅

𝐹

𝑁𝑀
(𝑖, 𝑗))

2

𝑁 ×𝑀
.

(10)

Here 𝑅𝐹
𝑁𝑀

is the reconstructed image obtained by recompos-
ing the blocks 𝑅𝐹

𝑛(𝐵)𝑚(𝐵)

󸀠.

3. Max-Min and Min-Max Eigen Fuzzy Sets

Let 𝑋 be a nonempty finite set, 𝑅 : 𝑋 × 𝑋 → [0, 1] and
𝐴 : 𝑋 → [0, 1], such that

𝑅 ∘ 𝐴 = 𝐴, (11)

where “∘” is the max-min composition. In terms of member-
ship functions, we have that

𝐴 (𝑦) = max
𝑥∈𝑋

{min (𝐴 (𝑥) , 𝑅 (𝑥, 𝑦)} (12)

for all 𝑥, 𝑦 ∈ 𝑋 and 𝐴 is defined as an Eigen Fuzzy Set of 𝑅.
Let 𝐴

𝑖
: 𝑋 → [0, 1], 𝑖 = 1, 2, . . ., be defined iteratively by

𝐴
1
(𝑧) = max

𝑥∈𝑋

𝑅 (𝑥, 𝑧) ,

𝐴
2
= 𝑅 ∘ 𝐴

1
, . . . , 𝐴

𝑛+1
= 𝑅 ∘ 𝐴

𝑛
, . . . 𝑧 ∈ 𝑋.

(13)
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It is known [2, 24, 25] that there exists an integer 𝑝 ∈

{1, . . . , card𝑋} such that 𝐴
𝑝
is the GEFS of 𝑅 with respect to

the max-min composition. We also consider the following:

𝑅◻𝐴 = 𝐴, (14)

where “◻” denotes themin-max composition, that is, in terms
of membership functions:

𝐴 (𝑦) = min
𝑥∈𝑋

{max (𝐴 (𝑥) , 𝑅 (𝑥, 𝑦)} (15)

for all 𝑥, 𝑦 ∈ 𝑋 and 𝐴 is also defined to be an Eigen Fuzzy
Set of 𝑅 with respect to the min-max composition. It is easily
seen that (14) is equivalent to the following:

𝑅◻𝐴 = 𝐴, (16)

where 𝑅 and𝐴 are pointwise defined as 𝑅(𝑥, 𝑦) = 1 −𝑅(𝑥, 𝑦)
and 𝐴(𝑥) = 1 − 𝐴(𝑥) for all 𝑥, 𝑦 ∈ 𝑋. Since 𝐴

𝑝
for some 𝑝 ∈

{1, . . . , card𝑋} is the GEFS of 𝑅 with respect to the max-min
composition, it is immediately proved that the fuzzy set 𝐵 :
𝑋 → [0, 1] defined as 𝐵(𝑥) = 1 − 𝐴

𝑝
(𝑥) for every 𝑥 ∈ [0, 1]

is the SEFS of 𝑅 with respect to the min-max composition.
In [27] a distance based on GEFS and SEFS for image

matching is used over images of sizes 𝑁 × 𝑁. Indeed,
considering two single-band images of sizes 𝑁 × 𝑁, say 𝑅

1

and 𝑅
2
, such distance is given by

𝑑 (𝑅
1
, 𝑅
2
) = ∑

𝑥∈𝑋

((𝐴
1
(𝑥) − 𝐴

2
(𝑥))
2

+ (𝐵
1
(𝑥) − 𝐵

2
(𝑥))
2

) ,

(17)

where 𝑋 = {1, 2, . . . , 𝑁}, 𝐴
𝑖
, 𝐵
𝑖
are the GEFS and SEFS of

the fuzzy relation 𝑅
𝑖
, respectively, obtained by normalizing

in [0, 1] the pixels of the image 𝐼
𝑖
, 𝑖 = 1, 2.

In [26, 27] experiments are presented over color images
of sizes 256 × 256 concerning two objects (an eraser and
a pen) extracted from View Sphere Database. Each object
is put in the center of a semisphere on which a camera is
placed in 91 different directions. The camera establishes an
image (photography) of the object for each direction which
can be identified from two angles 𝜃 (0∘ < 𝜃 < 90

∘
) and

Φ (−180
∘
< Φ < 180

∘
) as illustrated in Figure 3.

A sample image 𝑅
1
(with given 𝜃 = 11

∘, Φ = 36
∘

for the eraser and 𝜃 = 10
∘, Φ = 54

∘ for the pen) is
to be compared with another image 𝑅

2
chosen among the

remaining 90 directions. GEFS and SEFS are calculated in the
three components of each image in the RGB space, for which
it is natural to assume the following extension of (17):

𝐷(𝑅
1
, 𝑅
2
) =

1

3
(𝑑
𝑅
(𝑅
1
, 𝑅
2
) + 𝑑
𝐺
(𝑅
1
, 𝑅
2
) + 𝑑
𝐵
(𝑅
1
, 𝑅
2
)) ,

(18)

where 𝑑
𝑅
(𝑅
1
, 𝑅
2
), 𝑑
𝐺
(𝑅
1
, 𝑅
2
), 𝑑
𝐵
(𝑅
1
, 𝑅
2
) are the measures

(17) calculated in each band 𝑅, 𝐺, 𝐵. For image matching,
the GEFS and SEFS components in each band are extracted
from each image, thus forming a dataset with reduced storage
memory.An image is comparedwith the images in the dataset
using (18). If the dataset contains 𝑠 color images of sizes𝑁×𝑁

Table 1: Best distances fromGEFS and SEFS basedmethod with 𝜌 =
0.007813 for the eraser image dataset obtained from the comparison
with the sample image at 𝜃 = 11∘ and 𝜙 = 36∘.

𝜃 𝜙 𝑑
𝑅
(𝑅
1
, 𝑅
2
) 𝑑

𝐺
(𝑅
1
, 𝑅
2
) 𝑑

𝐵
(𝑅
1
, 𝑅
2
) 𝐷(𝑅

1
, 𝑅
2
)

10 54 7.2543 20.4322 15.1914 14.2926
11 −36 18.4459 30.1343 25.7560 24.7787
25 37 16.4410 35.3923 24.2910 25.3748
10 89 18.7165 32.1656 25.8345 25.5722
10 −54 17.3107 34.4895 25.8311 25.8771

Figure 11: Frame 2 in Mom-Daughter.

and the dimension of the original dataset is 3𝑠𝑁2, then the
dimension of the GEFS and SEFS dataset is 6𝑠𝑁, so we have
a compression rate given by

𝜌 =
6𝑠𝑁

3𝑠𝑁2
=
2

𝑁
. (19)

So we obtain a compression rate 𝜌 = 0.007813 if𝑁 = 256.

4. The Image Matching Process via
F-Transforms

We consider an image dataset formed by color images of sizes
𝑁 ×𝑀. In the preprocessing phase we compress each image
of the dataset using the direct F-transform. Each image is
divided in blocks of sizes 𝑁(𝐵) × 𝑀(𝐵) and each block is
compressed in a block of sizes 𝑛(𝐵) × 𝑚(𝐵). Thus the images
are coded with a compression rate 𝜌 = (𝑛(𝐵)×𝑚(𝐵))/(𝑁(𝐵)×
𝑀(𝐵)). In our experiments we set the sizes of the original
and compressed blocks, so that 𝜌 is comparable with (18). For
example, for 𝑁 = 𝑀 = 256, we use 𝑁(𝐵) = 𝑀(𝐵) = 24 and
𝑛(𝐵) = 𝑚(𝐵) = 2, so 𝜌 = 0.006944.

In the reduced dataset we store the F-transform compo-
nents of each image. We use the PSNR between a sample
image 𝑅

1
and an image 𝑅

2
defined for every compression rate

𝜌 (cf. (9)) as

PSNR
𝜌
(𝑅
1
, 𝑅
2
) = 20 log

10

𝐿

RMSE
𝜌
(𝑅
1
, 𝑅
2
)
, (20)
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Table 2: Best PSNR from the F-transform based method with 𝐿 = 255 and 𝜌 = 0.006944 for the eraser image dataset obtained from the
comparison with the sample image at 𝜃 = 11∘ and 𝜙 = 36∘.

𝜃 𝜙 PSNR
𝜌𝑅
(𝑅
1
, 𝑅
2
) PSNR

𝜌𝐺
(𝑅
1
, 𝑅
2
) PSNR

𝜌𝐵
(𝑅
1
, 𝑅
2
) PSNR

𝜌
(𝑅
1
, 𝑅
2
)

10 54 25.4702 22.2952 23.7712 23.8455
11 −36 21.8504 20.0625 21.0801 20.9977
25 37 21.4056 17.9865 19.0040 19.4654
10 89 21.3049 17.8858 18.9033 19.3647
10 −54 21.0057 17.5866 18.6041 19.0655
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Frame n∘

Figure 12: Trend of PSNR (𝜌 = 0.006944) with respect to frame
number for the video Mom-Daughter.

Figure 13: Frame 1 in sflowg.

where RMSE (Root Mean Square Error) is given by (cf. (10))

RMSE
𝜌
(𝑅
1
, 𝑅
2
) =

√
∑
𝑁

𝑖=1
∑
𝑀

𝑗=1
(𝑅
1
(𝑖, 𝑗) − 𝑅

2
(𝑖, 𝑗))
2

𝑁 ×𝑀
.

(21)

If we have color images, we define an overall PSNR as

PSNR
𝜌
(𝑅
1
, 𝑅
2
)

=
1

3
[PSNR

𝜌𝑅
(𝑅
1
, 𝑅
2
) + PSNR

𝜌𝐺
(𝑅
1
, 𝑅
2
)

+PSNR
𝜌𝐵
(𝑅
1
, 𝑅
2
)] ,

(22)

Figure 14: Frame 2 in sflowg.
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Figure 15: Trend of PSNR (𝜌 = 0.006944) with respect to frame
number for the video sflowg.

where PSNR
𝜌𝑅
(𝑅
1
, 𝑅
2
), PSNR

𝜌𝐺
(𝑅
1
, 𝑅
2
), PSNR

𝜌𝐵
(𝑅
1
, 𝑅
2
) are

the similarity measures (20) calculated in each band 𝑅, 𝐺,
𝐵 compression rate 𝜌. In our experiments we compare the
results obtained by using the F-transforms (resp., GEFS and
SEFS) based method with the PSNR (20) (resp. (18)). We
use the color image datasets of 256 gray levels and of sizes
256 × 256 pixels, available in the View Sphere Database for
each object considered, the best image 𝑅

2
of the object itself

maximizes the PSNR (22). In other experiments we use our
F-transform method over color video datasets in which each
frame is formed by images of 256 gray levels and of sizes
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Figure 16: Trend of PSNR difference with respect to PSNR
0
(𝜌 =

0.006944).

Table 3: Best distances from GEFS and SEFS based method with 𝜌
= 0.007813 for the pen image dataset obtained from the comparison
with the sample image at 𝜃 = 10∘ and 𝜙 = 54∘.

𝜃 𝜙 𝑑
𝑅
(𝑅
1
, 𝑅
2
) 𝑑

𝐺
(𝑅
1
, 𝑅
2
) 𝑑

𝐵
(𝑅
1
, 𝑅
2
) 𝐷(𝑅

1
, 𝑅
2
)

10 18 0.8064 0.4495 0.9232 0.7264
10 −18 1.2654 1.0980 7.2903 3.2179
68 84 2.7435 1.7468 5.8812 3.4572
11 36 2.1035 5.4634 3.3769 3.6479
10 −54 2.5394 2.0005 9.2138 4.5845

360×24, available in the Ohio University sample digital color
video database. A color video is schematically formed by a
sequence of frames. If we consider a frame in a video as the
sample image, we prove that the image with greatest PSNR
with respect to the sample image is an image with frame
number close to the frame number of the sample image.

5. Results of Tests

We compare results obtained by using the GEFS and SEFS
and F-transform based methods for image matching on
all the image datasets, each of sizes 256 × 256, extracted
from the View Sphere Database. In the first image dataset,
concerning an eraser, we consider, as sample image 𝑅

1
, the

image obtained from the camera in the direction with angles
𝜃 = 11

∘ and 𝜙 = 36∘. For brevity, we consider a dataset of 40
test images, andwe compare𝑅

1
with the images considered in

the remaining 40 other directions. In Table 1 (resp., Table 2)
we report the distances (17) and (18) (resp., PSNR (20) and

(22) with 𝐿 = 255) obtained using the GEFS and SEFS (resp.,
F-transform) based method.

In Figure 4we show the trend of the index PSNRobtained
by the F-Transform method with respect to the distance (18)
obtained using the GEFS and SEFS method.

As we can see from Tables 1 and 2, both methods give the
same reply: the better image similar with the image eraser in
the direction 𝜃 = 11∘ and𝜙 = 36∘ (Figure 5) is given from that
one at 𝜃 = 10∘ and 𝜙 = 54∘ (Figure 6). The trend in Figure 4
shows that the value of the distance (18) increases as the PSNR
decreases.

In order to have a further confirmation of our approach,
we have considered a second object, a pen, contained in the
View Sphere Database whose sample image 𝑅

1
is obtained

from the camera in the direction with angles 𝜃 = 10
∘ and

𝜙 = 54
∘. We also limit the problem to a dataset of 40 test

images whose best distances (17) and (18) (resp., (20) and (22)
with 𝐿 = 255) under the SEFS and GEFS (resp., F-transform)
based method, are reported in Table 3 (resp., Table 4).

In Figure 7we show the trend of the index PSNRobtained
by the F-transform method with respect to the distance 𝐷
obtained by using the GEFS and SEFS method. As we can
see from Tables 3 and 4, in both methods the best image
similar to the original image in the directions 𝜃 = 10∘ and
𝜙 = 54

∘ (Figure 8) is given from that one at 𝜃 = 10
∘ and

𝜙 = 18
∘ (Figure 9). Also in this example, the trend in Figure 7

shows that the value of the distance (18) increases as the PSNR
decreases.

Now we present the results over a sequence of frames
of a video, Mom-Daughter, available in the Ohio University
sample digital color video database. Each frame is a color
image of sizes 360 × 240 with 256 gray levels for each band.
We use our method with a compression rate 𝜌 = 0.006944;
that is, in each band every frame is decomposed in 150 blocks,
and each block has sizes 24 × 24 compressed to a block of
sizes 2 × 2. Since𝑀 ̸=𝑁, the GEFS and SEFS based method
is not applicable. We set the sample image as the image
corresponding to the first frame of the video. We expect
that the frame number of the image with higher PSNR with
respect to the sample image is the image with frame number
close to the frame number of sample image. In Table 5 we
report the best results obtained using the F-transform based
method in terms of the (20) and (22) with 𝐿 = 255. As
expected, albeit with slight variations, all the PSNRs diminish
by increasing of the frame number, and the second frame
(Figure 11) is the frame with the greatest PSNR w. r. t. the first
frame (Figure 10) containing the sample image.

In Figure 12 we show the trend of the PSNR (22) with the
frame number.This trend is obtained for all the sample video
frames in the video dataset. For reasons of brevity, now we
report only the results obtained for another test performed
on the sequence of frames of another video in the Ohio
sample digital video database, the video sflowg. The PSNR in
Figure 15 diminishes by increasing the frame number, and the
second frame (Figure 14) is the frame with the greatest PSNR
w. r. t. the first frame (Figure 13) containing the sample image.

For supporting the validity of the F-transform method
for all the sample frames, we measure, for the frame with
the greatest PSNR w.r.t the sample frame, the correspondent
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Table 4: Best PSNR from the F-transform based method with 𝐿 = 255 and 𝜌 = 0.006944 for the pen image dataset obtained from the
comparison with the sample image at 𝜃 = 10∘ and 𝜙 = 54∘.

𝜃 𝜙 PSNR
𝜌𝑅
(𝑅
1
, 𝑅
2
) PSNR

𝜌𝐺
(𝑅
1
, 𝑅
2
) PSNR

𝜌𝐵
(𝑅
1
, 𝑅
2
) PSNR

𝜌
(𝑅
1
, 𝑅
2
)

10 18 25.3095 25.2317 23.9915 24.8442
10 −18 24.6794 24.9788 23.4156 24.3579
68 84 24.4219 24.6667 22.6941 23.9276
11 36 24.5678 24.1721 22.5035 23.7478
10 −54 23.7862 23.5642 22.2730 23.2078

Table 5: PSNR with 𝜌 = 0.006944 for the Mom-Daughter video w.r.t. the first frame.

Frame number PSNR
𝜌𝑅
(𝑅
1
, 𝑅) PSNR

𝜌𝐺
(𝑅
1
, 𝑅) PSNR

𝜌𝐵
(𝑅
1
, 𝑅
2
) PSNR

𝜌
(𝑅
1
, 𝑅
2
)

2 42.2146 42.0278 42.6819 42.3081
3 39.5194 39.6131 40.9278 40.0201
4 37.7658 39.0397 39.0397 38.6151
5 36.9349 37.3071 38.8239 37.6886
6 35.4771 36.5276 37.8853 36.6300

value PSNR
0
obtained by using the original frame instead

of the correspondent compressed frame decoded via the
inverse F-Transform. In Figure 16 we show the trend of the
difference PSNR

0
− PSNR with respect to PSNR

0
. The trend

indicates that this difference is always less than 2. This result
shows that if we compress the images in the dataset with rate
𝜌 = 0.006944 by using the F-transform method, we can use
the compressed image dataset for image matching processes,
comparing the decompressed image with respect to a sample
image despite the loss of information due to the compression.

6. Conclusions

The results on the images of sizes 𝑁 × 𝑀 (𝑀 = 𝑁 = 256)

of the View Sphere Image Database show that, using our F-
transform based method, we obtain the same results in terms
of image matching and in terms of reduced memory storage
reached also via the GEFS and SEFS based method, which is
applicable only over images with 𝑁 = 𝑀, while our method
concerns images of any sizes.

Moreover our tests executed on color video frames of sizes
𝑁×𝑀 (𝑀 = 360,𝑁 = 240 pixels with 256 gray levels) of the
Ohio University color videos dataset show that, by choosing
the first frame as the sample image, we obtain as image with
the highest PSNR that one corresponding to the successive
frame, as expected, although a loss of information on the
decoded images because of the compression process.
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