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A method of fault diagnosis in dynamic systems based on a fuzzy approach is proposed. The new method possesses two basic
specific features which distinguish it from the other known fuzzy methods based on the application of fuzzy logic and a bank of
state observers. First, this method uses a bank of interacting observers instead of traditional independent observers. The second
specific feature of the proposed method is the assumption that there is no strict boundary between the serviceable and disabled
technical states of the system, which makes it possible to specify a decision making rule for fault diagnosis.

1. Introduction

A dynamic systemmodel is widely used to describe technical
systems in solving various problems of analysis and synthesis,
including diagnosis, as applied to these systems. Although the
literature on problems of diagnosis is abundant, the interest
to them still persists and the investigations are continuing.
The problems of how to increase accuracy, or diagnostic
depth, and how to take into account different uncertainties
that are inherent in the solution of diagnosis problems are
conventionally central to the studies of fault diagnosis. It is
to these problems that this paper is devoted, wherein the
technical states of the system are assumed uncertain.

In the literature, the diagnosis problem is considered in
different formulations, depending primarily on the models
used to describe a system: deterministic [1–8], stochastic
[9, 10], fuzzy [11–13], and so forth.The choice of a formulation
is determined, as a rule, by the application and the problem
to be solved by the dynamic system, as well as a priori infor-
mation on the properties of the system and its possible faults
available to developers of diagnostic tools.Thus, if a developer
possesses statistical information on the system behavior and
faults, it makes sense to use the stochastic approach. If such
information is unavailable, the deterministic approach is
preferential because in this case, information on uncertainties

is minimal.The fuzzy approach complements the tools of the
deterministic approach with the rules of analysis and fault
decision making based on fuzzy logic. These rules formalize
the empirical knowledge of the developer about the nominal
and anomalous (in the case of faults) behavior of a system
and uncertainties inherent in this problem by introducing
fuzzy sets. Of course, there is a certain analogy between
the methods that belong to different approaches. It is a
consequence of mutual penetration and enrichment of the
existing approaches. In this sense, thematerial presented later
is not an exception.

Each of the aforementioned approaches fits different lines
of investigations. Among the most efficient of them is the
one that relies on the models of the diagnosed system for
synthesis of diagnostic tools. This line is developed in the
framework of all approaches and is realized by application
of either single state observers [3–5] (stochastic approach—
Kalman and Wiener filters [9, 10]) or output observers [2, 3],
or their sets (banks) [7–13] as parts of diagnostic tools. If we
use banks, each of the observers 𝑂

𝑖
(Figure 1) is adjusted to

one of the technical states of the system (serviceable 𝑆
0
− 𝑂
0
,

disabled 𝑆
1
with the first fault𝑂

1
, disabled 𝑆

2
with the second

fault𝑂
2
, etc.). In the general case, vector residuals (difference

signals) ]
0
, ]
1
, . . . , ]

𝑁
between the real output of the dynamic

system and the output of each of the observers are formed,
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Figure 1: Structure of the diagnostic system.

which is followed by a decision making on the technical state
of the diagnosed system.

In this study, we propose a method for diagnosing
dynamic systems in the framework of a fuzzy approach.
The new method possesses two basic specific features which
distinguish it from the other known fuzzy methods based on
the application of fuzzy logic and a bank of state observers.
First, unlike the approaches in which observers are inde-
pendent of each other, in this method, we consider a bank
of interacting observers. The second specific feature of the
proposed method is an assumption that there is no strict
boundary between the serviceable and disabled technical
states of the system and its elements, which makes it possible
to specify a decision making rule for fault diagnosis.

2. Preliminary Definitions and Remarks

First of all, let us discuss the notion of a “fuzzy” technical state
and, as a consequence, “fuzzy” fault, which is understood
as a transition from the serviceable technical state to the
disabled one. The notion of a fuzzy technical state used
later seems to be quite adequate to describe the existing
engineering approach. Indeed, judging from the value of the
parameter which indicates the technical state of an object, an
engineer can conclude that the object is either serviceable or
disabled. Depending on a particular value of this parameter,
the engineer can conclude that the object is serviceable or,
correspondingly, disabled to a certain extent.

We define a fuzzy technical state of an object with respect
to parameter Θ as a linguistic variable characterized, for
example, by two terms (fuzzy sets)—serviceable and disabled
technical states described by the corresponding membership
functions 𝜇

0

𝑖
and 𝜇

1

𝑖
.

Figure 2 illustrates the notions of “crisp” (a) and “fuzzy”
(b) technical states of an object. In the first case, the
domains of values of the key parameter Θ corresponding
to the serviceable and disabled technical states of an object

(denoted by rectangles of different colors) are separated by a
strict boundary. In the second case, these domains intersect
(shaded area), and they are determined by the corresponding
membership functions with parameters 𝑎 and 𝑏. As a result,
for any value of Θ = Θ

󸀠, the technical state of the object can
be related both with a fuzzy set of serviceable (𝜇

0

𝑖
= 0.8) and a

fuzzy set of disabled (𝜇
1

𝑖
= 0.3) states. Note that in this paper,

we only consider trapezoidal membership functions:

𝜇
0

𝑖
=

{{{

{{{

{

1, 0 ≤ Θ
𝑖
≤ 𝑎,

𝑏 − Θ
𝑖

𝑏 − 𝑎
, 𝑎 ≤ Θ

𝑖
≤ 𝑏,

0, otherwise,

𝜇
1

𝑖
=

{{{

{{{

{

0, 0 ≤ Θ
𝑖
≤ 𝑎,

Θ
𝑖
− 𝑎

𝑏 − 𝑎
, 𝑎 ≤ Θ

𝑖
≤ 𝑏,

1, otherwise.

(1)

We should also make two more remarks concerning the
problems touched upon in this paper. First, for simplicity,
we assume that there are no perturbations in the considered
model of the system. Second, we do not discuss the already
known procedures of synthesis of stable observers [14].

3. Decision Making Rule on Fault Occurrence

The rule is based on the notion of the confidence coefficient
𝐾
𝑖
of the 𝑖th technical state introduced later. It requires

that the confidence coefficient 𝐾
𝑖
should reach a specified

level 𝐴for a technical state with the dominant value of this
coefficient; that is, the following condition should be satisfied:

𝐾
∗

= max
𝑖

{𝐾
𝑖
} ≥ 𝐴. (2)

Let us clarify the procedure of calculation of confidence
coefficient. It is based on two groups of parameters that define
the technical state of a dynamic system: the residuals ]

𝑖
, 𝑖 =

0,𝑁 obtained as a result of comparison of the system outputs
with the outputs of the observers and the estimates 𝛿̂

𝑖
, Δ̂
𝑖
,

𝑖 = 0,𝑁 of the levels of the faults in the diagnosis in the
signal space and parameter space, respectively. It is assumed
that the residual ]

𝑖
, 𝑖 = 0,𝑁 formed as a result of comparison

of the systemoutputs with the 𝑖th observer can be represented
by a linguistic variable, for example, with two terms, “small”
and “large,” for which the membership functions 𝜇

0

]𝑖
and 𝜇

1

]𝑖
,

𝑖 = 0,𝑁 are defined. The term “small’ corresponds to the
situation in which the model used in the observer synthesis
is adequate to the current technical state of the diagnosed
system.Theoccurrence of a small, as it is, but nonzero value of
this residual is due to the transient processes accompanying
the estimation, the lack of complete adequacy of the model
of the diagnosed system used for the observer synthesis,
and neglected perturbations of its dynamics and output. The
term “large” corresponds to the situation in which the model
used in the observer synthesis is essentially inadequate to
the current technical state of the diagnosed system. This is
the case when, for example, a diagnosed system is in the 𝑖th
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Figure 2: Illustration of the ideas of “crisp” and “fuzzy” technical states.
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Figure 3: Structure of an attitude control system of a space launch vehicle (a) and an example of structural changes (b).

technical state, whereas the observer is adjusted for the 𝑗th
technical state. In this case, parameters {𝑎

𝑖
, 𝑏
𝑖
| 𝑖 = 0,𝑁} of

the membership functions are determined by the equalities:

𝑎
𝑖
= min
𝑖

{]
𝑖
| 𝑆
𝑗
, 𝑗 ̸= 𝑖} , 𝑏

𝑖
= max
𝑖

{]
𝑖
| 𝑆
𝑗
, 𝑗 = 𝑖} . (3)

As for the variables 𝛿̂
𝑖
, Δ̂
𝑖
, 𝑖 = 0,𝑁 simulating a

fault, we also assume that they are described by linguistic
variables with two terms, “serviceable” and “disabled,” with
the membership functions 𝜇

0

𝛿̂𝑖

and 𝜇
1

𝛿̂𝑖

, 𝑖 = 1,𝑁, or 𝜇
0

Δ̂𝑖
and

𝜇
1

Δ̂𝑖
, 𝑖 = 1,𝑁, respectively, specified for them.
In order to obtain the confidence coefficients {𝐾

𝑖
|

𝑖 = 0,𝑁}, first, we determine the characteristics called
generalized membership degrees {𝜇̃

𝑖
| 𝑖 = 0,𝑁} of the

technical state of the diagnosed system to each of the possible
fuzzy technical states. These characteristics generalize the
information on the technical state of the system with respect
to all observers and are formed based on the set of values
{]
𝑖

| 𝑖 = 0,𝑁}. The value of the generalized membership
degree is formed in accordancewith the following expression:

𝜇̃
𝑖
= 𝜇
0

]𝑖
𝜇
1

𝛿̂𝑖

𝑁

∏

𝑗=0

𝑗 ̸= 𝑖

𝜇
1

]𝑗
. (4)

The explanation of this expression is obvious. Indeed, the
observer adequate to the technical state of the system forms
a small residual, whereas the others form large residuals.This
being so, we may say that a fault does exist if 𝛿

𝑖
is large. We

do not consider the situations including equivalent or poorly
distinguishable faults.

Then, the confidence coefficient𝐾
𝑖
for each technical state

𝑆
𝑖
is calculated in accordancewith the rule of “weighting coef-

ficients” by determining the contribution of the generalized
membership degree 𝜇̃

𝑖
to the sum of these degrees for all

states. Consider

𝐾
𝑖
=

𝜇̃
𝑖

∑
𝑁

𝑗=0
𝜇̃
𝑗

. (5)

4. Diagnosis of Structural Changes

In this paper, we consider successively three different models
of fault: structural changes, faults in the signal space, and
faults in the parameter space. In so doing, we study various
structures of diagnostic tools different in the organization
of the banks of the state observers and decision making
rules. The proposed structures are compared with the known
variant of diagnostic tools, which uses a bank of independent
observers (Figure 1), and a decision is made as a result of
fuzzy analysis of residuals. First, consider the diagnosis of
structural changes. A structure of a system is very convenient
to describe such faults. An example of a system structure is
given in Figure 3(a). It is an attitude control system of a space
launch vehicle (LV). The angular position Θ is adjusted by
changing angle 𝛿, which characterizes the inclination of the
engines relative to the LV’s axis. An example of structural
changes is a break of the velocity feedback (Figure 3(b)).

From here on, the diagnosed dynamical system is
described in the time domain (by differential or difference



4 Advances in Fuzzy Systems

equations); that is, for a linear system,

𝑥̇ (𝑡) = 𝐹𝑥 (𝑡) + 𝐺𝑢 (𝑡) , 𝑦 (𝑡) = 𝐻𝑥 (𝑡) , (6)

while for a nonlinear system,

𝑥̇ (𝑡) = 𝜑 (𝑥 (𝑡) , 𝑢 (𝑡) , Θ) , 𝑦 (𝑡) = 𝐻𝑥 (𝑡) , (7)

where 𝑥 is an 𝑛-dimensional state vector, 𝑢 is an 𝑚-
dimensional input vector, 𝑦 is a 𝑝-dimensional output vector,
𝐹 is an 𝑛 × 𝑛 matrix of dynamic, 𝐺 is an input 𝑛 × 𝑚 matrix,
𝐻 is an output 𝑝 × 𝑛 matrix, 𝜑 is a function of dynamic, and
Θ is a parameter vector.

The problem of synthesis of tools for fault diagnosis
involves two main questions: formation of a rule for decision
making and synthesis of a bank of observers. Assuming that
the answer to the first question is given in the previous
section, we proceed to the discussion of the second question.

Let us next study some variants of fault diagnosis that
employ the banks of both independent and interacting
observers. By this we mean the method used to form the
system state vector estimate in each of the observers. If it is
formed independently, we have independent observers and
treat the obtained estimates as conditional with respect to a
certain technical state. If the formation of the estimate also
takes into account the estimates obtained in other observers,
we have interacting observers. This chapter is referring to the
independent observers.

Let us consider briefly the question of synthesis of a single
observer. Observers may be synthesized by different rules,
resulting from differences in the formulation of the problem.
The procedure for the synthesis of a state observer for the
linear system is known; however, for the sake of completeness,
we will recall its main issues. As previously stated, each 𝑖th
observer of the bank is adjusted to a technical state of the
system, in which it is characterized bymatrices 𝐹

𝑖
,𝐺
𝑖
,𝐻
𝑖
.The

matrices 𝐹
∗

𝑖
, 𝐺
∗

𝑖
, 𝐻
∗

𝑖
of the corresponding observer will be

the same.The observer equations for diagnostics of the linear
system have the form [14]

𝑥̇
𝑖

∗
(𝑡) = 𝐹

𝑖

∗
𝑥
𝑖

∗
(𝑡) + 𝐺

𝑖

∗
𝑢 (𝑡) + 𝐿

𝑖
(𝑦 − 𝑦

𝑖

∗
) ,

𝑦
𝑖

∗
(𝑡) = 𝐻

𝑖

∗
𝑥
𝑖

∗
(𝑡) .

(8)

As a result, an 𝑖th fault that occurs in the diagnosed
system during operation leads to formation of an estimate
of the system state vector in the observer. In this case, the
behavior of the estimate error 𝑒

𝑖
(𝑡) = 𝑥

𝑖
(𝑡) − 𝑥

∗

𝑖
(𝑡) is

determined by the equation ̇𝑒
𝑖

= (𝐹
∗

𝑖
− 𝐿
𝑖
𝐻
∗

𝑖
)𝑒
𝑖
. It will

suffice to determine the feedback matrix 𝐿
𝑖
to synthesize the

observer. It is determined depending on the desired behavior
of the estimation error. Undoubtedly, this error must tend
to zero. Therefore, matrix 𝐹

∗

𝑖
− 𝐿
𝑖
𝐻
∗

𝑖
corresponding to each

of the observers must be stable; that is, the real parts of
its eigenvalues must take on negative values. For the case
when the original system is linear, stationary, and observable,
the selection algorithm of matrix 𝐿

𝑖
is known, and it is

rather simple [14]. It uses the description of the diagnosed
dynamical system in identification canonical form such that
if the diagnosed system has one output, it is a single chain

of integrators with feedback from the last integrator. Such
system representation allows to find matrix 𝐿

𝑖
based on

desired eigenvalues for thematrix𝐹
∗

𝑖
−𝐿
𝑖
𝐻
∗

𝑖
. If the diagnosed

system has many outputs, the procedure for determining the
feedback matrix is complicated [14], although the sequence
of steps is the same. In a similar way, first of all, we need to
present the diagnosed system in the identification canonical
form, which becomes more complicated. It contains not
a single chain of integrators with feedback from the last
integrator, but several—as many as there are outputs in the
system.

To summarize this section, we formulate the algorithm
for diagnosis of arbitrary faults in the formulation under
consideration.

Algorithm 1.

(1) Formation of a list of faults.
(2) Synthesis of the independent observer for each of the

faults.
(3) Assignment of membership functions for the consid-

ered fuzzy residuals based on the developer’s empiri-
cal knowledge of the system operability.

(4) Decisionmaking about faults by forming a confidence
coefficient.

To illustrate the proposed algorithm, once again, we turn
to the example in Figure 3.

Example 2. Let us synthesize the diagnosis tools for break of
the velocity feedback. The nominal behavior of the system is
described by the equation

Θ̈ − 𝐾
𝐷
𝐾
𝐶1

Θ̇ + (𝐾
𝑃

+ 𝐾
𝐶1

− 𝐾
𝐶2

)Θ = 𝐾
𝑃
𝐾
𝐶1

Θ
𝑐
, (9)

but in the case of fault, it is described as follows:

Θ̈ + (𝐾
𝑃

+ 𝐾
𝐶1

− 𝐾
𝐶2

)Θ = 𝐾
𝑃
𝐾
𝐶1

Θ
𝑐
. (10)

We analyzed an intermittent fault, when a device recovers
after the failure and then fails again, in the Simulink environ-
ment using a sinusoidal input signal. In practice, faults of this
type usually are a severe problem for diagnosis. Simulation
results of a problem of diagnosis are shown in Figure 4, which
presents time diagrams for the confidence coefficients formed
with the use of a bank of two independent observers adjusted
for nominal and faulty states, respectively. It is easy to see that
the diagnosis tools show adequate results.

5. Diagnosis in Signal Space

In the case of diagnosis in the signal space, the fault is
simulated as an additional term 𝛿 in the dynamics equation;
that is, for an initial linear system, we have

𝑥̇ (𝑡) = 𝐹𝑥 (𝑡) + 𝐺𝑢 (𝑡) + 𝛿, 𝑦 (𝑡) = 𝐻𝑥 (𝑡) , (11)

and for a nonlinear system,

𝑥̇ (𝑡) = 𝜑 (𝑥 (𝑡) , 𝑢 (𝑡) , Θ) + 𝛿, 𝑦 (𝑡) = 𝐻𝑥 (𝑡) , (12)
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Figure 4: Time diagrams for confidence coefficients of technical states of an attitude control system of a space launch vehicle for independent
observers.

where 𝑥 is the 𝑛-dimensional state vector, 𝑢 is the 𝑚-
dimensional output vector, 𝑦 is the 𝑝-dimensional output
vector, 𝐹 is the 𝑛 × 𝑛 dynamics matrix, 𝐺 is the input
𝑛 × 𝑚 matrix, 𝐻 is the output 𝑝 × 𝑛 matrix, 𝜑 is the
dynamics function, and Θ is the parameter vector. In this
case, the number of types 𝑁 of single faults is equal to the
dimension 𝑛 of the state vector of the diagnosed system.
The first type is simulated by an additional term in the first
dynamics equation for the first component of vector 𝑥 and
the second type in the second equation for the corresponding
component of vector 𝑥, and so forth. Faults within the same
type are distinguished by the level of term 𝛿.

In this case of diagnosis in the signal space, the state
vector 𝑥

∗

𝑖
of the observer 𝑂

𝑖
(𝑖 = 0,𝑁) is formed by adding

to the state vector 𝑥 of the diagnosed system of the variable
𝛿
𝑖
simulating fault; that is, 𝑥∗

𝑇

𝑖
= [𝑥
𝑇
𝛿
𝑇

𝑖
]. Taking into account

the assumption that variable 𝛿
𝑖
is constant, the equation for

this variable takes the form

𝛿̇
𝑖
= 0. (13)

As a result, in the presence of the ith fault, the matrices of
the diagnosed system take the forms

𝐹
𝑖
=

[
[
[
[
[

[

0

𝐹
0

⋅ ⋅ ⋅

1

⋅ ⋅ ⋅

0 ⋅ ⋅ ⋅ 0 0

]
]
]
]
]

]

, 𝐺
𝑖
= [

𝐺
0

0 ⋅ ⋅ ⋅ 0
] ,

𝐻
𝑖
= [

[

0

𝐻
0

⋅ ⋅ ⋅

0

]

]

,

(14)

where in the dynamics matrix, the unity in the last column is
in the ith row. If the ith fault occurs in the diagnosed system
in the course of its operation, the estimate of this compound
vector is formed in the observer, as well as the estimate 𝛿̂

𝑖
of

the value of variable 𝛿
𝑖
.

Let us discuss the proposed method for obtaining an
estimate of the state vector of the system in each of the
observers. Further, consider two diagnostic algorithms with
the application of a bank of interacting observers. In so doing,
we use the decision making rule on the fault occurrence
described in the previous section. It will be shown later that in
the general case, the efficiency of the considered algorithms
is higher than that in the case of independent observers.

An important specific feature of the first algorithm is
that on each successive step of the calculation, each of the
observers is based on the estimate of state 𝑥̂(𝑡) obtained as
a result of averaging of partial estimates of all the observers
determined at the previous step rather than the indepen-
dently formed partial estimate 𝑥̂

𝑖
(𝑡) of the state vector. Here,

the current values of the confidence coefficients serve as
weighting coefficients, where

𝑥̂ (𝑡) = ∑

𝑖

𝐾
𝑖
𝑥̂
𝑖 (𝑡) . (15)

The result of it is a nonlinear state feedback. Indeed, the
residual (estimation error) formed by an adequate observer
tends to zero, and the corresponding confidence coefficient
increases with the decrease of confidence coefficients for
other technical states. Thus, in expression (15), the relative
weight of the estimate formed in an adequate observer
increases.

The second algorithm, though being similar to the previ-
ous one, differs from it, first of all, in the fact that the observers
are matched not with technical states but with the transitions
between them. In this case, it is assumed that the observer is
matched with the transition 𝑆

𝑖
→ 𝑆
𝑗
if it is based on the state

estimate obtained under condition 𝑆
𝑖
and was synthesized

based on the model of the system in state 𝑆
𝑗
. In this case,

transitions of 𝑆
𝑖

→ 𝑆
𝑖
type, that is, the transitions that do

not change the technical state, are also taken into account
among the analyzed transitions. As a result, the confidence
coefficients (denoted by 𝐾

𝑖𝑗
) calculated in this algorithm

according to the rule from the previous section correspond to
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Figure 5: Time diagrams for alternating fault and confidence coefficients of technical states of the control system for (a) independent and (b)
interacting observers.

the transitions 𝑆
𝑖

→ 𝑆
𝑗
between technical states, rather than

technical states themselves.This being so, at any step for each
technical state 𝑆

𝑗
, we should form the conditional estimate

𝑥̂
𝑗
(𝑡) following the rule

𝑥̂
𝑗 (𝑡) = ∑

𝑖

𝐾
𝑖𝑗
𝑥̂
𝑖𝑗 (𝑡) . (16)

In order tomake a decision according to rule (2), we need
to determine the confidence coefficients𝐾

𝑖
, (𝑖 = 0,𝑁) for the

technical

𝐾
𝑖
=

𝑁

∑

𝑗=0

𝐾
𝑖𝑗
. (17)

It is evident that the analysis of the behavior of the
diagnosed system used in the second algorithm is more
detailed, which is why we can expect this method to be more
efficient. In the general case, this is proved by the simulation
results given later.

Let us illustrate the described algorithms by a particular
example.

Example 3. Let us consider the linear system characterized by
the matrices

𝐹 =

[
[
[
[
[

[

−0, 0061 0, 5122 −0, 0579 0, 029 0, 0377

−0, 5122 −0, 1868 0, 6803 −0, 1417 −0, 2028

−0, 0579 −0, 6803 −0, 7645 0, 7531 0, 8508

−0, 29 −0, 1417 −0, 7531 −0, 3258 −0, 5974

−0, 0377 −0, 2028 −0, 8508 −0, 5974 −1, 242

]
]
]
]
]

]

,

𝐺 =

[
[
[
[
[

[

0, 0452

0, 2335

0, 2779

0, 09742

0, 1329

]
]
]
]
]

]

,

𝐻 = [0, 0452 −0, 2334 0, 2779 −0, 09743 −0, 1329] .

(18)

This system is a reduced model of an aircraft control loop
at an altitude obtained by linearization of the aircraft motion
equations in the neighborhood of the nominal trajectory.This
description covers the controlled object, the rudder control
servo drive, the altitude sensor, and the controller. For this
example, the problem of diagnosis in the signal space was
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Figure 6: Time diagrams for alternating fault and confidence coefficients of technical states of a torpedo for (a) independent and (b)
interacting observers.

simulated in Simulink. An intermittent fault 𝜃 in the form of
a meander was simulated at the first integrator (first diagram
in Figures 5(a) and 5(b)). A sinusoidal signal with amplitude
of 0.5 was fed to the input of the system. Figure 5 shows
the time diagrams of the obtained confidence coefficients
for the cases of independent and interacting observers. It is
clear that in the case of independent observers (Figure 5(a)),
the diagnostic tools do not form the expected result, since
before the fault occurs, coefficient 𝐾

0
should take a stable

value close to unity, and coefficient 𝐾
1
a value close to zero.

After the fault, the coefficient 𝐾
1
tends to the value close

to unity, and 𝐾
0
to a value close to zero. When we use

interacting observers (Figure 5(b)) matched with technical
states, the time diagrams demonstrate an adequate operation
of the diagnostic tools. Thus, on the time interval before a
fault occurs, the confidence coefficient 𝐾

0
for a serviceable

technical state after the transient process connected with the
initial estimation takes a value equal to unity. After the fault,
the corresponding confidence coefficient takes a stable value
close to unity.

6. Diagnosis in Parameter Space

In the case of diagnosis in the parameter space, the fault
is simulated as the deviation of the value of some system
parameter from the nominal value.Thus, for example, for the
linear system, it is simulated as the deviation of elements of
the system matrices from the nominal, where

𝑥̇ (𝑡) = 𝐹 (Θ + ΔΘ) 𝑥 (𝑡) + 𝐺 (Θ + ΔΘ) 𝑢 (𝑡) ,

𝑦 (𝑡) = 𝐻 (Θ + ΔΘ) 𝑥 (𝑡) ,

(19)

and for the nonlinear system,

𝑥̇ (𝑡) = 𝜑 (𝑥 (𝑡) , 𝑢 (𝑡) , Θ + ΔΘ) , 𝑦 (𝑡) = 𝐻𝑥 (𝑡) . (20)

In this case, the number of types𝑁 of single faults is equal
to the number of system parameters.

Let us use the algorithms considered in the previous
section in the diagnosis in the parameter space. Assume that
the parameter Θ is a diagnosed parameter. Let us divide
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the interval of the parameter values into 𝑙 subintervals {Θ
𝑖
+

Θ
𝑖+1

| 𝑖 = 1, 𝑙}. Let us match the observer based on the system
model for {Θ

𝑖
| 𝑖 = 1, 𝑙} with each of the subintervals. We

take into account that in this case, observers do not form
the estimate of the fault value directly; however, it can be
obtained according to the expression Δ̂ = Θ

𝑖
∗ − Θnom, where

𝑖
∗

= arg min
𝑖

]
𝑖
, Θnom is the nominal value of the parameter

Θ.
Let us analyze the efficiency of the diagnostic algorithms

using the following example.

Example 4. Let us consider the model of a water torpedo
described by the nonlinear equation

𝐽𝜑̈ + 𝐶
1
𝜑̇ = −𝐶

2
𝐶
3
sign (𝜑) , 𝑦 = 𝜑, (21)

where 𝐽 is the moment of inertia of the torpedo and 𝜑 is its
angle of rotation. For this example, the problem of diagnosis
of a single fault in the parameter space was simulated in
Simulink using two algorithms, for independent observers
and interacting observers matched with technical states. The
intermittent fault in the form of the sequence of deviations of
the parameter 𝐶

1
from the nominal value and returns to this

value (first diagrams in Figures 6(a) and 6(b)) was simulated.
The sinusoidal signal with an amplitude of 0.5 was fed to
the input of the system. The second algorithm demonstrated
the highest efficiency. Figure 6(b) shows the corresponding
results of simulation (the confidence coefficients 𝐾

0
and

𝐾
1
for the serviceable and faulty technical states) of the

diagnostic problem. It can be seen that, unlike the case
of independent observers (Figure 6(a)), the diagnostic tools
form the values of the confidence coefficients adequate to
the real technical states. In order to quantitatively estimate
the degree of adequacy of the results in both cases, the
obtained realizations were used to calculate the probabilities
of erroneous diagnosis. In this case, time intervals on which
the system was faulty were analyzed. For these intervals, the
total duration of subintervals on which erroneous signal on
the serviceable state was formed (the confidence coefficient
for the serviceable state reached the defined threshold value
𝐴 = 0.9) was calculated. The resulting probability was
determined as the ratio of this quantity and the total duration
of the considered faulty intervals. Thus, for the method with
independent observers, we obtained 𝑃 = 0.91, and for the
method with interacting observers, 𝑃 = 0.2.

7. Conclusions

In this paper, we proposed the method of diagnosis of
dynamic systems based on the application of the bank of
fuzzy interacting state observers. We considered successively
three different models of fault: structural changes, faults in
the signal space, and faults in the parameter space. For these
models of fault, we considered various structures of diagnos-
tic tools different in the organization of the bank of the state
observers and decision making rules. The proposed method
was compared with the known method with independent
observers by simulation in Simulink. As a result, it was

demonstrated that the proposed method makes it possible to
achieve higher quality of diagnosis.
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