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We show a new approach for detecting hotspots in spatial analysis based on the extended Gustafson-Kessel clustering method
encapsulated in a Geographic Information System (GIS) tool. This algorithm gives (in the bidimensional case) ellipses as cluster
prototypes to be considered as hotspots on the geographic map and we study their spatiotemporal evolution. The data consist of
georeferenced patterns corresponding to positions of Taliban’s attacks against civilians and soldiers in Afghanistan that happened
during the period 2004–2010. We analyze the formation through time of new hotspots, the movement of the related centroids, the
variation of the surface covered, the inclination angle, and the eccentricity of each hotspot.

1. Introduction

Hotspot detection is a known spatial clustering process in
which it is necessary to detect spatial areas on which specific
events thicken [1]; the patterns are the events georeferenced as
points on the map; the features are the geographical coordi-
nates (latitude and longitude) of any event. Hotspot detection
is used in many disciplines, as in crime analysis [2–4], for
analyzing where crimes occur with a certain frequency, in fire
analysis [5] for studying the phenomenon of forest fires, and
in disease analysis [6–9] for studying the localization and the
focuses of diseases. Generally speaking, for detecting more
accurately the geometrical shapes of hotspot areas algorithms
based on density [10, 11] are used and they measure the
spatial distribution of patterns on the area of study, but these
algorithms have a high computational complexity.

In [5, 12, 13] a new hotspot detection method based
on the extended fuzzy C-means algorithm (EFCM) [14, 15]
was proposed, which is a variation of the famous fuzzy C-
means (FCM) algorithm that detects cluster prototypes as
hyperspheres.With respect to the FCM algorithm, the EFCM
algorithm has the advantages of determining recursively

the optimal number of clusters and being robust in the
presence of noise and outliers. In [5, 12, 13] the EFCM is
encapsulated in a GIS tool for detecting hotspots as circles
displayed on themap.The pattern event dataset is partitioned
according to the time of the event’s detection, so each subset
is corresponding to a specific time interval. The authors
compare the hotspots obtained in two consecutive years by
studying their intersection on the map. In this way it is
possible to follow the evolution of a particular phenomenon
studying how its incidence is shifting and spreading through
time.

In this paper we present a new hotspot detection method
based on the extended Gustafson-Kessel algorithm (EGK)
[14, 15] for studying the spatiotemporal evolution of hotspots.
Our aim is to improve the shape of the hotspots, maintaining
a good computational complexity: indeed the EGK algorithm
gives the cluster prototypes as hyperellipsoids and ellipses in
the bidimensional case. The EGK algorithm is an extension
of the Gustafson-Kessel (GK) algorithm [16] which we briefly
present.
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Figure 1: Example of ellipses cluster prototype using the GK
algorithm.
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where A
𝑖
is the norm matrix, defined to be symmetric and

positive. In the FCM algorithm A
𝑖
is equal to the identity

matrix I. In the GK algorithm the following Mahalanobis
distance [17] is used:
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where P
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The covariance matrix P
𝑖
provides information about the

shape and orientation of the cluster. The length of the 𝑘th
axis of the hyperellipsoid is given by the root square of the
𝑘th eigenvalue 𝜆

𝑖𝑘
of P
𝑖
. The directions of the axes of the

hyperellipsoid are given by the directions of the eigenvectors
of thematrixP

𝑖
. In Figure 1 we show an example of ellipsoidal

cluster prototype.
Using the Lagrange multipliers for minimizing objective

function (1), we obtain the following solution for the cen-
troids of each cluster prototype:
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Figure 2: Intersection of two elliptical hotspots detected for events
that happened in two consecutive periods.
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where 𝜀 > 0 is a prefixed parameter.
This algorithm is sensitive to the presence of outliers

and noise and the number of cluster 𝐶 is fixed a priori; as
in the FCM algorithm, we need to use a validity index for
determining an optimal value for the number of clusters
𝐶. In order to overcome these shortcomings, in [1, 16]
the EGK algorithm is proposed which is a variation of
the GK algorithm: there the optimal number of clusters is
obtained during the iteration process. Furthermore, the EGK
algorithm is robust with respect to the presence of noise and
outliers.

In this paper we propose a new approach based on the
EGK clustering method for detecting hotspots and studying
their spatiotemporal evolution. Taking into consideration the
bidimensional case, we obtain ellipses to be approximated as
hotspot area better than the circular areas produced in the
EFCMmethod.

Figure 2 shows an example of two intersecting elliptical
hotspots, obtained as clusters detected by means of EGK
method in two consecutive periods.

Figure 2 show three different regions:

(i) the area in which the hotspot A is not intersected
by the hotspot B (corresponding to A − (A ∩ B) =
A − B): this region can be considered as a set of
geographical areas in which the prematurely detected
event disappears successively;
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(ii) the area of intersection A ∩ B: this area can be
considered a geographical area in which the event
persists in the course of time;

(iii) the area in which the hotspot B is not intersected by
the hotspot A (corresponding to B−(A∩B) = B−A):
this region can be considered as a set of geographical
areas in which the prematurely not detected event
propagates successively.

We can study the spatiotemporal evolution of the hotspots
by analyzing the interactions between elliptical hotspots
detected for consecutive periods, by verifying the presence
of clusters in areas in which clusters have not yet been
detected previously and the disappearance of clusters in areas
previously covered by hotspots.

In this research we present a method for studing
the spatiotemporal evolution of hotspots areas of war in
Afghanistan; we apply the EGK algorithm for comparing
consecutive years’ event datasets corresponding to positions
of Taliban’s attacks against civilian and soldiers. Each event
corresponds to the geolocalization of the site where Taliban’s
attack happened as well.

We study the spatiotemporal evolution of the hotspots
by analyzing the intersections of hotspots corresponding to
two consecutive years, the displacement of the centroids,
the increase or reduction of the hotspots areas, and the
emergence of new hotspots.

In Section 2we give an overview of the EGK algorithm. In
Section 3 we present our method for studying the spatiotem-
poral evolution of hotspots in spatial analysis. In Section 4
we present the results of the spatiotemporal evolution of
hotspots. Our conclusions are contained in Section 5.

2. The EGK Algorithm

In the EGK algorithm we consider clustering prototypes
given by hyperellipsoids in the 𝑛-dimensional feature’s space.
The 𝑖th hyperellipsoidal cluster prototype 𝑉
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In the EGK algorithm the objective function to be
minimized is
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Formula (12) produces the negative effect of diminishing
the objective function (10) when a meaningful number of
features are placed in a cluster; this effect can prevent the
separation of the clusters. In order to solve this problem in
[15], one starts with a small value 𝑟

𝑖
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thus, the 𝑘∗th row can be removed from the matrix 𝑈(𝑙). In
conclusion the following steps hold for the EGK algorithm.

(1) The user assigns initially 𝐶(0),𝑚 > 0 (usually𝑚 = 2),
𝜀 > 0, 𝑆(0)

𝑖𝑘
= 0, and 𝛽(0) = 1.

(2) 𝑢(0)
𝑖𝑗
are fixed randomly.

(3) V
𝑖
and 𝑟

𝑖
are calculated with formulae (5) and (9),

respectively.
(4) 𝑢
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are calculated with formulae (11) and (12).

(5) Determine 𝑖∗ and 𝑘∗ such that 𝑆(𝑙)
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𝑘
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(𝑙), then the 𝑖∗th and 𝑘∗th clusters are
merged via formula (14) and the 𝑘∗th row is deleted
from 𝑈(𝑙).

(7) If formula (7) is satisfied, then the process stops
otherwise go to (3) for the (𝑙 + 1)th iteration.
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Figure 3: Mask created in the ESRI/ArcGIS tool for managing the
EGK process.

Figure 4: Mask created in the ESRI/ArcGIS tool for displaying the
information of the detected cluster prototypes.

3. Hotspots Detection and Evolution in
Military War

Each pattern is given by the event corresponding to a place in
which an attack has occurred.The two features of the pattern
are the geographic coordinates of this place.

We divide the event dataset into subsets corresponding to
the events that occurred in a specific year or set of years. For
each subset of events we apply the EGK algorithm to detect
the final cluster prototypes.

The dataset is extracted from the URL http://www
.acleddata.com/data/asia/; the data are the geolocalizations of
Taliban’s attacks inAfghanistan during the period 2004–2010.
The EGK algorithm is encapsulated in the ESRI/ArcGIS tool.
Figure 3 shows the mask used for setting the parameters and
running the EGK algorithm.

We can set other numerical fields for adding other
features to the geographical coordinates. Initially we set the
initial number of clusters, the fuzzifier 𝑚 (equal to 2 by
default), and the error threshold for stopping the iterations
(equal to 0.01 by default). At the end of the process we
displayed on the form of the number of iterations, the final
number of clusters, and the error calculated at the last
iteration. The resultant clusters are shown as ellipses on the

Figure 5: Spatiotemporal evolution of hotspots detected in three
consecutive years.

Table 1: Results of the EGK applied to the event’s subsets.

Year Initial number
of clusters

Final number
of clusters |𝑈

(𝑙)
− 𝑈

(𝑙−1)
| 𝜀

2004–
2006 15 7 0.79 × 10

−2
1 × 10

−2

2007 15 7 0.65 × 10

−2
1 × 10

−2

2008 15 7 0.68 × 10

−2
1 × 10

−2

2009 15 8 0.74 × 10

−2
1 × 10

−2

2010 15 8 0.81 × 10

−2
1 × 10

−2

geographical map and can be saved in a new geographical
layer.

In Figure 4 we show the mask used for displaying the
information of each elliptical prototype detected: centroid’s
coordinates, length of each semiaxis, and orientation of
the ellipses with respect to the horizontal plane on the
geographical map.

The final process concerns the comparative analysis of
the hotspots obtained by the final clusters resulting for each
subset of events. Figure 5 shows an example of the display
of hotspots obtained as final clusters corresponding to three
consecutive years.

In order to assess the expansion and the displacement of
any hotspot, wemeasure the area covered by each hotspot, the
distance between the centroids of two intersecting hotspots
detected in consecutive periods, the variation of the inclina-
tion angle, the eccentricity, and the length of both semiaxis.

4. Test Results

After partitioning the dataset in the five periods 2004–2006,
2007, 2008, 2009, and 2010, respectively, we apply the EGK
algorithm for detecting the sequences of elliptical cluster
prototypes. We fix𝑚 = 2, 𝐶(0) = 15, and 𝜀 = 1 × 10−2. Table 1
shows the results obtained for each period.

We present the details relating to the comparison of the
hotspots by considering the event data that occurred in the
five periods. In Figures 6, 7, 8, 9, and 10 we show the hotspots
detected.
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Figure 6: Taliban’s attack events: years 2004–2006.

Figure 7: Taliban’s attack events: year 2007.

Table 2: Areas of hotspots detected in 2009 and 2010.

Hotspot
ID

Area
hotspot 2009

Area
hotspot 2010

Intersection
area

% of
Intersection

area
1 18804.11 18856.72 14936.25 79.43%
2 13580.19 13583.15 10632.51 78.29%
3 1516.89 1538.23 1011.87 66.71%
4 7889.86 6665.24 5174.83 65.59%
5 4987.08 6086.51 3706.52 74.32%
6 6361.20 5691.76 4490.73 70.60%
7 5761.71 7866.39 5175.92 89.83%
8 18460.84 23471.45 16255.32 88.05%

By analyzing Figures 6–8we can deduce that in the period
2004–2008 seven hotspot areas approximated as ellipses are
present; in these periods each hotspot modified only slightly
its angle, width, and position of the centroid. In the years 2009
and 2010 a new hotspot is detected in a region neighboring
with Turkmenistan. In Figure 10 the hotspots obtained for
two consecutive years 2009 and 2010 are overlapped as well.
In blue (resp., red) we enumerate the hotspots corresponding

Figure 8: Taliban’s attack events: year 2008.

Figure 9: Taliban’s attack events: year 2009.

to the year 2009 (resp., 2010); see Figure 11. The hotspots are
labeled, and the hotspot number 8 is the newhotspot detected
and coming from overlap of the related hotspots.

In Table 2 the first column shows the labels of each
hotspot; the second and third columns show the area, in km2,
of the hotspot detected in 2009 and 2010, respectively. The
fourth column (resp., fifth) shows the intersection area of
the two hotspots (resp., the percentage of area of the hotspot
detected in 2009 covered by the corresponding hotspot
detected in 2010, that is, the ratio “intersection area/area
hotspot detected in 2009”).

The results in Table 2 show that over 65% of the area of
each hotspot detected in 2009 is also covered by the corre-
sponding hotspot detected in 2010. Another significant result
is the increase of the area of the hotspot 8, which exceeds
2 × 104 km2 in 2010. In Table 3 we show the eccentricity of
each hotspot and the distance between the centroids of each
hotspot detected in 2009 and the corresponding one detected
in 2010.

The results show that the eccentricity increases signifi-
cantly in 2010 for hotspots 4 and 6, whereas it decreases for
hotspot 3; the eccentricity remains almost unchanged for the
remaining hotspots in 2010. Another significant result is the
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Figure 10: Taliban’s attack events: year 2010.

Figure 11: Hotspots detected for two consecutive periods: 2009
(blue) and 2010 (red).

Table 3: Eccentricity and centroid’s distance between the hotspots
detected in 2009 and 2010.

Hotspot ID Eccentricity
hotspot 2009

Eccentricity
hotspot 2010

Centroids
distance (km)

1 0.796 0.786 16.52
2 0.947 0.949 17.86
3 0.897 0.906 23.30
4 0.672 0.899 42.08
5 0.564 0.381 21.55
6 0.591 0.701 23.60
7 0.536 0.699 25.66
8 0.669 0.693 33.87

distance exceeding 40 km between the centroid of hotspot
4 detected in 2009 and the centroid of the corresponding
hotspot detected in 2010.

5. Conclusions

We present a new approach for detecting hotspots in spatial
analysis using the EGK clustering method encapsulated in a

GIS tool. Similar to the EFCM algorithm, the EGK method
is robust with respect to noise and outliers and we obtain
the optimal number of the clusters iteratively during the
process; furthermore, it has the advantage to detect hotspots
of elongated shape. In our experiments we consider the site
of Taliban’s attacks in Afghanistan during the period 2004–
2010. The spatial dataset is partitioned into subsets in order
to study the evolution of the hotspots through time. We
study the evolution of each hotspot in terms of movement of
the centroids, surface covered, inclination, and eccentricity.
The results show the formation, starting from 2009, of a
new hotspot in the north-western zone neighboring with
Turkmenistan. The results of the comparison of the hotspots
detected in 2009 and 2010 show that this hotspot is increased
with an extension of (about) 2 × 104 km2.
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