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&e existence, uniqueness, and stability of solutions to fuzzy fractional stochastic differential equations (FFSDEs) driven by a
fractional Brownian motion (fBm) with the Lipschitzian condition are investigated. Finally, we investigate the exponential
stability of solutions.

1. Introduction

&ere appears to be confusion of various kinds in the
modeling of several real world systems, such as trying to
characterize a physical system and opinions on its param-
eters. To deal with this ambiguity, the fuzzy set theory will be
used [1]. It is able to handle such linguistic statements
mathematically using this theory, such as “large” and “less.”
&e capacity to investigate fuzzy differential equations
(FDEs) in modeling numerous phenomena, including im-
precision, is provided by a fuzzy set. In particular, the fuzzy
stochastic differential equations (FSDEs), in instance, might
be used to investigate a variety of economics and engineering
problems that involve two types of uncertainty: randomness
and fuzziness.

&e fuzzy It 􏽢o stochastic integral was powered in [2, 3]. In
[4, 5], the fuzzy stochastic integral is driven by the Wiener
process as a fuzzy adapted stochastic process. In [6], Fei et al.
studied the existence and uniqueness of solutions to the
(FSDEs) under non-Lipschitzian condition. In [7], Jafari
et al. study FSDEs driven by fBm. Jialu Zhu et al., in [8],
prove existence of solutions to SDEs with fBm. Ding and
Nieto [9] investigated analytical solutions of multitime-scale
FSDEs driven by fBm. Vas’kovskii et al. [10] prove that the
pth moments, p≥ 1, of strong solutions of a mixed-type
SDEs are driven by a standard Brownian motion and a fBm.

Despite the fact that some research exists on the problem of
the uniqueness and existence of solutions to SDEs and
FSDEs which are disturbed by Brownian motions or sem-
imartingales [4, 11–15], a kind of the FFSDEs driven by an
fBm has not been investigated. Agarwal et al. [16, 17]
considered the concept of solution for FDEs with uncer-
tainty and some results on FFDEs and optimal control
nonlocal evolution equations. Recently, Zhou et al., in
[18–20], gave some important works on the stability analysis
of such SFDEs. Our results are inspired by the one in [21]
where the existence and uniqueness results for the FSDEs
with local martingales under the Lipschitzian conditions are
studied. &e rest of this paper is given as follows. Section 2
summarizes the fundamental aspects. In Section 3, existence
and uniqueness of solutions to the FFSDEs are proved.
Moreover, the stability of solutions is studied in Section 4.
Finally, in Section 5, a conclusion is given.

2. Preliminaries

&is part introduces the notations, definitions, and back-
ground information that will be utilized throughout the
article.

Let K(Rn) be the family of nonempty convex and
compact subsets of Rn. In K(Rn), the distance dH is defined
by
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dH(M, N) � max sup
m∈M

inf
n∈N

‖m − n‖, sup
n∈N

inf
m∈M

‖m − n‖􏼠 􏼡, M, N ∈ K R
n

( 􏼁. (1)

We denote by M(Ω,A;K(Rn)) the family of A-mea-
surable multifunction, taking value in K(Rn).

Definition 1 (see [21, 22]). A multifunction G ∈M(Ω,

A;K(Rn)) is called Lp-integrably bounded if ∃h ∈Lp

(Ω,A,P;R+) such that |‖G‖|≤ hP-a.e, where

|‖B‖| ≔ dH(B, 􏽢0) � sup
b∈B

‖b‖, forB ∈ K R
n

( 􏼁. (2)

We denote by

L
p Ω,A,P;K R

n
( 􏼁( 􏼁 ≔ G ∈MΩ,A;K R

n
( 􏼁:|‖G‖| ∈Lp Ω,A,P;R

+
( 􏼁􏼈 􏼉. (3)

Let En denote the set of the fuzzy x: Rn⟶ [0, 1] such
that [x]α ∈ K(Rn), for every α ∈ [0, 1], where [x]α: � a{

∈ Rn: x(a)≥ α}, for α ∈ (0, 1], and [x]0: � cl a ∈ Rn: x{

(a)> 0}. Let the metric be d∞(x, y) ≔ supα∈[0,1] dH([x]α,

[y]α), in En, a ∈ R; we have d∞(x + z, y + z) � d∞(x, y),
d∞(x + y, z + w)≤ d∞(x, z) + d∞(y, w), and d∞(ax, ay)

� |a|d∞(x, y).

Definition 2 (see [23]). Let f: [c, d]⟶ En; the fuzzy
Riemann–Liouville integral of f is given by

J
α
c+ f( 􏼁(u) �

1
Γ(α)

􏽚
u

c
(u − v)

α−1
f(v)dv. (4)

Definition 3 (see [23]). Let Df ∈ C ([c, d],En) ∩L ([c, d],

En). &e fuzzy fractional Caputo differentiability of f is
given by

C
D

α
c+ f(u) � J

1−α
c+ (Df)(u) �

1
Γ(1 − α)

􏽚
u

c
(u − v)

−α
(Df)(v)dv. (5)

Now, we define the Henry–Gronwall inequality [24],
which can be used in the proof of our result.

Lemma 1. Let f, g: [0, T)⟶ R+ be continuous functions.
If g is nondecreasing and there exists constants K≥ 0 and
α> 0 as

f(u)≤g(u) + K 􏽚
u

0
(u − v)

α− 1
f(v)dv, u ∈ [0, T), (6)

then

f(u)≤g(u) + 􏽚
u

0
􏽘

∞

m�1

(KΓ(α))
m

Γ(mα)
(u − v)

nα−1
g(v)⎡⎣ ⎤⎦dv, u ∈ [0, T). (7)

If g(u) � b is constant on [0, T), the previous inequality
is transformed into

f(u)≤ bEα KΓ(α)u
α

( 􏼁, u ∈ [0, T), (8)

where Eα is given by

Eα(z) � 􏽘

∞

m�0

z
m

Γ(mα + 1)
. (9)

Remark 1 (see [24]). For all u ∈ [0, T), ∃N∗K > 0 does not
depend on b such that f(u)≤N∗Kb.

Definition 4 (see [21, 22]).

A functionf: Ω⟶ En is said fuzzy random variable if
[f]α is an A-measurable random variable ∀α ∈ [0, 1]

A fuzzy random variable f: Ω⟶ En is said
Lp-integrably bounded, p≥ 1, if
[f]α ∈Lp(Ω,A,P;K(Rn)), ∀α ∈ [0, 1]

Let Lp(Ω,A,P;En) denote the set of all fuzzy random
variables; they are Lp-integrally bounded.

For the notion of an fBm, we referred to [25].
Let us define a sequence of partitions of [a, b] by

ψm, m ∈ N􏼈 􏼉 such that |ψm|⟶ 0 as m⟶∞. If, in
L2(Ω,A,P), 􏽐

m−1
i�0 ϕ(t

(m)
i )(BH(t

(m)
i+1 ) − BH(t

(m)
i )) converge

to the same limit for all this sequences ψm, m ∈ N􏼈 􏼉, then
this limit is said a Stratonovich-type stochastic integral and
noted by 􏽒

b

a
ϕ(s)dBH(s). Let J: � [0, T], where 0<T<∞.

Definition 5 (see [21, 22]).

A function f: J ×Ω⟶ En is called fuzzy stochastic
process; if ∀t ∈ J, f(t, .) � f(t): Ω⟶ En is a fuzzy
random variable

A fuzzy stochastic process f is continuous; if
f(., υ): J⟶ En are continuous, and it is
AH

t􏼈 􏼉t∈J-adapted if for every α ∈ [0, 1] and for all t ∈ J,
[f(t)]α: Ω⟶ K(Rn) is AH

t -measurable
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Definition 6 (see [21, 22]).

&e function f is called measurable if
[f]α: J ×Ω⟶ K(Rn) is a B(J)⊗A-measurable, for
all α ∈ [0, 1]

&e function f: J ×Ω⟶ En is said to be non-
anticipating if it is AH

t􏼈 􏼉t∈J-adapted and measurable

Remark 2. &eprocess x is nonanticipating if and only if x is
measurable with respect to N: � A ∈B(J)⊗A: Au{

∈ AH
u , u ∈ J}, where, for u ∈ J, Au � υ: (u, υ) ∈ A{ }.

Definition 7 (see [21, 22]). A fuzzy process f: J ×Ω⟶ En

is said Lp-integrally bounded if ∃h ∈Lp(J ×Ω, N;R)/
d∞(f(s, υ), 􏽢0)≤ h(s, υ).

We denote by Lp(J ×Ω,N;En) the set of all Lp-inte-
grally bounded and nonanticipating fuzzy stochastic
processes.

Proposition 1 (see [4]). For f ∈Lp(J ×Ω,N;En) and p≥
1, we have J ×Ω ∋ (t, υ)⟶ 􏽒

t

0 f(s, υ)ds ∈Lp (J ×Ω,N;

En) and d∞-continuous.

Proposition 2 (see [4]). For f, g ∈Lp(J ×Ω,N;En) and
p≥ 1, we have

E sup
a∈[0,t]

dp
∞ 􏽚

a

0
f(u)du, 􏽚

a

0
g(u)du􏼒 􏼓≤ t

p−1
􏽚

t

0
Edp
∞(f(u), g(u))du. (10)

Proposition 3 (see [26]). Let ψ: J⟶ Rn; then, for t ∈ J,

sup
a∈[0,t]

E 􏽚
a

0
ψ(s)dBH

(s)

�������

�������

2
≤ ct,H 􏽚

t

0
‖ψ(s)‖

2ds. (11)

Let us define the embedding of Rn to En as
〈.〉: Rn⟶ En:

〈r〉(a) �
1, if a � r,

0, if a≠ r.
􏼨 (12)

Proposition 4 (see [4]). Assume that the function
ψ: J⟶ Rn satisfies 􏽒

T

0 ‖ψ(v)‖2dv<∞. 7en,

(i) 7e fuzzy stochastic It􏽢o integral 〈􏽒
v

0 ψ(u)d BH

(u)〉 ∈ L2(J ×Ω,N;En)

(ii) For x ∈ L2(J ×Ω,N;En), we have, for u≤ v ∈ J,

d∞ 􏽚
v

0
x w1( 􏼁dw1 + 􏽚

v

0
ψ w2( 􏼁dBH

w2( 􏼁, 􏽚
u

0
x w1( 􏼁dw1 + 􏽚

u

0
ψ w2( 􏼁dBH

w2( 􏼁􏼒 􏼓 � d∞ 􏽚
v

u
x w1( 􏼁dw1 + 􏽚

v

u
ψ w2( 􏼁dBH

w2( 􏼁, 􏽢0􏼒 􏼓.

(13)

3. Main Result

Now, we investigate the FFSDEs driven by an fBm given by
C
D

α
x(s) �

JP.1
f(s, x(s))ds +〈g(s)dBH

(s)〉,

x(0) �
P.1

x0,

⎧⎪⎨

⎪⎩
(14)

where
f: J ×Ω × En⟶ En

,

g: J⟶ R
n
,

x0: Ω⟶ En
,

(15)

and BH(s)􏼈 􏼉s∈J is a fBm defined on (Ω,A, AH
s􏼈 􏼉s∈J,P) with

Hirst index H ∈ (1/2, 1).

Definition 8. A process x: J ×Ω⟶ En is said to be a
solution to equation (14) if the following holds:

(i) x ∈ L2(J ×Ω,N;En).
(ii) x is d∞-continuous.
(iii) We have

x(t) �
JP.1

x0 +
1
Γ(α)

􏽚
t

0

f(s, x(s))

(t − s)
1−α ds +〈

1
Γ(α)

􏽚
t

0

g(s)

(t − s)
1−α dB

H
(s)〉.

(16)

We will assume that all through this paper, f: (J ×Ω) ×

En⟶ En is BdS
⊗N|Bd∞

-measurable. Let the following
assumptions be introduced.

(H1) If x0 is A0-measurable, we have

Ed
2
∞ x0, 􏽢0􏼐 􏼑<∞. (17)

(H2) For f(s, 􏽢0) and g, we have

max d2∞(f(s, 􏽢0), 􏽢0), ‖g‖􏽮 􏽯≤ c, (18)

for every s ∈ J.
(H3) For all z, w ∈ En,

d
2
∞(f(s, z), f(s, w))≤ cd

2
∞(z, w), (19)
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where c is equal to one in (H2).
Let us now introduce the main theorem in this part.

Theorem 1. Under assumptions (H1)–(H3) and
x0 ∈ L2(Ω,A0,P;En), the equation (14) has a unique solu-
tion x(t).

Proof. &e method of successive approximations will be
used to demonstrate the existence of a solution to (1).
&erefore, define a sequence xn: J ×Ω⟶ En as follows:

x0(t) �
P.1

x0, (20)

and for n � 1, . . .,

xn(t) �
JP.1

x0 +
1
Γ(α)

􏽚
t

0

f s, xn−1(s)( 􏼁

(t − s)
1−α ds +〈

1
Γ(α)

􏽚
t

0

g(s)

(t − s)
1−α dB

H
(s)〉. (21)

It is clear that xns are in L2(J ×Ω,N;En) and
d∞-continuous. Indeed, we have x0 ∈ L2(J ×Ω,N;En) and
x0 is d∞-continuous.

Let us define for n ∈ N and
t ∈ J Kn � sup0≤u≤tEd2

∞(xn(u), xn−1(u)). &en, from Prop-
ositions 2 and 3 and (H1)–(H3), we have

K1(t) � sup
0≤u≤t

Ed2∞
1
Γ(α)

􏽚
u

0

f s, x0( 􏼁

(u − s)
1−α ds +〈

1
Γ(α)

􏽚
u

0

g(s)

(u − s)
1−α dB

H
(s)〉, 􏽢0􏼠 􏼡

≤ 2 sup
0≤u≤t

Ed2∞
1
Γ(α)

􏽚
u

0

f s, x0( 􏼁

(u − s)
1−α ds, 􏽢0􏼠 􏼡 +

1
Γ(α)

􏽚
u

0

g(s)

(u − s)1−α dB
H

(s)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

􏼢 􏼣

≤ 2 sup
0≤u≤t

2Ed2∞
1
Γ(α)

􏽚
u

0

f s, x0( 􏼁

(u − s)
1−α ds,

1
Γ(α)

􏽚
u

0

f(s, 􏽢0)

(u − s)
1−α ds􏼠 􏼡􏼢 􏼣

+ 4 sup
0≤u≤t

Ed2∞
1
Γ(α)

􏽚
u

0

f(s, 􏽢0)

(u − s)
1−α ds, 􏽢0􏼠 􏼡 + 2Esupu∈[0,t]

cT,H

Γ(α)
􏽚

u

0

‖g(s)‖
2

(u − s)
1−α ds􏼢 􏼣

≤
4T

Γ(α)
􏽚

t

0

Ed
2
∞ f s, x0( 􏼁, f(s, 􏽢0)􏼐 􏼑

(t − s)
1−α ds +

4T

Γ(α)
􏽚

t

0

Ed
2
∞(f(s, 􏽢0), 􏽢0)

(t − s)
1−α ds +

2cT,H

(t − s)
1−α 􏽚

t

0

‖g(s)‖
2

(t − s)
1−α ds

≤
4Tct

α

Γ(α + 1)
d2∞ x0, 􏽢0􏼐 􏼑 +

4Tt
α
c

Γ(α + 1)
+
2c

2
cT,Ht

α

Γ(α + 1)
≔

l1t
α

Γ(α + 1)
,

(22)

where l1 � 4cTd2
∞(x0, 􏽢0) + 4Tc + 2c2cT,H. Moreover, simi-

larly, we have

Kn+1(t) � sup
0≤u≤t

Ed2∞
1
Γ(α)

􏽚
u

0

f s, xn(s)( 􏼁

(u − s)
1−α ds +〈

1
Γ(α)

􏽚
u

0

g(s)

(u − s)
1−α dB

H
(s)〉,

1
Γ(α)

􏽚
u

0

f s, xn−1(s)( 􏼁

(u − s)
1−α ds􏼠

+〈
1
Γ(α)

􏽚
u

0

g(s)

(u − s)
1−α dB

H
(s)〉)

≤ 2 sup
0≤u≤t

Ed
2
∞

1
Γ(α)

􏽚
u

0

f s, xn(s)( 􏼁

(u − s)
1−α ds, 􏽚

u

0

f s, xn−1(s)( 􏼁

(u − s)
1−α ds􏼠 􏼡

≤
2t

Γ(α)
􏽚

t

0
(t − s)

α−1
Ed2∞ f s, xn(s)( 􏼁, f s, xn−1(s)( 􏼁( 􏼁ds

≤
2tc

Γ(α)
􏽚

t

0
(t − s)

α−1supu∈[0,s]Ed
2
∞ xn(s), xn−1(s)( 􏼁ds

≤
2Tc

Γ(α)
􏽚

t

0
(t − s)

α−1
Kn(s)ds.

(23)
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&us, we obtain

Kn(t)≤
l1

l2

l2t
α

( 􏼁
n

n!Γ(α + 1)
, ∀t ∈ J, n ∈ N, (24)

where l2 � 2Tc.
Hence, from Chebyshev’s inequality and (24), we obtain

P sup
u∈J

d2∞ xn(u), xn−1(u)( 􏼁>
1
4n􏼠 􏼡≤

l1
l2

4l2T
α

( 􏼁
n

n!Γ(α + 1)
, (25)

Since the series 􏽐n≥1(4l2T
α)n/n! converges, according to

Borel–Cantelli lemma, we obtain

P sup
u∈J

d∞ xn(u), xn−1(u)( 􏼁>
1
2n􏼠 􏼡 � 0. (26)

&us, the sequence xn(., υ)􏼈 􏼉 is uniformly convergent to
􏽥x(., υ): J⟶ Rn for υ ∈ Ωc, where Ωc ∈ A and P(Ωc) � 1.
&en,

lim
n⟶∞

sup
t∈J

Ed2∞ xn(t), 􏽥x(t)( 􏼁 � 0. (27)

Let us define x: J ×Ω⟶ En as follows:

x(., υ) �

􏽥x(., υ), if υ ∈ Ωc,

freely chosen, if υ ∈ υ ∈
Ω
Ωc

.

⎧⎪⎪⎨

⎪⎪⎩
(28)

We can observe that, for each 0≤ α≤ 1 and t ∈ J, we have

lim
n⟶∞

dH xn(, υ)􏼂 􏼃
α
, xn− 1(, υ)􏼂 􏼃

α
( 􏼁 � 0. (29)

&en, [x(t, .)]α: Ω⟶ K(Rn) isAt-measurable. Hence,
x is nonanticipating. By (27), we have

lim
n⟶∞

supt∈JEd
2
∞ xn(t), x(t)( 􏼁 � 0, (30)

which shows that ∃λ> 0 independent of n ∈ N such that

sup
t∈J

Ed2∞ xn(t), x(t)( 􏼁≤ λ. (31)

Since xn ∈ L2(J ×Ω,N;En), we have
xn(t) ∈ L2(Ω,A,P;En). In addition, we can prove that
x ∈ L2(J ×Ω,N;En).

Indeed, for all n ∈ N and t ∈ J, let us denote

ψn(t) � sup
0≤u≤t

Ed2∞ x0, 􏽢0􏼐 􏼑. (32)

&en, we obtain

ψn(t)≤ 3Ed2∞ x0, 􏽢0􏼐 􏼑 + 3 sup
0≤u≤t

Ed2∞
1
Γ(α)

􏽚
u

0
(u − s)

α− 1
f s, xn−1(s)( 􏼁ds, 􏽢0􏼠 􏼡 + 3E sup

0≤u≤t

1
Γ(α)

􏽚
u

0
(u − s)

α− 1
g(s)dBH

(s)

�������

�������

2
.

(33)

By the triangle inequality, (H1)–(H3), and Proposi-
tions 2 and 3, we have

ψn(t)≤ 3Ed2∞ x0, 􏽢0􏼐 􏼑 +
6t

Γ(α)
􏽚

t

0
(t − s)

α−1
Ed

2
∞ f s, xn−1(s)( 􏼁, f(s, 􏽢0)􏼐 􏼑 + Ed2∞(f(s, 􏽢0), 􏽢0)􏽮 􏽯ds

+
3cT,H

Γ(α)
􏽚

t

0
(t − s)

α−1
‖g(s)‖

2ds,

≤ 3Ed
2
∞ x0, 􏽢0􏼐 􏼑 +

6ct

Γ(α)
􏽚

t

0
(t − s)

α−1
Ed2∞ xn−1(s), 􏽢0􏼐 􏼑ds +

6ct
α+1

Γ(α + 1)
+
3t

α
c
2
cT,H

Γ(α + 1)
.

(34)

We obtain

ψn(t)≤A1 + A2 􏽚
t

0
(t − s)

α−1ψn−1(s)ds, (35)

where A1 � 3Ed2∞(x0, 􏽢0) + (6ctα+1/Γ(α + 1)) + (3tαc2cT,H/
Γ(α + 1)) and A2 � 6ct/Γ(α).

According to Lemma 1 and Remark 1, there exist a
constant MA2

> 0 independent of A1 such that

ψn(t)≤MA2
A1. (36)

Due to (H1), (31), and (36), we obtain

sup
0≤s≤t

Ed2∞(x(s), 􏽢0)≤ 2 sup
0≤s≤t

Ed2∞ x(s), xn(s)( 􏼁 + 2 sup
0≤s≤t

Ed2∞ xn(s), 􏽢0􏼐 􏼑, ≤ 2λ + 2MA2
A1 <∞, (37)
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which implies

􏽚
T

0
Ed2∞(x(s), 􏽢0)ds≤T sup

t∈J
Ed2∞(x(t), 􏽢0)<∞. (38)

&us, we get x ∈ L2(J ×Ω,N;En).
On the contrary, we have

supt∈JEd
2
∞ x(t), x0 +

1
Γ(α)

􏽚
t

0

f(s, x(s))

(t − s)
1−α ds +〈

1
Γ(α)

􏽚
t

0

g(s)

(t − s)
1−α dB

H
(s)〉􏼠 􏼡 � 0. (39)

Indeed, we observe

supt∈J Ed
2
∞ x(t), x0 +

1
Γ(α)

􏽚
t

0

f(s, x(s))

(t − s)
1−α ds +〈

1
Γ(α)

􏽚
t

0

g(s)

(t − s)
1−α dB

H
(s)〉􏼠 􏼡

≤ 3 supt∈JEd
2
∞ x(t), xn(t)( 􏼁 + supt∈JEd

2
∞ xn(t), x0 +

1
Γ(α)

􏽚
t

0

f s, xn−1(s)( 􏼁

(t − s)
1−α ds +〈

1
Γ(α)

􏽚
t

0

g(s)

(t − s)
1−α dB

H
(s)〉􏼠 􏼡􏼢

+ supt∈JEd
2
∞ x0 +

1
Γ(α)

􏽚
t

0

f s, xn−1(s)( 􏼁

(t − s)
1−α ds +〈

1
Γ(α)

􏽚
t

0

g(s)

(t − s)
1−α dB

H
(s)〉,􏼠 􏼡

· x0 +
1
Γ(α)

􏽚
t

0

f(s, x(s))

(t − s)
1−α ds +〈

1
Γ(α)

􏽚
t

0

g(s)

(t − s)
1−α dB

H
(s)〉)] ≔ I1 + I2 + I3,

(40)

where limn⟶∞I1 � 0 and I2 � 0. For I3, by using Propo-
sitions 2 and 3, (H3), and (30), we have

limn⟶∞I3 ≤ limn⟶∞
T
α+1

c

Γ(α + 1)
supt∈JEd

2
∞ x(u), xn−1(u)( 􏼁du􏼠 􏼡 � 0. (41)

Hence, we get (39), which implies (16) holds. Hence,
from definition (8), x(t) is a solution to equation (14).

For the uniqueness of a solution x, suppose that x, z: J ×

Ω⟶ En are solutions to equation (14). We denote by
K(t) ≔ supv∈JEd

2
∞(x(v), z(v)). So, for each t ∈ J, we obtain

K(t)≤
tc

Γ(α)
􏽚

t

0

Ed2∞(x(s), z(s))

(t − s)
1−α ds

≤
Tc

Γ(α)
􏽚

t

0

K(s)

(t − s)
1−α ds.

(42)

&us, by Lemma 1, we have, for t ∈ J, K(t) ≡ 0, which
implies

supt∈Jd∞(x(t), z(t)) �
P.1 0. (43)

□

4. Stability Result

In this part, we examine the stability of the solution with
respect to initial values by using Henry–Gronwall inequality.
Indeed, let x and z denote the solutions of the following
FFSDEs:

C
D

α
x(s) �

JP.1
f(s, x(s))ds +〈g(s)dBH

(s)〉,

x(0) �
P.1

x0,

⎧⎪⎨

⎪⎩
(44)

C
D

α
z(s) �

JP.1
f(s, x(s))ds +〈g(s)dBH

(s)〉,

z(0) �
P.1

x0,

⎧⎪⎨

⎪⎩
(45)

respectively.

Proposition 5. Suppose that x0, z0 ∈ L2(Ω,A0,P;En) and
f: J ×Ω × En⟶ En g: J⟶ Rn satisfy (H1)–(H3).
7en,

sup0≤u≤tEd
2
∞(x(u), z(u))≤ λ0Mλ1, (46)

where λ0 � 2Ed2∞(x0, z0) and λ1 � 2Tc/Γ(α). Especially,
x(t) �

JP.1
z(t) if x0 �

P.1
z0.

Proof. Suppose that x, z: J ×Ω⟶ En are solutions to
equations (44) and (45), respectively. So, let
K(t) ≔ Esup0≤u≤td

2
∞(x(u), z(u)). Due to Propositions 2

and 3 and (H3), we obtain
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K(t)≤ 2Ed2∞ x0, z0( 􏼁 +
2
Γ(α)

supu∈[0,t]Ed
2
∞ 􏽚

u

0

f(s, x(s))

(t − s)
1−α ds, 􏽚

u

0

f(s, z(s))

(t − s)
1−α ds􏼠 􏼡

≤ 2Ed2∞ x0, z0( 􏼁 +
2Tc

Γ(α)
􏽚

t

0

Ed2∞(x(s), z(s))

(t − s)
1−α ds

≤ 2Ed2∞ x0, z0( 􏼁 +
2Tc

Γ(α)
􏽚

t

0
supu ∈(0,s)Ed

2
∞(x(u), z(u))(t − s)

1− αdu

� 2Ed2∞ x0, z0( 􏼁 +
2Tc

Γ(α)
􏽚

t

0

K(s)

(t − s)
1−α ds

≔ λ0 + λ1 􏽚
t

0

K(s)

(t − s)
1−α ds.

(47)

&en, according to Lemma 1 and Remark 1, there exist a
constant Mλ1 > 0 independent of λ0 such that

K(t)≤ λ0Mλ1, ∀t ∈ J. (48)

&en, λ0 � 0 if x0 �
P.1

z0. &erefore, we know that
x(t) �

JP.1
z(t) .

Finally, we examine the exponential stability of solutions
to the FFSDEs which disturbed an fBm with respect to f and
g. &us, let x and xn denote solutions to the following
FFSDEs:

C
D

α
x(s) �

JP.1
f(s, x(s))ds +〈g(s)dBH

(s)〉,

x(0) �
P.1

x0,

⎧⎪⎨

⎪⎩
(49)

C
D

α
xn(s) �

JP.1
fn s, xn(s)( 􏼁ds +〈gn(s)dBH

(s)〉,

xn(0) �
P.1

x0,

⎧⎪⎨

⎪⎩
(50)

respectively. □

Proposition 6. Suppose that x0 ∈ L2(Ω,A0,P;En) and
f, fn: J ×Ω × En⟶ En g, gn: J⟶ Rn (n ∈ N) fulfill
(H1)–(H3). Furthermore, assume that

lim
n⟶∞

1
Γ(α)

􏽚
t

0
(t − s)

α− 1
Ed2∞ (t, x), fn(t, x)(t, x)( 􏼁dt􏼠 􏼡 � 0, (51)

lim
n⟶∞

1
Γ(α)

􏽚
t

0
(t − s)

α− 1
gn(s) − g(s)

����
����
2ds􏼠 􏼡 � 0. (52)

7en, we have

limn⟶∞ Esupt∈Jd
2
∞ x(t), xn(t)( 􏼁􏼐 􏼑 � 0, (53)

where x, xn: J ×Ω⟶ En are solutions of equations (49)
and (50), respectively.

Proof. According to &eorem 1, the solutions x and xn are
unique and exist. From Propositions 3 and 4, we deduce that,
for every t ∈ J,

sup
0≤u≤t

Ed2∞ x(u), xn(u)( 􏼁≤ 2 sup
0≤u≤t

Ed2∞
1
Γ(α)

􏽚
u

0

f(s, x(s))

(u − s)
1−α ds,

1
Γ(α)

􏽚
u

0

fn s, xn(s)( 􏼁

(u − s)
1−α ds􏼠 􏼡

+ 2 sup
0≤u≤t

Ed2∞ 〈
1
Γ(α)

􏽚
u

0

g(s)

(u − s)
1−αdB

H
(s)〉, 〈

1
Γ(α)

􏽚
u

0

gn(s)

(u − s)
1−α dB

H
(s)〉􏼠 􏼡
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≤ q4 sup
0≤u≤t

Ed
2
∞

1
Γ(α)

􏽚
u

0

fn(s, x(s))

(u − s)
1−α ds,

1
Γ(α)

􏽚
u

0

fn s, xn(s)( 􏼁

(u − s)
1−α ds􏼠 􏼡

+ 4 sup
0≤u≤t

Ed2∞
1
Γ(α)

􏽚
u

0

f(s, x(s))

(u − s)
1−α ds,

1
Γ(α)

􏽚
u

0

fn(s, x(s))

(u − s)
1−α ds􏼠 􏼡 +

2cT,H

Γ(α)
􏽚

t

0

g(s) − gn(s)
����

����
2

(t − s)
1−α ds

≤
4ct

Γ(α)
􏽚

t

0

Ed
2
∞ x(s), xn(s)( 􏼁

(t − s)
1−α ds +

4t

Γ(α)
􏽚

t

0
(t − s)

α− 1
Ed2∞ f(s, x(s)), fn(s, x(s))( 􏼁ds

+
2cT,H

Γ(α)
􏽚

t

0

g(s) − gn(s)(s)
����

����
2

(t − s)
1−α ds

≤ βn
1 + β2 􏽚

t

0

sup0≤u≤sEd
2
∞ x(u), xn(s)( 􏼁

(t − s)
1−α ds,

(54)

where

βn
1 ≔

4T

Γ(α)
􏽚

t

0

Ed2∞(f(s, x(s)), fn(s, x(s))

(t − s)
1−α ds +

2cT,H

Γ(α)
􏽚

t

0

g(s) − gn(s)
����

����
2

(t − s)
1−α ds, (55)

β2 � 4cT/Γ(α). From Lemma 2 and Remark 1, ∃Mβ2 > 0 is
independent of βn

1 such that

supu∈[0,t]Ed
2
∞ x(u), xn(u)( 􏼁≤ βn

1Mβ2. (56)

Hence, from (51) and (52), we get limn⟶∞β
n
1 � 0. □

5. Conclusions

In this study, we have proved the existence and uniqueness
of solutions to FFSDEs under the Lipschitzian coefficient.
On the contrary, the stability of solutions to the FFSDEs is
analyzed.
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