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The existence, uniqueness, and stability of solutions to fuzzy fractional stochastic differential equations (FFSDEs) driven by a
fractional Brownian motion (fBm) with the Lipschitzian condition are investigated. Finally, we investigate the exponential

stability of solutions.

1. Introduction

There appears to be confusion of various kinds in the
modeling of several real world systems, such as trying to
characterize a physical system and opinions on its param-
eters. To deal with this ambiguity, the fuzzy set theory will be
used [1]. It is able to handle such linguistic statements
mathematically using this theory, such as “large” and “less.”
The capacity to investigate fuzzy differential equations
(FDEs) in modeling numerous phenomena, including im-
precision, is provided by a fuzzy set. In particular, the fuzzy
stochastic differential equations (FSDEs), in instance, might
be used to investigate a variety of economics and engineering
problems that involve two types of uncertainty: randomness
and fuzziness.

The fuzzy It 0 stochastic integral was powered in [2, 3]. In
[4, 5], the fuzzy stochastic integral is driven by the Wiener
process as a fuzzy adapted stochastic process. In [6], Fei et al.
studied the existence and uniqueness of solutions to the
(FSDEs) under non-Lipschitzian condition. In [7], Jafari
et al. study FSDEs driven by fBm. Jialu Zhu et al., in [8],
prove existence of solutions to SDEs with fBm. Ding and
Nieto [9] investigated analytical solutions of multitime-scale
FSDEs driven by fBm. Vas’kovskii et al. [10] prove that the
pth moments, p>1, of strong solutions of a mixed-type
SDE:s are driven by a standard Brownian motion and a fBm.

Despite the fact that some research exists on the problem of
the uniqueness and existence of solutions to SDEs and
FSDEs which are disturbed by Brownian motions or sem-
imartingales [4, 11-15], a kind of the FFSDEs driven by an
fBm has not been investigated. Agarwal et al. [16, 17]
considered the concept of solution for FDEs with uncer-
tainty and some results on FFDEs and optimal control
nonlocal evolution equations. Recently, Zhou et al, in
[18-20], gave some important works on the stability analysis
of such SFDEs. Our results are inspired by the one in [21]
where the existence and uniqueness results for the FSDEs
with local martingales under the Lipschitzian conditions are
studied. The rest of this paper is given as follows. Section 2
summarizes the fundamental aspects. In Section 3, existence
and uniqueness of solutions to the FFSDEs are proved.
Moreover, the stability of solutions is studied in Section 4.
Finally, in Section 5, a conclusion is given.

2. Preliminaries

This part introduces the notations, definitions, and back-
ground information that will be utilized throughout the
article.

Let K(R") be the family of nonempty convex and
compact subsets of R". In K(R"), the distance dy; is defined
by
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dy (M,N) =max<

meM "

We denote by . (Q, o/; K(R")) the family of &/-mea-
surable multifunction, taking value in K(R").

Definition 1 (see [21, 22]). A multifunction G € . (Q,
;K (R™) is called &P-integrably bounded if 3h € ¥?
(Q, o, P; R*) such that ||G]|| < h[P-a.e, where
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. . n
sup 1n£ lm —I’l",ilel}\?nlqlel{/l ||m—n||>, M,N e K(R"). (1)
IIBIl| := dy; (B,0) = sup [, for B e K(R"). 2)
beB
We denote by
ZLP(Q, o, P;K(R")) = {G € D, o; K(R"):IGI| € 7 (Q, o, P;RT)}. (3)

Let E" denote the set of the fuzzy x: R” — [0, 1] such
that [x]* € K(R"), for every « € [0,1], where [x]*: = {a
eR" x(a)>a}, for a € (0,1], and [x]°: =cl{a e R": x
(a) >0}. Let the metric be d, (x, y) = sup,co; dy ([x]%
[¥]%), in E", a € R; we have d, (x +z,y+z) =d (x, ),
de, (x+ y,z+w)<d (x,2) +d, (y,w), and d (ax,ay)
=lald, (x, y).

Definition 2 (see [23]). Let f: [c,d] — E"; the fuzzy
Riemann-Liouville integral of f is given by

1

(FeNW = | =0T man @
[ (KT (@)
f(u)Sg(u)+J0 L; T

If g (u) = bis constant on [0, T'), the previous inequality
is transformed into

f(w) <bE, (KT (a)u”), wue€[0,T), (8)
where E, is given by
[ee] zm
E, (2) = mz:om. 9

Remark 1 (see [24]). For all u € [0,T), AN >0 does not
depend on b such that f (1) < Nyb.

Definition 4 (see [21, 22]).

A function f: Q — E”" is said fuzzy random variable if
[f]* is an &/-measurable random variable Vo € [0, 1]
A fuzzy random variable f:Q — E"
ZP-integrably bounded, p=1,
[f]* € 2P (Q, o, P;K(R"), Va € [0,1]

said
if

is

Definition 3 (see [23]). Let Df € C ([c,d],E") NnL ([c,d],
E"). The fuzzy fractional Caputo differentiability of f is
given by

DLW = L DHW = i [ e DA (5)

(1
Now, we define the Henry-Gronwall inequality [24],
which can be used in the proof of our result.

Lemma 1. Let f, g: [0,T) — R" be continuous functions.
If g is nondecreasing and there exists constants K >0 and
a>0 as

Fw<gw)+K JO - fWdv, uel0,T) (6

then

(- g(v)]dv, ue[0,T). (7)

Let &7 (Q, &, P; E") denote the set of all fuzzy random
variables; they are #?-integrally bounded.

For the notion of an fBm, we referred to [25].

Let us define a sequence of partitions of [a,b] by
{¢,p,m € N} such that |y, | — 0 as m — oo. If, in
L’ (Q, o, P), Z:ﬁalgb(ti(m)) (BH (ti(ff)) - BH (ti(m))) converge
to the same limit for all this sequences {y,,, m € N}, then
this limit isbsaid a Stratonovich-type stochastic integral and
noted by fa ¢ (s)dB (s). Let J: = [0,T], where 0< T < co.

Definition 5 (see [21, 22]).

A function f: Jx Q — E" is called fuzzy stochastic
process; if Vt € J, f(t,.) = f(t): Q — E" is a fuzzy
random variable

A fuzzy stochastic process f 1is continuous; if
f(,v):J— E* are continuous, and it is
{a{"},.,-adapted if for every a € [0,1] and for all £ € ],
[f(O]*: Q— K(R") is QitH—measurable
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Definition 6 (see [21, 22]).

The function f is called measurable if
[f1%: T xQ — K(R") is a B (]) ® o/-measurable, for
all @ e [0,1]

The function f: JxQ — E" is said to be non-
anticipating if it is {</}'}, ;-adapted and measurable

Remark 2. The process x is nonanticipating if and only if x is
measurable with respect to N: ={A e B(])d: A*
€ szif,u € J}, where, for u € J, A* = {v: (u,v) € A}.

Definition 7 (see [21, 22]). A fuzzy process f: ] x Q — E"
is said ZP-integrally bounded if 3h € L7 (] x Q, N;R)/
oo (f(s,0) ,0)<h(s,v).
We denote by £ (] x Q,N; E") the set of all #”-inte-
grally bounded and nonanticipating fuzzy stochastic
processes.

Proposition 1 (see [4]). For f € ZP(J x Q,N;E") and p>
1, we have ] x Q> (t,v) — jof(s,v)dsegp (J x Q,N;
E") and d -continuous.

Proposition 2 (see [4]). For f,g € ¥*(J x Q,N;E") and
p=1, we have

E sup d&(J.: f (u)du, JZ g(u)du) <t?! J; Ed? (f (), g(u))du. (10)

ae[0,t]

Proposition 3 (see [26]). Let y: ] — R”; then, for t € ],

a 2 t
[EJ v(s)dB" (s) sCt,Hj ly(IPds. (11
0 0

sup
ac[0,t]
Let us define the embedding of R" to E" as
() R" — E™:
1, ifa=r,
(r)(a) = _ (12)
0, ifa#r.

o [ 0w, + [ wwn)dn (o), [ xwi)du, + [ v(w,)aB" (w,))

3. Main Result

Now, we investigate the FFSDEs driven by an fBm given by

CPx(s)Z" £ (s,x(s))ds +{g (s)dB" (s)), (1
x(O)Pz'1 Xo»
where
f: IxQxE'"— E",
g: ] — R, (15)
xo: Q@ — E,
and {B" (s)},,, is a fBm defined on (Q, &, {df’}se], P) with

Hirst index H € (1/2,1).

Definition 8. A process x: ] x 3 — E” is said to be a
solution to equation (14) if the following holds:

() x e L>(J x Q,N; E").

(ii) x is d,-continuous.

(iii) We have

Proposition 4 (see [4]). Assume that the function
y: ] — R” satisfies _[0 ly (v)[*dv < co. Then,

(i) The fuzzy stochastic Ito integral (Jow(u)d BH
(u)) € L*(J x Q,N; E")

(ii) For x € L*(J x Q,N; E"), we have, for u<v e J,

=dm<J:x(dew1+J:w(deBH(ubL5>

(13)

a1 flsx(s) 190
0= +r(0¢)Jo(t—s)l_“ds+<r(0¢)Jo( e a8 ()
(16)

We will assume that all through this paper, f: (J x Q) x
E" — E" is B, ® N|%,; -measurable. Let the following
assumptions be introduced.

(1) If x, is 9/,-measurable, we have
Ed’ (x(,, )<00 (17)
(#2) For f (s, 0) and g> we have
max{d, (f (s,0),0), Igll} <c, (18)

for every s € J.
(#3) For all z,w € E",

& (f(s,2), f (s, w)) <cd’, (z,w), (19)



where ¢ is equal to one in (#2).
Let us now introduce the main theorem in this part.

Theorem 1. Under assumptions (#1)-(#3) and
xy € L*(Q, o, P; E"), the equation (14) has a unique solu-
tion x(t).

f(S xn 1(5)) S
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Proof. The method of successive approximations will be
used to demonstrate the existence of a solution to (1).
Therefore, define a sequence x,,;: ] x O — E" as follows:

1
X, (t)][P—D1 Xo + J

I'(a) (t-s)'™

It is clear that x,s are in L?(JxQ,N;E") and
d,-continuous. Indeed, we have x, € L? (J x Q,N; E") and
X, is d,-continuous.

K, (t) = sup Ed f(s%)

X (1‘)[@:‘1 Xg» (20)
and forn=1,...,
t
g(s) H
+ dB . 21
- o | RO (21)
Let us define for neN and

t € JK,, = supy.,Ed?, (x, (1), x,_, (u)). Then, from Prop-
ositions 2 and 3 and (%°1)-(73), we have

g(s)

O<us<t

2 1 “
°°(F(oc) Jo (-5 S+<F(oc)J 0 (u- s

_dB" (s)>,6)

g(s)

<2 sup

2 1" fsx) A) | 1
0<u<t|:[Edoo(r(0() JO (u- S)l_a a0 +|F((x)

J: (u— )™

o 1% f(sx) 1 (* f(s0)
Szosglpltls)t[Z[EdOO(F(“) jo (w—s)'™ ds,r(“) JO (u—-s)™ ds)]
1 f(50) lg ()1 .
2 S, CT.H " gls
+4ossl1ils)t [Edoo(r((x) JO (u—s)™ zds 0) + 2ESUPucion) [F(OC) ,[o (u—-s)"" ds]
aT (B2 (f (s, %), £ (5,0)) 4T (' Ed’, (f (s,0),0) 2ry [* lgGI?
< d w d :
T'(a) J (t-s)™ ) .[o (t— )™ r (t-s)'™ .[o (t— )™ )
ATct® 5, o ATt'c  2cppt®  Lt°
“T(a+ 1)d°°(x°’0) "Ta+1) " T@+1) Tla+1)
where 1| = 4cTd? (x,,0) + 4Tc + 2c*cy;;. Moreover, simi-
larly, we have
_ 2 1 f(sx,(9) 1 g(s) ACE A O))
K, ()= OSslpltIs)tEdoo<r(“) JO o ds+<r(a) Jo " “dB (s), (o) J T ds
1L g H
+<F((x) J-o (u—s)'™ dB™ (1))
L f(sx,(5) f (5%, 1(5)) )
<2 sup Ed’ ds,
8 osslils)r OO(H“) JO (u—s)i™® : JO 7 (23)
2 [t o
Sti |, -9 TR (5 0 (9 f (50, (9)ds
2c [t .
F(;) J (t-3s) lsupue[o,s][Edio (%, (8), %, (8))ds
2T¢c

a-1
SW ,[o (t=s)""K,(s)ds.
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Thus, we obtain

K, (t)_l n'(l ) Vte],neN, (24)

T(a+1)
where [, = 2Tc.
Hence, from Chebyshev’s inequality and (24), we obtain
1 ) 1, (4,T%)"

(s;?])dz (x, (u), x,,_ 1(u))>— Ll (ax1) (25)

Since the series )., (4,T*)"/n! converges, according to
Borel-Cantelli lemma, we obtain

[P’(sup d,
uef
Thus, the sequence {xn (. v)} is uniformly convergent to

X(,v): J— R"forv e Q, where Q. € &/ and P(Q,) = 1.
Then,

(x, (u), x,,_; () >2—1n ) =0. (26)

lim sup Ed?, (x, (t),%(t)) = 0. (27)

n—~~o t

Let us define x: J x QO — E" as follows:
x(.,0), ifveQ,

x(,0) = _ Q (28)
freely chosen, ifveve o

C

¥, (£) <3Ed3, (%0,0) +3 sup Edé(ﬁ j (u—3)"f (s, %, (s))ds, 0) + 3E sup

We can observe that, foreachO<a<1andt € J, we have
nlil}’m dir ([, G0)]% [x1 GO)]) = 0, (29)
Then, [x(t,.)]": Q@ — K(R") is &/,-measurable. Hence,

x is nonanticipating. By (27), we have

nlinoo Supte][Edio (xn (t)’x(t)) =0, (30)

which shows that 31 >0 independent of n € N such that
sup EdZ, (x, (1), x (£)) < A. (31)
te]

Since x, € L*(J x Q,N; E"), we have
x,(t) € L*(Q, o, P;E"). In addition, we can prove that
x € L2(Jx Q,N; E").

Indeed, for all n € N and ¢t € J, let us denote

v, (t) = sup Ed? (xo, ) (32)

O<u<t

Then, we obtain

j (-9 g(s)aB" 9|

0<u<t 0<u<t r( )
(33)
By the triangle inequality, (#1)-(#3), and Proposi-
tions 2 and 3, we have
v, (£) <3Edg (x0,0) + a )J (t = 9" HEdL(f (5:%,1 (9)), £ (5,0)) + EdZ, (f (5,0),0)}ds
3crm (! el 2
e [ -9 g s, (34)
~  6ct [t el 2 . 6ct™ 3oy
<3Ed> (xo, 0)+ T JO (t - )" Ed (%, (s),O)ds+ NETE) + Tt )

We obtain
t
v (<A +A, j -9y, (9ds,  (35)
0

where A, = 3EdZ (x,,0) + (6ct* /T (a+ 1)) + (3t*cPeppy/
I['(a+1)) and A, = 6ct/T ().

According to Lemma 1 and Remark 1, there exist a
constant M, >0 independent of A; such that

v/n (t) SMAZAl' (36)

Due to (#1), (31), and (36), we obtain

sup [EdiO (x(s),0) <2 sup Edio (x(s),x,(s)) +2 sup Edi)(xn (s),@), <20 +2M, A, <00, (37)

0<s<t 0<s<t

O<s<t



which implies

T
j EdZ, (x(s),0)ds< T supEdZ, (x(£),0) <co.  (38)
0

te]
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Thus, we get x € L*(J x Q,N; E").
On the contrary, we have

L (f f(s,x(5)) 1 (" g(s) H
Ed’ , J J B =0.
SUP;e; doo<x(t) X+ T Jo (1= 9 +<F(oc) 0t S)de (s)) 0 (39)
Indeed, we observe
1 (" f(s,x(s)) 1L (" g H
Ed’ , B
SPres d("’(x(t) X0 T () Jo (t- s)l""c1 +<F(cx) Jo (t - s)“‘c1 .
2 2 1 Jt f(s’xn—l (5)) 1 Jt g(s) H
< 3[supt€][Ed00 (x(®), x, (1) + supte][Edoo(xn (1), xo + T Jo (oo ds +<F(0c) ST dB” (s))
(40)
L f(sx,.0(5) Lt g(s) H
Ed’ J n127d J dB ,
b °°<x° T o (t- 9™ T (t- )™ =7
Y SIC TP J O
. d dB =1,+1, + 1,
o +F(06) Jo (t-9s)'™ S+<F(06) o(t— ) O =L+ L+ 1,
where lim,_, I, =0 and I, = 0. For I, by using Propo-
sitions 2 and 3, (#°3), and (30), we have
a+IC 5
lim,_ .15 Slimném(wsupte][Edoo (x(u), %, (u))du) =0. (41)
nga /El : d ‘iB}{ ,
Hence, we get (39), which implies (16) holds. Hence, { ﬁfs) flsx(9)ds +{g(s) (9 (44)
from definition (8), x(¢) is a solution to equation (14). x(0)= x,,
For the uniqueness of a solution x, suppose that x, z: J x
Q — E” are solutions to equation (14). We denote by Cgye JP.1 d JB"
K(t) = Squej[Edf,o (x(v), z(v)). So, for each t € J, we obtain <l ;ES) f (s x(s)ds +4g(s) R (45)
R z(0)= x,,
K(f) s J [Ed‘”(x(s);i(s))ds
L(a) Jo  (t-5) respectively.

(42)
K(s)

- Tc Jt S
() Jo(t- )t

Thus, by Lemma 1, we have, for t € J, K(¢) = 0, which
implies

(43)

sup,e;de, (x (), 2 (1)) = 0, Y

4. Stability Result

In this part, we examine the stability of the solution with
respect to initial values by using Henry-Gronwall inequality.
Indeed, let x and z denote the solutions of the following
FFSDEs:

Proposition 5. Suppose that x,,z, € L*(Q, o/, P; E") and
fIxQxE"— E'g: ] — R"  satisfy (H1)-(H3).
Then,

SUPy<< Edg, (x (1), 2 () <A M, (46)

where Ay =2Ed’ (xy,2,) and A, = 2Tc/T(a). Especially,
x@®/=' z() zfxo[p;'1 .

Proof. Suppose that x,z: ] x Q — E" are solutions to
equations (44) and (45), respectively. So, let
K(t) = [Esupogugtdio(x(u),z(u)). Due to Propositions 2
and 3 and (7°3), we obtain
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2 “f(sx(s) (" f(sz(s)
K (t) <2Ed? (x9,2) + ——Sup,co 4 Ed’ J ds,J ds
() oo( 0 0) F(OC) pe[O,t] oo( 0 (t_s)l—a 0 (t_s)l—zx
2Tc (' Ed; ,
<2Fd, (%o, 20) + ‘ J 2 (x(s)l_z“(s)) ds
I'(a) (t=s)
<2EdZ (0, 29) + o T ( ) J SUP,, ¢ 0.9 EdZ, (x (1), 2 (1)) (t - )~ “du (47)
2Tc (¢ K(s)
=2Ed (x ,Z0) + J
w (¥0:%0) T(a) Jo(t- 5™
t
=+, J EESONFN
o (t—s)
Cona JP.1 H
Then, according to Lemma 1 and Remark 1, there exist a Dx(s)= flsx(9)ds +(g(s)dB" (5)), (49)
constant M, >0 independent of A, such that x(0)2 x o
K(t)<AgM,, Vte]. (48) (S)][P’l £, %, (s))ds +<gn(s)dBH(s)>, o)
"fgeln Ay =0 if xo']:):‘1 z,. Therefore, we know that x, (0)= Xo»
x()/= z(p). !
Finally, we examine the exponential stability of solutions  respectively. O

to the FFSDEs which disturbed an fBm with respect to f and
g. Thus, let x and x, denote solutions to the following

Proposition 6. Suppose that x, € L*(Q, o, P;E") and

FFSDEs: o fn IJxQOXE"—E'g, g, ] — R"(neN)  fulfil
(H1)-(H3). Furthermore, assume that
lim (L j (£ =9 "B, (%), £, (6,2 (¢ x))dt) ~0 (51)
n—00 r((x) 0 co A S AT ’ ’
. 1 t a—1 _ 2 _
nlgloo(m | =9 g. - g0 ds) - (52)

Then, we have
lim, . (Esup,;dz, (x(t), x, (1)) =0,

where x, x,: ] x QO — E" are solutions of equations (49)
and (50), respectively.

(53)

Proof. According to Theorem 1, the solutions x and x,, are
unique and exist. From Propositions 3 and 4, we deduce that,
for every t € ],

) 5 L (*f(sx(s) 1 fu(sx (s)) )
osslils)t By (x(10), (M))SZOS;I}S)t [Edoo(r(“) JO (u—s)"" dS)F(OC) Jo (u— )" as
2 L g “g,(s) H
+Zoi‘i2[Ed°0(<r<a) J, PEEELARl S |, 0 (T (S»)



<q4 sup Ed>,
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<1 rfn(s,x(s))d 1 rfn(s,x,xs))ds)

O<ust I'(a) Jo (u— )™ S’F(tx) 0 (u-s)'™
+4 sup Ed? : Ju J{sx(5) ds 1 Ju UISLI0) ds |+ Zenn Jt "9(5) 5 (s)||2 ds
09}; C\L(@) Jo (u-s)" "T(@) Jo (u—-s)'™ () Jo (t-9)'°
dct [P EdZ (x(s), x,(s)) 4 [t el
St JO s jo (t = " B, (f (5, x(5), [, (5, x(s)))ds (54)
I FIORNOIO| s
i I'(a) Jo (t— s ds
" ‘ <u<s[Edio > An
B+ B, J‘O SUP(<yic - Scl(_l:) x,(s)) ds,
where
o AT (PE (X6 fo(5x6) | 2erp [*]9() - g, 55
A= I'(a) Jo (t-s)'™ ds+ I'(a) Jo (t—s)'™ ds 59

B, = 4cT/T' (). From Lemma 2 and Remark 1, AMpg >0 is
independent of ] such that

SUPye 0. Edoy (x (1), x,, (1)) < BiMg.. (56)

Hence, from (51) and (52), we get lim, 7 =0. O

5. Conclusions

In this study, we have proved the existence and uniqueness
of solutions to FFSDEs under the Lipschitzian coeflicient.
On the contrary, the stability of solutions to the FFSDEs is
analyzed.
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