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In this paper, we introduce the concept of p-fuzzy ideals and p-fuzzy filters in a p-algebra. We provide a set of equivalent conditions
for a fuzzy ideal to be a p-fuzzy ideal and a p-algebra to be a Boolean algebra. It is proved that the class of p-fuzzy ideals forms a
complete distributive lattice. Moreover, we show that there is an isomorphism between the class of p-fuzzy ideals and p-fuzzy filter.

1. Introduction

-econcept of fuzzy sets was firstly introduced by Zadeh [1]. In
1971, Rosenfeld used the notion of a fuzzy subset of a set to
introduce the concept of a fuzzy subgroup of a group [2].
Rosenfeld’s paper inspired the development of fuzzy abstract
algebra. Since then, several authors have developed interesting
results on fuzzy theory (see [3–14]). In this paper, we introduce
the concept of p-fuzzy ideals and p-fuzzy filters in p-algebra.
We provide a set of equivalent conditions for a fuzzy ideal to be
a p-fuzzy ideal and a p-algebra to be a Boolean algebra.
Moreover, we prove that, for any fuzzy ideal of L, there is the
smallest p-fuzzy ideal containing it. It is proved that the class of
p-fuzzy ideals forms a complete distributive lattice. Moreover,
we prove that the image and inverse image of a p-fuzzy ideal is a
p-fuzzy ideal under a ∗-epimorphism mapping. Finally, we
show that there is an isomorphism between the class of p-fuzzy
ideals and p-fuzzy filters.

2. Preliminaries

In this section, we recall some definitions and basic results
on p-algebra and fuzzy theory.

Definition 1 (see [15]). An algebra L � (L;∧,∨,∗, 0, 1) of type
(2, 2, 1, 0, 0) is a p-algebra if the following conditions hold:

(1) (L;∧,∨, 0, 1) is a bounded lattice
(2) For all a, b ∈ L, a∧b � 0⇔a∧b∗ � a

Theorem 1 (see [15]). For any two elements a, b of a p-al-
gebra, we have the following:

(1) 0∗∗ � 0
(2) a∧ a∗ � 0
(3) a≤ b⇒b∗ ≤ a∗

(4) a≤ a∗∗

(5) a∗∗∗ � a∗

(6) (a∨b)∗ � a∗∧b∗

(7) (a∧b)∗∗ � a∗∗∧b∗∗

An element x of a p-algebra is called closed, if x � x∗∗.

Definition 2 (see [15]). A nonempty subset I of L is called an
ideal of L if for any x, y ∈ I, x∨y ∈ I and x ∈ I, y ∈ L,

x∧y ∈ I.

Definition 3 (see [15]). A nonempty subset F of L is called a
filter of L if for any x, y ∈ F, x∧y ∈ F and
x ∈ F, y ∈ L, x∨y ∈ I.

Definition 4 (see [16]). An ideal I of L is called a p-ideal if
any x ∈ I, x∗∗ ∈ I.

Definition 5 (see [16]). A filter F of L is called a p-filter if for
any x∗∗ ∈ F, x ∈ F.
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Definition 6 (see [1]). Let X be any nonempty set. A
mapping μ: X⟶ [0, 1] is called a fuzzy subset of X.

-e unit interval [0, 1] together with the operations min
and max forms a complete lattice satisfying the infinite meet
distributive law; i.e.,

α∧ ∨
β∈M

β  � ∨
β∈M

(α∧β), (1)

for all α ∈ [0, 1] and any M⊆[0, 1].
We often write ∧ for minimum or infimum and ∨ for

maximum or supremum.-at is, for all α, β ∈ [0, 1], we have
α∧β � min α, β  and α∨β � max α, β .

-e characteristics function of any set A is defined as

χA(x) �
1, if x ∈ A,

0, if x ∉ A.
 (2)

Definition 7 (see [2]). Let μ and θ be fuzzy subsets of a set A.
Define the fuzzy subsets μ∪ θ and μ∩ θ of A as follows: for
each x ∈ A, (μ∪ θ)(x) � μ(x)∨θ(x) and (μ∩ θ)(x) �

μ(x)∧θ(x).
-en, μ∪ θ and μ∩ θ are called the union and inter-

section of μ and θ, respectively.
For any collection, μi: i ∈ I  of fuzzy subsets ofX, where

I is a nonempty index set, the least upper bound ∪ i∈Iμi and
the greatest lower bound ∩ i∈Iμi of the μi’s are given for each
x ∈ X, (∪ i∈Iμi)(x) � ∨i∈Iμi(x) and (∩ i∈Iμi)(x) � ∧i∈Iμi(x),
respectively.

For each t ∈ [0, 1], the set

μt � x ∈ A: μ(x)≥ t  (3)

is called the level subset of μ at t [1].

Definition 8 (see [2]). Let f be a function from X into Y, μ
be a fuzzy subset of X, and θ be a fuzzy subset of Y.

(1) -e image of μ under f, denoted by f(μ), is a fuzzy
subset of Y defined by the following: for each y ∈ Y,

f(μ)(y) �
Sup μ(x): x ∈f−1

(y) , iff
−1

(y)≠ϕ,

0, otherwise


(2) -e preimage of θ under f, denoted by f− 1(θ), is a
fuzzy subset of X defined by for each x ∈ X,
f− 1(θ)(x) � θ(f(x))

Definition 9 (see [17]). A fuzzy subset μ of a bounded lattice
L is called a fuzzy ideal of L, if for all x, y ∈ L the following
conditions are satisfied:

(1) μ(0) � 1
(2) μ(x∨y)≥ μ(x)∧μ(y)

(3) μ(x∧y)≥ μ(x)∨μ(y)

Definition 10 (see [17]). A fuzzy subset μ of a bounded
lattice L is called a fuzzy filter of L, if for all x, y ∈ L the
following conditions are satisfied:

(1) μ(1) � 1

(2) μ(x∨y)≥ μ(x)∨μ(y)

(3) μ(x∧y)≥ μ(x)∧μ(y)

We define the binary operations “+” and “·” on the set of
all fuzzy subsets of L as

(μ + θ)(x) � Sup μ(y)∧θ(z): y, z ∈ L, y∨z � x ,

(μ · θ)(x) � Sup μ(y)∧θ(z): y, z ∈ L, y∧z � x .
(4)

If μ and θ are fuzzy ideals of L, then μ · θ � μ∧θ � μ∩ θ
and μ + θ � μ∨θ is a fuzzy ideal generated by μ∪ θ.

If μ and θ are fuzzy filters of L, then μ + θ � μ∧θ (the
pointwise infimum of μ and θ) and μ · θ � μ∨θ (the
supremum of μ and θ).

Theorem 2 (see [18]). Let L be a lattice, x ∈ L and α ∈ [0, 1].
Define a fuzzy subset αx of L as

αx(y) �
1, if y≤x,

α, if y≰x,
 (5)

which is a fuzzy ideal of L.

Remark 1 (see [18]). αx is called the α-level principal fuzzy
ideal corresponding to x.

Similarly, a fuzzy subset αx of L defined as

αx
(y) �

1, if x≤y,

α, if x≰y,
 (6)

is the α-level principal fuzzy filter corresponding to x.

Remark 2. Let L be a lattice with 0. -en, L is called 0-
distributive if for any a, b, c ∈ L with a∧b � 0 � a∧c im-
plying a∧(b∨c) � 0.

-roughout the rest of this paper, L stands for the 0-
distributive p-algebra unless otherwise mentioned.

3. P-Fuzzy Ideals

In this section, we study the concept of p-fuzzy ideals of a
p-algebra. We provide a set of equivalent conditions for a fuzzy
ideal to be a p-fuzzy ideal and a p-algebra to be a Boolean
algebra. Moreover, we prove that, for any fuzzy ideal of L, there
is the smallest p-fuzzy ideal containing it. It is proved that the
class of p-fuzzy ideals forms a complete distributive lattice.
Finally, we show that the image and inverse image of a p-fuzzy
ideal is a p-fuzzy ideal under a ∗-epimorphism mapping.

Definition 11. A fuzzy ideal μ of L is called a p-fuzzy ideal if
μ(x) � μ(x∗∗) for each x ∈ L.

Lemma 1. A fuzzy ideal μ of L is a p-fuzzy ideal if and only if
μ((a∗∧b∗)∗)≥ μ(a)∧μ(b) for all a, b ∈ L.

Lemma 2. For any x ∈ L, αx∗ is a p-fuzzy ideal.

Proof. Let a ∈ L. If αx∗(a) � 1, then a≤ x∗ and a∗∗ ≤x∗.
-us, αx∗(a∗∗) � 1. If αx∗(a) � α, then a≰x∗ and a∗∗≰x∗.
-us, αx∗(a∗∗) � α. Hence, αx∗ is a p-fuzzy ideal. □
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Theorem 3. αx is a p-fuzzy ideal if and only if x is a closed
element.

Proof. Let αx be a p-fuzzy ideal. -en, αx(x∗∗) � 1 and
x∗∗ ≤ x. Since x≤x∗∗, we have x � x∗∗. -us, x is closed.

Conversely, suppose that x is a closed element. Let a ∈ L.
If αx(a) � 1, then a≤ x and a∗∗ ≤x. -us, αx(a∗∗) � 1. If
αx(a) � α, then a≰x and a∗∗≰x. -us, αx(a∗∗) � α. Hence
αx is a p-fuzzy ideal. □

Corollary 1. 9e following conditions on L are equivalent:

(1) Every fuzzy ideal is a p-fuzzy ideal
(2) Every level principal fuzzy ideal is a p-fuzzy ideal
(3) L is Boolean algebra

Proof. -e proofs of 1⇒ 2 and 3⇒ 1 are straightforward.
To show that 2⇒ 3, suppose that every level principal fuzzy
ideal is a p-fuzzy ideal. -en, by the above theorem, every
element of L is closed. For any x, y ∈ L, the supremum is
given by x⊻y � (x∗∧y∗)∗.

To show that L is distributive, it suffices to prove that

x∧(y⊻z)≤ (x∧y)⊻(x∧z), ∀x, y, z ∈ L. (7)

For this purpose, let t � (x∧y)∨(x∧z). -en, x∧y≤ t �

t∗∗ gives x∧y∧t∗ � 0 and x∧t∗ ≤y∗. Similarly, x∧t∗ ≤ z∗ and
therefore x∧t∗ ≤y∗∧z∗ � (y∗∧z∗)∗∗ . It follows from this
that x∧t∗∧(y∗∧z∗)∗ � 0 and hence that x∧(y⊻z) �

x∧(y∗∧z∗)∗ ≤ t∗∗ � t � (x∧y)⊻(x∧z).
To see that L is also complemented, observe that 1 � 0∗

and 0 � 1∗. Since every x ∈ L, we have x∧x∗ � 0 and
x∨x∗ � (x∗∧x∗∗)∗ � 0∗ � 1. We see that the complement of
x is x∗. -us, L is complemented. Hence L is a Boolean
algebra. □

Theorem 4. A fuzzy subset μ of L is a p-fuzzy ideal if and
only if every level subset of μ is a p-ideal of L.

Corollary 2. A nonempty subset I of L is a p-ideal if and only
if χI is a p-fuzzy ideal.

In the following result, we prove that, for any fuzzy ideal
of L, there is the smallest p-fuzzy ideal containing it.

Theorem 5. Let μ be a fuzzy ideal of L. Define

p(μ)(x) � Sup μ(a): x≤ a
∗∗

: a ∈ L . (8)

-en, p(μ) is the smallest p-fuzzy ideal containing μ and
hence μ is a p-fuzzy ideal if and only if μ � p(μ).

Proof. Let μ be a fuzzy ideal of L.-en clearly p(μ) is a fuzzy
ideal of L. To prove p(μ) is a p-fuzzy ideal, let x ∈ L. Clearly
p(μ)(x)≥p(μ)(x∗∗). On the other hand, p(μ)(x) �

Sup μ(a): x≤ a∗∗ ≤ Sup μ(a): x∗∗ ≤ a∗∗  � p(μ)(x∗∗).
-us, p(μ) is a p-fuzzy ideal containing μ.

Now we proceed to show that p(μ) is the smallest
p-fuzzy ideal containing μ. Let θ be a p-fuzzy ideal con-
taining μ. Let x, a ∈ L such that x≤ a∗∗. -en, θ(a∗∗)≤ θ(x).
Since θ is a p-fuzzy ideal and μ⊆θ, we get that θ(a)≤ θ(x)

and μ(a)≤ θ(x). -is shows that θ(x) is an upper bound of
μ(a): x≤ a∗∗, a ∈ L . -is implies Sup μ(a): x≤ a∗∗,

a ∈ L}≤ θ(x). -us, p(μ)⊆θ. So p(μ) is the smallest p-fuzzy
ideal containing μ. □

Lemma 3. If μ and θ are fuzzy ideals of L, then μ⊆θ implies
p(μ)⊆p(θ).

Lemma 4. For any two fuzzy ideals μ and θ of L,
p(μ∩ θ) � p(μ)∩p(θ).

Proof. Let μ and θ be two fuzzy ideals of L. Clearly
p(μ∩ θ)⊆p(μ) ∩p(θ). To show the other inclusion, let
x ∈ L. -en

(p(μ)∩p(θ))(x) � Sup μ(a): x≤ a
∗∗

, a ∈ L 

∧Sup θ(b): x≤ b
∗∗

, b ∈ L 

≤ Sup μ(a∧b)∧θ(a∧b): x≤ a
∗∗∧b∗∗ 

≤ Sup(μ∩ θ)(a∧b): x≤ (a∧b)
∗∗

≤ Sup (μ∩ θ)(c): x≤ c
∗∗

, c ∈ L 

� p(μ∩ θ)(x).

(9)

-us, p(μ∩ θ) � p(μ)∩p(θ). □

Lemma 5. For any fuzzy ideal μ of L, the map μ⟶ p(μ) is
a closure operator on FI(L). 9at is,

(1) μ⊆p(μ)

(2) p(p(μ)) � p(μ)

(3) μ⊆θ⇒p(μ)⊆p(θ), for any two fuzzy ideals μ, θ of L

p-fuzzy ideals are simply the closed elements of FI(L) with
respect to the closure operator.

Every p-fuzzy ideal is a fuzzy ideal but the converse may
not be true. For this, we have the following example.

Example 1. Consider the p-algebra L � 0, a, b, c, 1{ } whose
Hasse diagram is given below.

Define fuzzy subsets μ and θ of L as follows:

b

c

a

0

1
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μ(0) � 1 � μ(a),

μ(b) � μ(c) � μ(1) � 0,

θ(0) � θ(b) � 1,

θ(a) � θ(c) � θ(1) � 0.

(10)

-en, it can be easily verified that μ and θ are p-fuzzy
ideals of L. Moreover, we observe that the fuzzy ideal μ∨θ of
L is not a p-fuzzy ideal.

-e set of all p-fuzzy ideals of L is denoted by FIp(L). We
now prove that FIp(L) is a lattice.

Theorem 6. If λ, η ∈ FIp(L), then the supremum of λ and η is
given by

(λ⊻η)(x) � Sup λ(a)∧η(b): x≤ a
∗∧b∗( 

∗
, a, b ∈ L .

(11)

Proof. Put c � λ⊻η. Clearly c(0) � 1. For any x, y ∈ L,

c(x)∧c(y) � Sup λ a1( ∧η b1( : x≤ a
∗
1∧b
∗
1( 
∗
, a1, b1 ∈ L 

∧Sup λ a2( ∧η b2( : y≤ a
∗
2∧b
∗
2( 
∗
, a2, b2 ∈ L 

� Sup λ a1( ∧λ a2( ∧η b1( ∧η b2( : x≤ a
∗
1∧b
∗
1( 
∗
, y≤ a

∗
2∧b
∗
2( 
∗

 

� Sup λ a1∨a2( ∧η b1∨b2( : x≤ a
∗
1∧b
∗
1( 
∗
, y≤ a

∗
2∧b
∗
2( 
∗

 .

(12)

If x≤ (a∗1∧b∗1 )∗ and y≤ (a∗2∧b∗2 )∗, then x∨y≤ ((a1∨a2)
∗

∧(b1∨b2)
∗)∗. -us

c(x)∧c(y)≤ Sup λ a1∨a2( ∧η b1∨b2( : x∨y≤ a1∨a2( 
∗∧ b1∨b2( 

∗
( 

∗
 

≤ Sup λ c1( ∧η c2( : x∨y≤ c
∗
1∧c
∗
2( 
∗

 

� c(x∨y).

(13)

-us, c(x∨y)≥ c(x)∧c(y).
On the other hand,

c(x)≤ Sup λ(a)∧η(b): x≤ a
∗∧b∗( 

∗
 

≤ Sup λ(a)∧η(b): x∧y≤ a
∗∧b∗( 

∗
 

� c(x∧y).

(14)

-us, c(x∧y)≥ c(x)∨c(y).
To show c is a p-fuzzy ideal, let x ∈ L. -en clearly

c(x∗∗)≤ c(x).

c(x) � Sup λ(a)∧η(b): x≤ a
∗∧b∗( 

∗
 

≤ Sup λ(a)∧η(b): x
∗∗ ≤ a

∗∧b∗( 
∗

 

� c x
∗∗

( .

(15)

-us, c is a p-fuzzy ideal of L.
Now we proceed to show that c is the smallest p-fuzzy

ideal containing λ and η. Clearly λ⊆c and η⊆c. Let θ be any
p-fuzzy ideal containing λ and η. For any x ∈ L,

c(x) � Sup λ(a)∧η(b): x≤ a
∗∧b∗( 

∗
 

≤ Sup θ(a)∧θ(b): x≤ a
∗∧b∗( 

∗
 

� Sup θ(a∨b): x≤ (a∨b)
∗∗

 

≤ Sup θ(c): x≤ c
∗∗

 

� p(θ)(x).

(16)

-is shows that p(θ) � θ. -us, c⊆θ. So c is the smallest
p-fuzzy ideal of L containing λ and η. □

Theorem 7. 9e set FIp(L) of p-fuzzy ideal of L forms a
complete distributive lattice with respect to inclusion ordering
of fuzzy sets.

Proof. Clearly (FIp(L),⊆) is a partially ordered set. For
λ, c ∈ FIp(L), the infimum and the supremum of λ and c are
λ∧c � λ∩ c and λ⊻c, respectively. -us, (FIp(L),∧,⊻) is a
lattice.

To show the distributivity, it suffices to show
λ∩ (c⊻η)⊆(λ∩ c)⊻(λ∩ η) for all λ, c, ηFIp(L). For any
x ∈ L,
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(λ∩ (c⊻η))(x) � Sup λ(x)∧(c(a)∧η(b)): x≤ a
∗∧b∗( 

∗
, a, b ∈ L 

� Sup (λ(x)∧c(a))∧(λ(x)∧η(b)): x≤ a
∗∧b∗( 

∗
 

� Sup λ(x)∧c a
∗∗

( ( ∧ λ(x)∧η b
∗∗

( ( : x≤ a
∗∧b∗( 

∗
 

≤ Sup λ x∧a∗∗( ∧c x∧a∗∗( ( ∧ λ x∧b∗∗( ∧η x∧b∗∗( ( : x≤ a
∗∧b∗( 

∗
 

� Sup (λ∩ c) x∧a∗∗( ∧(λ∩ η) x∧b∗∗( : x≤ a
∗∧b∗( 

∗
 .

(17)

If x≤ (a∗∧b∗)∗, then x∧a∗∧b∗ � 0. Since L is a p-al-
gebra, a∧b∗ � a∧(a∧b)∗ for all a, b ∈ L, and we get that
x≤ ((x∧a∗∗)∗∧(x∧b∗∗)∗)∗. -us

(λ∩ (c⊻ η))(x) ≤ Sup (λ∩ c) x∧a∗∗( ∧(λ∩ η) x∧b∗∗( : x≤ x∧a∗∗( 
∗∧ x∧b∗∗( 

∗
( 

∗
 

≤ Sup (λ∩ c)(c)∧(λ∩ η)(d): x≤ c
∗∧d∗( 

∗
, c, d ∈ L 

≤ ((λ∩ c)⊻(λ∩ η))(x).

(18)

Hence λ∩ (c⊻η) � (λ∩ c)⊻(λ∩ η). So FIp(L) is
distributive.

Now we show the completeness. Since (FIp,⊆) is a poset
and χL and χ 0{ } are the greatest and least elements of FIp,
respectively, then FIp(L) is a complete distributive
lattice. □

Theorem 8. Let c be a p-fuzzy ideal of L and η be a fuzzy
filter of L such that c∩ η≤ β, α ∈ [0, 1). 9en, there exists a
prime p-fuzzy ideal θ of L such that c⊆θ and θ∩ η≤ α.

Proof. Put Γ � λ ∈ FIp(L): c⊆λ and λ∩ η≤ β . Since c ∈ Γ,
Γ is nonempty and it forms a poset together with the in-
clusion ordering of fuzzy sets. LetA � μi i∈I be any chain in
Γ. -en clearly ∪ i∈Iμi is a p-fuzzy ideal. Since μi ∩ η≤ α for
each i ∈ I, then (∪ i∈Iμi)∩ η≤ α. -us, ∪ i∈Iμi ∈ Γ. By ap-
plying Zorn’s lemma, we get a maximal element. Let us say
θ ∈ Γ; that is, θ is a p-fuzzy ideal of L such that c⊆θ and
θ∩ η≤ α.

Now we proceed to show θ is a prime fuzzy ideal. As-
sume that θ is not prime fuzzy ideal. Let μ1, μ2 ∈ FI(L) and
μ1 ∩ μ2⊆θ such that μ1⊈θ and μ2⊈θ. If we put θ1 � p(μ1∨θ)

and θ2 � p(μ2∨θ), then both θ1 and θ2 are p-fuzzy ideals of L

properly containing θ. Since θ is maximal in Γ, we get θ1 ∉ Γ
and θ2 ∉ Γ. -us, θ1 ∩ η≰α and θ2 ∩ η≰α. -is implies there
exist x, y ∈ L such that (θ1 ∩ η)(x)> α and (θ2 ∩ η)(y)> α.
So ((θ1 ∩ θ2)∩ η)(x∧y)> α.

⇒p θ∨ μ1∧μ2( ( (x∧y)∧η(x∧y) > α

⇒p(θ)(x∧y)∧η(x∧y)> α

⇒θ(x∧y)∧η(x∧y) > α

⇒(θ∩ η)(x∧y)> α.

(19)

-is is a contradiction. Hence θ is prime p-fuzzy ideal
of L.

Let L and M be p-algebras. -en, a lattice morphism
f: L⟶M is said to be a ∗-morphism iff(x∗) � f(x)∗ for
all x, y ∈ L. □

Theorem 9. Let f: L⟶M be a ∗-epimorphism. If μ is a
p-fuzzy ideal of L, then f(μ) is a p-fuzzy ideal of M.

Proof. Let μ be a p-fuzzy ideal of L. -en, f(μ) is a fuzzy
ideal of M. To show f(μ) is a p-fuzzy ideal, let y ∈M. Since
y≤y∗∗, we have f(μ)(y∗∗)≤f(μ)(y). On the other hand,

f(μ)(y) � Sup μ(x): x ∈ f
− 1

(y) . (20)

Since x ∈ f− 1(y) and f is a ∗-morphism, we have
x∗∗ ∈ f− 1(y∗∗). -us

f(μ)(y) ≤ Sup μ x
∗∗

( : x
∗∗ ∈ f

− 1
y
∗∗

(  

≤ Sup μ(a): a ∈ f
− 1

y
∗∗

(  

� f(μ) y
∗∗

( .

(21)

-us, f(μ)(y) ≤f(μ)(y∗∗). So f(μ) is a p-fuzzy ideal of
M. □

Theorem 10. Let f: L⟶M be a ∗-epimorphism. If θ is a
p-fuzzy ideal of M, then f− 1(θ) is a p-fuzzy ideal of L.

Theorem 11. Let f: L⟶M be a ∗-epimorphism. 9en,
the map g: FIp⟶ FMp defined by μ↦f(μ) is a lattice
epimorphism.

Proof. Let μ, θ ∈ FIp(L). -en, μ∩ θ and μ⊻θ are p-fuzzy
ideals of L. -us, by -eorem 9, f(μ∩ θ) and f(μ⊻θ) are
p-fuzzy ideals of M. Clearly f(μ∩ θ)⊆f(θ)∩f(μ). For any
y ∈M,
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(f(μ)∩f(θ))(y) � Sup μ(a): a ∈ f
− 1

(y), a ∈ L ∧Sup θ(b): b ∈ f
− 1

(y), b ∈ L . (22)

If a ∈ f− 1(y) and b ∈ f− 1(y), then a∧b ∈ f− 1(y). -us,

(f(μ)∩f(θ))(y)≤ Sup μ(a∧b)∧θ(a∧b): a∧b ∈ f
− 1

(y) 

� Sup (μ∩ θ)(a∧b): a∧b ∈ f
− 1

(y) 

≤ Sup (μ∩ θ)(c): c ∈ f
− 1

(y) 

� f(μ∩ θ)(y).

(23)

So f(μ)∩f(θ) � f(μ∩ θ).
Again clearly, f(μ)⊻f(θ)⊆f(μ⊻θ). For any x ∈M,

(f(μ)⊻f(θ))(x) � Sup f(μ) x1( ∧f(θ) x2( : x≤ x
∗
1∧x
∗
2( 
∗

 

� Sup Sup μ b1( : b1 ∈ f
− 1

x1(  ∧Sup μ b2( : b2 ∈ f
− 1

x2(  x≤ x
∗
1∧x
∗
2( 
∗

 ,

f(μ⊻θ)(x) � Sup (μ⊻θ)(a): a ∈ f
− 1

(x), a ∈ L 

� Sup Sup μ a1( ∧θ a2( : a≤ a
∗
1∧a
∗
2( 
∗

 : a ∈ f
− 1

(x) .

(24)

If f(a) � x and a≤ (a∗1∧a∗2 )∗, then x � f(a)≤ (f(a1)
∗

∧f(a2)
∗)∗. Put f(a1) � y1 and f(a2) � y2. -en, a1 ∈ f− 1

(y1), a2 ∈ f− 1(y2) and x≤ (y∗1∧y∗2 )∗. Based on this fact, we
have

f(μ⊻θ)(x) ≤ Sup Sup μ a1( : a1 ∈ f
− 1

y1(  ∧Sup θ a2( : a2 ∈ f
− 1

y2(  : ≤ y
∗
1∧y
∗
2( 
∗

 

� Sup f(μ) y1( ∧f(θ) y2( : x≤ y
∗
1∧y
∗
2( 
∗

 

� (f(μ)⊻f(θ))(x).

(25)

-us, f(μ⊻θ) � f(μ)⊻f(θ). So g is a homomorphism.
Now we proceed to show g is an epimorphism. Let
μ ∈ FIp(M).-en, by-eorem 10,f− 1(μ) ∈ FIp(L). Sincef

is onto, we have f(f− 1(μ)) � μ. -us, g is onto. So g is a
lattice epimorphism. □

4. P-Fuzzy Filters

In this section, we study the concept of p-fuzzy filter of a
p-algebra. We prove that the class of p-fuzzy filters forms a
complete distributive lattice.

Definition 12. A fuzzy filter μ of L is called a p-fuzzy filter of
L if μ(x) � μ(x∗∗) for any x ∈ L.

Theorem 12. A fuzzy subset μ of L is a p-fuzzy filter if and
only if every level subset of μ is a p-filter of L.

Corollary 3. A nonempty subset I of L is a p-filter if and only
if χI is a p-fuzzy filter.

9e set of all dense elements of L is denoted by D.

Corollary 4. χD is the smallest p-fuzzy filter of L.

Proof. Since the set of all dense elements of L is a p-filter of
L, by the above corollary χD is a p-fuzzy filter of L. To show
χD is the smallest p-fuzzy filter, let μ be a p-fuzzy filter of L.
-en clearly χD(x)≤ μ(x), ∀x ∉ D. If x ∈ D, then x∗∗ ∈ D.
Since μ is a p-fuzzy filter, we get that μ(x) � μ(x∗∗) � 1.-is
implies χD⊆μ. -us, χD is the smallest p-fuzzy filter. □

Corollary 5. χ[1) is p-fuzzy filter of L if and only if χD � χ[1).

Proof. Suppose χ[1) is p-fuzzy filter of L. -en, by the above
corollary χ[1) � χD. Conversely, let χD � χ[1). Since χD is a
p-fuzzy filer, we get that χ[1) is a p-fuzzy filter of L. □

Theorem 13. A proper fuzzy filter μ of L is a p-fuzzy filter if
and only if for any x, y ∈ L such that x∗ � y∗ and
μ(x) � μ(y).

-e set of all p-fuzzy filters of a p-algebra L is denoted by
FFp(L). -e following result shows that FFp(L) forms a
lattice.

Theorem 14. If λ, η ∈ FFp(L), then the supremum of λ and η
is given by
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(λ⊻ η)(x) � Sup λ(a)∧η(b): x≤ (a∧b)
∗
, a, b ∈ L . (26) Proof. Put c � λ⊻η. Clearly c(1) � 1. For any x, y ∈ L,

c(x)∧c(y) � Sup λ a1( ∧η b1( : x
∗ ≤ a1∧b1( 

∗
, a1, b1 ∈ L ∧Sup λ a2( ∧η b2( : y

∗ ≤ a2∧b2( 
∗
, a2, b2 ∈ L 

� Sup λ a1( ∧λ a2( ∧η b1( ∧η b2( : x
∗ ≤ a1∧b1( 

∗
, y
∗ ≤ a2∧b2( 

∗
 

� Sup λ a1∧a2( ∧η b1∧b2( : x
∗ ≤ a1∧b1( 

∗
, y
∗ ≤ a2∧b2( 

∗
 .

(27)

If x∗ ≤ (a1∧b1)
∗ and y∗ ≤ (a2∧b2)

∗, then (x∧y)∗ ≤
((a1∧a2)∧(b1∧b2))

∗. -us

c(x)∧c(y)≤ Sup λ a1∧a2( ∧η b1∧b2( : (x∧y)
∗ ≤ a1∧a2( ∧ b1∧b2( )

∗
( ≤ Sup λ c1( ∧η c2( : (x∧y)

∗ ≤ c1∧c2( 
∗

  � c(x∧y).

(28)

-us, c(x∧y)≥ c(x)∧η(y).
On the other hand,

c(x)≤ Sup λ(a)∧η(b): x
∗ ≤ (a∧b)

∗
 

≤ Sup λ(a)∧η(b): x
∗∧y∗ ≤ (a∧b)

∗
 

� Sup λ(a)∧η(b): (x∨y)
∗ ≤ (a∧b)

∗
 

� c(x∨y).

(29)

-us, c(x∨y)≥ c(x)∨c(y).
To show c is a p-fuzzy filter of L, let x ∈ L.

c x
∗∗

(  � Sup λ(a)∧η(b): x
∗∗∗ ≤ (a∧b)

∗
 

� Sup λ(a)∧η(b): x
∗ ≤ (a∧b)

∗
 

� c(x).

(30)

-us, c is a p-fuzzy filter of L. We now show that c is the
smallest p-fuzzy filter containing λ and η. Let θ be a p-fuzzy
filter containing λ and η. For any x ∈ L,

c(x)≤ Sup λ(a)∧η(b): x
∗ ≤ (a∧b)

∗
 

≤ Sup θ(a)∧θ(b): x
∗ ≤ (a∧b)

∗
 

� (θ⊻θ)(x)

� θ(x).

(31)

-us, c is the smallest p-fuzzy filter containing λ and
η. □

Theorem 15. 9e set FFp(L) of p-fuzzy filter of L forms a
complete distributive lattice with respect to inclusion ordering
of fuzzy sets.

Proof. Clearly (FFp(L),⊆) is a partially ordered set. For
λ, c ∈ FFp(L), the infimum and the supremum of λ and c are
λ∧c � λ∩ c and λ⊻c, respectively. -us, (FFp(L),∧,⊻) is a
lattice.

To show the distributivity, it suffices to show
λ∩ (c⊻η)⊆(λ∩ c)⊻(λ∩ η) for all λ, c, ηFIp(L). For any
x ∈ L,

(λ∩ (c⊻ η))(x) � Sup λ(x)∧(c(a)∧η(b)): x
∗ ≤ (a∧b)

∗
, a, b ∈ L 

� Sup (λ(x)∧c(a))∧(λ(x)∧η(b)): x
∗ ≤ (a∧b)

∗
 

≤ Sup (λ(x∨a)∧c(x∨a))∧(λ(x∨b)∧η(x∨b)): x
∗ ≤ (a∧b)

∗
 

� Sup λ (x∨a)
∗∗

( ∧c (x∨a)
∗∗

( ( ∧ λ (x∨b)
∗∗

( ∧η (x∨b)
∗∗

( ( : x
∗ ≤ (a∧b)

∗
 

� Sup (λ∩ c) (x∨a)
∗∗

( ∧(λ∩ η) (x∨b)
∗∗

( : x
∗ ≤ (a∧b)

∗
 .

(32)

If x∗ ≤ (a∧b)∗, then x∗∧(a∧b)∗∗ � 0. We can easily
verify that x∗ ≤ ((x∨a)∗∗∧(x∨b)∗∗)∗. -us,
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(λ∩ (c⊻ η))(x) ≤ Sup (λ∩ c) (x∨a)
∗∗

( ∧(λ∩ η) (x∨b)
∗∗

( : x
∗ ≤ (x∨a)

∗∗∧(x∨b)
∗∗

( 
∗

 

≤ Sup (λ∩ c)(c)∧(λ∩ η)(d): x
∗ ≤ (c∧d)

∗
, c, d ∈ L 

≤ ((λ∩ c)⊻(λ∩ η))(x).

(33)

-us, λ∩ (c⊻η) � (λ∩ c)⊻(λ∩ η). So FFp(L) is
distributive. □

5. Relation between FIp(L) and FFp(L)

In this section, we show that there is an isomorphism be-
tween the class of p-fuzzy ideals and p-fuzzy filters.

Lemma 6. Let μ be a p-fuzzy ideal. Define

μ†(x) � μ x
∗

( . (34)

9en, μ† is a p-fuzzy filter.

Proof. Let μ be a p-fuzzy ideal of L. Since 1∗ � 0, we get
that μ†(1) � 1. For any x, y ∈ L, μ†(x)∧μ†(y) � μ(x∗)∧
μ(y∗) � μ(x∗∨y∗) � μ((x∗∨y∗)∗ ∗ ) � μ((x∧y)∗) � μ†(x∧
y). -us, μ† is a fuzzy filter. To show μ† is a p-fuzzy ideal, let
x ∈ L. -en, μ†(x∗∗) � μ(x∗) � μ†(x). Hence μ† is a p-fuzzy
filter of L. □

Lemma 7. Let θ be a fuzzy filter. Define

θ‡(x) � θ x
∗

( . (35)

-en, θ‡ is a p-fuzzy ideal.

Proof. Let θ be a fuzzy filter. Since 1 � 0∗, we get θ‡(0) � 1.
For any x, y ∈ L,

θ‡(x∨y) � θ x
∗∧y∗(  � θ x

∗
( ∧θ y

∗
(  � θ‡(x)∧θ‡(y).

(36)

-us, θ‡ is a fuzzy ideal of L. To show θ‡ is a p-fuzzy ideal,
let x ∈ L. -en, θ‡(x∗∗) � θ(x∗) � θ‡(x). -us, θ‡ is a
p-fuzzy ideal of L. □

Theorem 16. Let μ be a fuzzy filter of L. 9en, (μ‡)† � μ if
and only if μ is a p-fuzzy filter.

Proof. Let μ be a fuzzy filter of L and (μ‡)† � μ. -en, by
Lemmas 6 and 7, μ is a p-fuzzy filter. Conversely, let μ be
a p-fuzzy filter and x ∈ L. -en, (μ‡)†(x) � μ‡(x∗) �

μ(x∗∗) � μ(x). -us, (μ‡)† � μ. □

Theorem 17. In L, FIp(L) � FFp(L).

Proof. Define f: FIp(L)⟶ FFp(L) by f(μ) � μ†. Since
μ ∈ FIp(L), by Lemma 6, f(μ) ∈ FFp(L). Let μ, θ ∈ FIp(L)

such that f(μ) � f(θ). -en, μ† � θ†. Since μ† and θ† are
p-fuzzy filters of L, then μ†‡ and θ†‡ are p-fuzzy ideals of L

and μ†‡ � θ†‡. To show μ � θ, let x ∈ L. -en,
μ†‡(x) � θ†‡(x). -is implies μ(x∗∗) � θ(x∗∗). Since μ and

θ are p-fuzzy ideal, we get that μ(x) � θ(x). -us, f is one to
one.

Let θ ∈ FFp(L). -en, by -eorem 16, θ � θ‡†. Since θ is
a fuzzy filter, then θ‡ is a p-fuzzy ideal of L and f(θ‡) � θ. So
f is onto.

Let μ, θ ∈ FIp(L) and x ∈ L. -en

f(μ⊻ θ)(x) � Sup μ(a)∧θ(b): x
∗ ≤ a

∗∧b∗( 
∗
, a, b ∈ L 

� Sup μ a
∗∗

( ∧θ b
∗∗

( : x
∗ ≤ a

∗∧b∗( 
∗

 

� Sup μ† a
∗

( ∧θ† b
∗

( : x
∗ ≤ a

∗∧b∗( 
∗

 

≤ Sup μ†(c)∧θ†(d): x
∗ ≤ (c∧d)

∗
, c, d ∈ L 

� μ†⊻θ† (x)

� (f(μ)⊻f(θ))(x).

(37)

-us, f(μ⊻θ)⊆(f(μ)⊻f(θ)). On the other hand,

(f(μ)⊻f(θ))(x) � Sup μ†(a)∧θ†(b): x
∗ ≤ (a∧b)

∗
, a, b ∈ L 

� Sup μ a
∗

( ∧θ b
∗

( : x
∗ ≤ (a∧b)

∗
 

� Sup μ a
∗

( ∧θ b
∗

( : x
∗ ≤ a

∗∗∧b∗∗( 
∗

 

≤ Sup μ(c)∧θ(d): x
∗ ≤ c

∗∧d∗( 
∗
, c, d ∈ L 

� (μ⊻θ) x
∗

( 

� (μ⊻θ)
†
(x)

� f(μ⊻θ)(x).

(38)

-us, f(μ⊻θ) � f(μ)⊻f(θ). Similarly, f(μ∩ θ) �

f(μ)∩f(θ). Hence FIp(L) � FFp(L). □

6. Conclusion

In this paper, we introduced the concept of p-fuzzy ideals
and p-fuzzy filters in a p-algebra. We provide a set of
equivalent conditions for a fuzzy ideal to be a p-fuzzy ideal
and a p-algebra to be a Boolean algebra. It is proved that the
class of p-fuzzy ideals forms a complete distributive lattice.
We also studied the image and inverse image of p-fuzzy
ideals under a ∗-epimorphism mapping. Moreover, we
prove that there is an isomorphism between the class of
p-fuzzy ideals and p-fuzzy filter. Our future work will focus
on σ-fuzzy ideals in a (0, 1) distributive lattice.
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