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'e notion of an Almost Distributive Lattice (ADL) is a common abstraction of several lattice theoretic and ring theoretic
generalizations of Boolean algebra and Boolean rings. In this paper, the set of all L-fuzzy prime ideals of an ADL with truth values
in a complete lattice L satisfying the infinite meet distributive law is topologized and the resulting space is discussed.

1. Introduction

'e concept of prime ideal is vital in the study of structure
theory of distributive lattices in general and of Boolean
algebras in particular [2]. In this context, we recall the work
of Stone [1] on the representation of distributive lattices by
algebra of sets. In fact, he proved that a lattice L is dis-
tributive if and only if any ideal of L is the intersection of all
prime ideals containing it. Also, he introduced a topology on
the set of all prime ideals of a given Boolean algebra B in such
a way that B is isomorphic with the Boolean algebra of cl-
open subsets of resulting space.

Swamy and Rao [2] have introduced the notion of an
Almost Distributive Lattice (ADL) which is algebra
(A, ∧ , ∨ , 0) of type (2, 2, 0) satisfying all the axioms of a
distributive lattice with zero except ∧ commutative, ∨
commutative, and right distributivity of ∨ over ∧ . In fact, in
any ADL, three conditions are equivalent.

Next, Rosenfold [3] introduced the notion of fuzzy groups;
many researchers are turned into fuzzifying various algebra.
Santhi Sundar Raj et al. [4–6] have introduced the concepts of
fuzzy prime ideals of an ADL and studied them deeply.

In this paper, we introduce a topology on the set of all
L-fuzzy prime ideals of an ADL A and the resulting space is
called the L-fuzzy prime spectrums of A, denoted by
FLspec(A) or X. For an L-fuzzy ideal λ of A, open subset of
X is of the form X(λ) � μ ∈ X: λ≰μ􏼈 􏼉 and
V(λ) � μ ∈ X: λ≤ μ􏼈 􏼉 is a closed set. In particular, we prove

that X(a): a ∈ S{ } is a base for a topology on X. Further-
more, it is proved that the space FLspec(A) is compact and it
contains a subspace homeomorphic with the spectrum of A

which is dense in it. Also, it is proved that the space X is a
Hausdorff space if and only if the space is a T1-space and,
further, it is noted that the space X is a T1-space if and only if
every L-fuzzy prime ideal is an L-fuzzy maximal ideal and
L-fuzzy minimal prime ideal of A. Finally, it is proven that if
A and B are isomorphic ADLs, then the space FLspec(A) is
homeomorphic with the space FLspec(B).

'roughout this paper, A stands for an ADL (A, ∧ , ∨ , 0)

with a maximal element and L stands for a complete lattice
(L, ∧ , ∨ , 0, 1) satisfying the infinite meet distributive law; that
is, (x∧ (∨ y∈Sy)) � ∨ y∈S(x∧y) for any S⊆L and x ∈ L.

2. Preliminaries

In this section, we recall some definitions and basic results
mostly taken from [2, 4].

Definition 1. An algebra A � (A, ∧ , ∨ , 0) of type (2, 2, 0) is
called an Almost Distributive Lattice (abbreviated as ADL) if
it satisfies the following conditions for all a, b and c ∈ A:

(1) 0∧ a � 0
(2) a∨ 0 � a

(3) a∧ (b∨ c) � (a∧ b)∨ (a∧ c)
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(4) a∨ (b∧ c) � (a∨ b)∧ (a∨ c)

(5) (a∨ b)∧ c � (a∧ c)∨ (b∧ c)

(6) (a∨ b)∧ b � b

Any bounded below distributive lattice is an ADL. Any
nonempty set X can be made into an ADL which is not a
lattice by fixing an arbitrarily chosen element 0 in X and by
defining the binary operations ∧ and ∨ on X by

a∧ b �
0, if a � 0,

b, if a≠ 0,
􏼨

a∨ b �
b, if a � 0,

a, if a≠ 0.
􏼨

(1)

'is ADL (X, ∧ , ∨ , 0) is called a discrete ADL.

Definition 2. Let A � (A, ∧ , ∨ , 0) be an ADL. For any a and
b ∈ A, define a≤ b if a � a∧ b(⟺ a∨ b � b). 'en ≤ is a
partial order on A with respect to which 0 is the smallest
element in A.

Theorem 1. (e following hold for any a, b and c in an ADL
A:

(1) a∧ 0 � 0 � 0∧ a and a∨ 0 � a � 0∨ a

(2) a∧ a � a � a∨ a

(3) a∧ b≤ b≤ b∨ a

(4) a∧ b � a⟺ a∨ b � b

(5) a∧ b � b⟺ a∨ b � a

(6) (a∧ b)∧ c � a∧ (b∧ c) (i.e., ∧ is associative)
(7) a∨ (b∨ a) � a∨ b

(8) a≤ b⟹ a∧ b � a � b∧ a(⟺ a∨ b � b � b∨ a)

(9) (a∧ b)∧ c � (b∧ a)∧ c

(10) (a∨ b)∧ c � (b∨ a)∧ c

(11) a∧ b � b∧ a⟺ a∨ b � b∨ a

(12) a∧ b � inf a, b{ }⟺ a∧ b � b∧ a

⟺ a∨ b � sup a, b{ }

Definition 3. Let I be a nonempty subset of an ADL A. 'en
I is called an ideal of A if a, b ∈ I⇒a∨ b ∈ I and a∧ x ∈ I for
all x ∈ A.

As a consequence, for any ideal I of A, x∧ a ∈ I for all
a ∈ I and x ∈ A. An element m ∈ A is said to be maximal if,
for any x ∈ A, m≤x implies m � x. It can be easily observed
that m is maximal if and only if m∧x � x for all x ∈ A.

Definition 4. Let L � (L, ∧ , ∨ ) and M � (M, ∧ , ∨ ) be
lattices and let f: L⟶M be a mapping. 'en f is called
(1) an order homomorphism (or isotone) if a≤ b in
L⇒f(a)≤f(b) in M and (2) a lattice homomorphism if,
for any a, b ∈ L, f(a∧ b) � f(a)∧f(b) and f(a∨ b) �

f(a)∨f(b).

Theorem 2. Let L and M be lattices and let f: L⟶M be a
bijection. (en f is a lattice isomorphism if and only if both f

and f− 1 are order homomorphisms.

Definition 5. Let (A, ∧ , ∨ , 0) and (A′, ∧ ′, ∨ ′, 0′) be ADLs.
A mapping f: A⟶ A′ is called a homomorphism if the
following are satisfied for any x and y ∈ A: (1)
f(x∨y) � f(x)∨ ′f(y). (2) f(x∧y) � f(x)∧ ′f(y). (3)
f(0) � 0′.

Definition 6. Let X and Y be topological spaces and let
f: X⟶ Y be a mapping; then f is said to be continuous if
and only if inverse image of every open set in Y is open in X.

Definition 7. Let X and Y be topological spaces and let
f: X⟶ Y be a mapping; then f is said to be open if and
only if image of every open set in X is open in Y.

Definition 8. Let X and Y be topological spaces; then a
bijection ϕ: X⟶ Y is said to be a homeomorphism if it is a
continuous open mapping.

Definition 9. An L-fuzzy subset λ of A is said to be an
L-fuzzy ideal of A, if λ(0) � 1 and λ(x∨y) � λ(x)∧ λ(y),
for all x, y ∈ A.

Theorem 3. Let λ be an L-fuzzy subset of A. (en λ is an
L-fuzzy ideal if and only if (1) λ(0) � 1, (2) λ(x∨y) ≥ λ
(x)∧ λ(y), and (3) λ(x∧y)≥ λ(x)∨ λ(y), for all x, y ∈ A.

Definition 10. Let χS denote the characteristic function of
any subset S of an ADL A; that is,

χS(x) �
1, if x ∈ S,

0, if x ∉ S.
􏼨 (2)

Definition 11. A proper L-fuzzy ideal λ of A is called an
L-fuzzy prime ideal of A if, for any x, y ∈ A, λ(x∧y) � λ(x)

or λ(y).

Theorem 4. Let λ be a proper L-fuzzy ideal of A. (en the
following are equivalent to each other: (1) For each α ∈ L,
λα � A or λα is a prime ideal of A. (2) λ is an L-fuzzy prime
ideal of A. (3) For any x, y ∈ A, λ(x∧y)≤ λ(x)∨ λ(y) and
either λ(x)≤ λ(y) or λ(y)≤ λ(x).

Theorem 5. Let λ be an L-fuzzy prime ideal of A and let 0 be
a prime element in A. (en λ is an L-fuzzy minimal prime
ideal ofA if and only if λα is a minimal prime ideal of A, for all
α ∈ L.

Definition 12. A proper L-fuzzy ideal λ of A is called an
L-fuzzy maximal ideal of A if, for each α ∈ L, either λα � A

or λα is a maximal ideal of A.

3. Topological Space on L-Fuzzy Prime Ideals

In this section, we introduce the Zariski topology on the set
of L-fuzzy prime ideals of an Almost Distributive Lattice A.
Our definition of L-fuzzy prime ideal offers us an appro-
priate setting to introduce a topology on the set of L-fuzzy
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prime ideals of A. A topology is introduced on the set of all
L-fuzzy prime ideals of A to obtain the space called the hull-
kernel topology on the set of all L-fuzzy prime ideals and
denoted by FLspec(A) or X. First, we have the following.

Theorem 6. Let A and B be ADLs. Let p: A⟶ B be a
lattice homomorphism and p(0) � 0. If λ: A⟶ L

and μ: B⟶ L are L-fuzzy ideals of A and B, respectively,
then (1) p− 1(μ) is an L-fuzzy ideal of A, (2) p(λ) is
an L-fuzzy ideal of B if p is an epimorphism, and
(3) p(p− 1(μ)) � μ.

Proof. Define p− 1(μ): A⟶ L and p(λ): B⟶ L as
p− 1(μ)(x) � μ(p(x)) for each x ∈ A and p(λ)(y) �

Sup λ(x):{ p(x) � y, x ∈ A} for each y ∈ B. 'en,

(1) p− 1(μ)(0) � μ(p(0)) � μ(0) � 1, as μ is an L-fuzzy
ideal of B. Let x, y ∈ A. 'en,

p
− 1

(μ)(x∨y) � μ(p(x∨y))

� μ(p(x)∨p(y))

· (sincep is lattice homomorphism)

� μ(p(x))∧ μ(p(y))

· (since μ is anL − fuzzy ideal)

� p
− 1

(μ)(x) ∧p
− 1

(μ)(y).

(3)

Also, let x≤y in A. As p is homomorphism, we get
p(x)≤p(y). But then μ(p(x))≥ μ(p(y)) (since μ
is an L-fuzzy prime ideal). 'at is, p− 1(μ)

(x)≥p− 1(μ)(y). 'erefore, p− 1(μ) is antitone.
'us, p− 1(μ) is an L-fuzzy ideal of A.

(2) Clearly, p(λ)(0) � 1. Let p: A⟶ B be a lattice
epimorphism. Let a, b ∈ B. 'en there exists x, y ∈ A

such that p(x) � a and p(y) � b. 'us,
p(x∨y) � p(x)∨p(y) � a∨ b. Now,

p(λ)(a∨ b) � Sup λ(z): p(z) � a∨ b, z ∈ A􏼈 􏼉

� ∨
z∈p− 1(a∨ b)

λ(z)

≥ ∨
x∈p− 1(a),y∈p− 1(b)

λ(x∨y)

≥ ∨
x∈p− 1(a),y∈p− 1(b)

λ(x)∧ λ(y)

· (since λ is anL − fuzzy ideal)

� ∨
x∈p− 1(a)

λ(x)􏼠 􏼡∧ ∨
y∈p− 1(b)

λ(y)􏼠 􏼡

� p(λ)(a) ∧p(λ)(b),

(4)

'us, p(λ)(a∨ b)≥p(λ)(a) ∧p(λ)(b). Similarly,
p(λ)(a∧ b)≥p(λ)(a)∨p(λ)(b). Let a≤ b in B.
'en, a∨ b � b. 'erefore, whenever p(x) � a and
p(b) � y, we have p(x∨y) � p(x)∨p(y) � a∨ b.
Now,

p(λ)(a)∧p(λ)(b) � ∨
c∈p− 1(a)

λ(c)􏼠 􏼡∧ ∨
d∈p− 1(b)

λ(d)􏼠 􏼡

� ∨
c∈p− 1(a),d∈p− 1(b)

λ(c)∧ λ(d)

� ∨
c∨ d∈p− 1(b)

λ(c∨ d)

· (since λ is an L − fuzzy ideal)

� p(λ)(b),

(5)

'is shows that p(λ)(b)≤p(λ)(a). 'us, p(λ) is an
antitone map. 'erefore, p(λ) is an L-fuzzy ideal of
A.

(3) Let b ∈ B. 'en,

p p
− 1

(μ)􏼐 􏼑(b) � ∨
y∈p− 1(b)

p
− 1

(μ)(y)

� ∨
y∈p− 1(b)

μ(p(y))

� μ(b).

(6)

'us, p(p− 1(μ)) � μ. □

Theorem 7. If an L-fuzzy subset λ of A is an L-fuzzy prime
ideal of A, then λ is a homomorphism from (A, ∧ , ∨ , 0) to
(L, ∨ , ∧ ).

Proof. As λ is an L-fuzzy ideal, then

λ(0) � 1,

λ(x∨y) � λ(x)∧ λ(y), for all, x, y ∈ A.
(7)

Since λ is an L-fuzzy prime ideal ofA, we have λ(x∧y) �

λ(x) or λ(x∧y) � λ(y). In either case, we get

λ(x∧y)≤ λ(x)∨ λ(y). (8)

Also, x∧y≤y and y∧ x≤ x and λ is antitone (being an
L-fuzzy ideal) implying that λ(y)≤ λ(x∧y) and
λ(x)≤ λ(y∧x) � λ(x∧y). 'us,

λ(x)∨ λ(y)≤ λ(x∧y). (9)

From (8) and (9), we have

λ(x)∨ λ(y) � λ(x∧y). (10)

'erefore, from (7) and (10), λ is a homomorphism from
(A, ∧ , ∨ , 0) to (L, ∨ , ∧ ).

In 'eorem 6, we have proved that inverse image of an
L-fuzzy ideal of an ADL A is an L-fuzzy ideal again. In the
case of L-fuzzy prime ideals, we have the following. □

Theorem 8. Let A and B be ADLs. Let p: A⟶ B be a
lattice homomorphism. If λ is an L-fuzzy prime ideal of B,
then p− 1(λ) is an L-fuzzy prime ideal of A.

Proof. By 'eorem 6, p− 1(λ) is an L-fuzzy ideal of A. Let
x, y ∈ A. 'en,
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p
− 1

(λ)(x∧y) � λ(p(x∧y))

� λ(p(x) ∧p(y))

� λ(p(x)), or λ(p(y))

� p
− 1

(λ)(x), orp
− 1

(λ)(y).

(11)

'erefore, p− 1(λ) is an L-fuzzy prime ideal of A. □

Theorem 9. Let A and B be ADLs. Let p: A⟶ B be a
lattice isomorphism. If λ is an L-fuzzy prime ideal of A, then
p(λ) is an L-fuzzy prime ideal of B and p− 1(p(λ)) � λ.

Proof. By 'eorem 6 (2), p(λ) is an L-fuzzy ideal of B. Let
a, b ∈ B. 'en, a � p(x) and b � p(y), for some x, y ∈ A.
'erefore, p(x∧y) � a∧ b. Now, if t ∈ p− 1(a), then p(t) �

a � p(x) implies that t � x (since p is injective).
'erefore,

p(λ)(a) � Sup λ(t): p(t) � a, t ∈ A􏼈 􏼉

� ∨
t∈p− 1(a)

λ(t)

� λ(x),

(12)

Similarly, p(λ)(b) � λ(y) and if z ∈ p− 1(a∧ b), then
z � x∧y. 'us,

p(λ)(a∧ b) � Sup λ(z): p(z) � a∧ b, z ∈ A􏼈 􏼉

� ∨
z∈p− 1(a∧ b)

λ(z)

� λ(x∧y)

� λ(x), or λ(y).

(13)

'us, p(λ) is an L-fuzzy prime ideal of B. Also, let x ∈ A.
'en,

p
− 1

(p(λ))(x) � p(λ)(p(x))

� Sup λ(y): p(y) � p(x), y ∈ A􏼈 􏼉

� ∨
x∈p− 1(p(y))

λ(y), (sincep is injective)

� λ(x).

(14)
'erefore, p− 1(p(λ)) � λ. □

Example 1. Consider the lattice A � 0, a, b, c, 1{ } whose
Hasse diagram is given below:

1

ba

c

0

and let B � 0, a, b, c{ } and let ∨ and ∧ be binary
operations on B defined
by

0

a

b

c

0∨

0

a

b

c

a

a

a

b

a

b

b

a

b

b

c

c

a

b

c

∨

0

a

b

c

0

0

0

0

0

a

0

a

a

c

b

0

b

b

c

c

0

c

c

c

'en, (B, ∧ , ∨ , 0) is an ADL, which is not a lattice
(a∧ b≠ b∧ a). Let L � [0, 1] be the closed unit interval of real
numbers. 'en L is a frame with respect to the usual ordering.
Define L-fuzzy subsets μ and λ of A and B, respectively, by
μ(0) � 1 and μ(x) � 0.5, for all x≠ 0; λ(0) � 1, λ(a) � λ
(b) � 0, and λ(c) � 0.5; and define a function p: A⟶ B by
p(0) � 0, p(b) � b, p(c) � c, p(a) � p(1) � a. 'en, we
observe that μα � A if 0≤ α≤ 0.5 and μα � 0{ } if 0.5< α≤ 1.
'us, by 'eorem 4, μ is an L-fuzzy prime ideal of A. Also,
λ0.5 � 0, c{ } and λ1 � 0{ } are prime ideals ofB.'erefore, λ is an
L-fuzzy prime ideal of B (by4). For any x and y ∈ A,

p(0) � 0,

p(x∨y) � p(x)∨p(y),

p(x∧y) � p(x)∧p(y).

(15)

'us, p is a lattice homomorphism. Also,
x≤y⇒p(x)≤p(y). 'us, p is isotone and, for each y ∈ B,
there exists x ∈ A such that p(x) � y. Hence, p is a bijection
map. 'erefore, p is a lattice isomorphism. By the above
'eorems 6 and 8,p(λ) andp− 1(μ) are L-fuzzy prime ideals of
A and B, respectively, since λ and μ are L-fuzzy prime ideals.

In the following, we obtain a topological space by in-
troducing Zariski topology on the set of L-fuzzy prime ideals
of ADLs.

Definition 13. Let A � (A, ∧ , ∨ , 0) be a nontrivial ADL and
let X be the set of all L-fuzzy prime ideals of A. For any
L-fuzzy subset Θ of A, we define

V(Θ) � λ ∈ X: Θ≤ λ{ },

X(Θ) � λ ∈ X: Θ≰λ{ } � X − V(Θ).
(16)

'e complement of V(Θ) in X = X(Θ).
Now, we prove some properties of V and X.

Theorem 11. Let Θ and σ be L-fuzzy subsets of A. (en, we
have the following: (1) if Θ≤ σ, then V(σ)⊆V(Θ) and
X(Θ)⊆X(σ); (2) V(σ)∪V(Θ)⊆V(σ ∧Θ) and X(σ)∪
X(Θ)⊆X(σ ∧Θ); (3) V(Θ) � V(〈Θ〉) and
X(Θ) � X(〈Θ〉), where 〈Θ〉 is the smallest L-fuzzy ideal
containing Θ (4) V(χ 0{ }) � X and V(χ 1{ }) � ∅.
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Proof

(1)

μ ∈ V(σ)⇒σ ≤ μ

⇒Θ≤ μ(sinceΘ≤ σ)

⇒μ ∈ V(Θ).

(17)

'erefore, V(σ)⊆V(Θ). Also,

] ∉ X(σ)⇒σ ≤ ]

⇒Θ≤ ] (sinceΘ≤ σ)

⇒] ∉ X(Θ),

(18)

'erefore, X(Θ)⊆X(σ).
(2)

μ ∈ V(σ)∪V(Θ)⇒μ ∈ V(σ), or μ ∈ V(Θ),

⇒σ ≤ μ, orΘ≤ μ

⇒σ ∧Θ≤ μ,

· (since σ ≤ μ⇒σ ∧Θ≤ μ∧Θ≤ μ),

(19)

Similarly,

Θ≤ μ⇒σ ∧Θ≤ σ ∧ μ≤ μ,

⇒μ ∈ V(σ ∧Θ),
(20)

'erefore, V(σ)∪V(Θ)⊆V(σ ∧Θ).

(3) Clearly V(〈Θ〉)⊆V(Θ), since Θ≤ 〈Θ〉 and by (1).
On the other hand, let μ ∈ V(Θ). 'en Θ≤ μ; it
follows that 〈Θ〉≤ μ. Hence, μ ∈ V(〈Θ〉). 'ere-
fore, V(Θ) � V(〈Θ〉). Also, clearly
X(Θ)⊆X(〈Θ〉), since Θ≤ 〈Θ〉 and by (1). On the
other hand,

μ ∈ X(〈Θ〉)⇒〈Θ〉≰μ

⇒Θ≰μ

⇒μ ∈ X(Θ),

(21)

It follows that X(〈Θ〉)⊆X(Θ). 'erefore,
X(Θ) � X(〈Θ〉).

(4) Let λ ∈ X. 'en λ(0) � 1. 'erefore, V(χ 0{ }) � X

and V(χ 1{ }) � ∅ (as λ is an L-fuzzy prime ideal). □

Remark 1. In general, equality does not hold in 'eorem
7. Equality holds if Θ and σ are crisp ideals of A. 'e
following example shows that, in a case of L-fuzzy subsets
of A, equality does not hold even if Θ and σ are L-fuzzy
ideals.

Example 2. Let A � 0, a, b, c{ } and L � 0, s, t, 1{ } with 0< s

< t< 1 and let ∨ and ∧ be binary operations on A defined

by 0

a

b

c

0∨

0

a

b

c

a

a

a

a

a

b

b

a

b

a

c

c

a

a

c

∨

0

a

b

c

0

0

0

0

0

a

0

a

b

c

b

0

b

b

0

c

0

c

0

c

'en, (A, ∧ , ∨ , 0) is an ADL. Now define λ: A⟶ L by
λ(0) � 1, λ(a) � λ(b) � 0 and λ(c) � s. 'en
λ0 � A, λs � 0, c{ }, and λ1 � 0{ } are prime ideals of A.
'erefore, λ is an L-fuzzy prime ideal of A. Define
Θ: A⟶ L and σ: A⟶ L as Θ(0) � 1,Θ(a) �

0,Θ(b) � Θ(c) � s, and σ(0) � 1, σ(a) � σ(b) � s, σ(c) � t.
Clearly, Θ and σ are L-fuzzy ideals of A and Θ≤ σ. 'en,
V(σ) � (0, 1){ } and V(Θ) � (0, 1), (a, 0), (c, s){ }. From this,
V(σ)⊆V(Θ). Also, σ ∧Θ � (0, 1), (a, 0), (b, s), (c, s){ } and
hence V(σ ∧Θ) � V(Θ). Now, V(σ)∪V(Θ) � (0, 1),{

(a, 0), (c, s)}⊆V(σ ∧Θ) but (c, s){ } ∉ V(σ)∪V(Θ). Hence,
V(σ)∪V(Θ) ⊂ V(σ ∧Θ).

Recall that if I is an ideal of A, then the characteristic
function χI of I is an L-fuzzy ideal of A. For such L-fuzzy
ideals, we have the following.

Theorem 12. Let I and J be ideals of A. (en,
(1) V(χI)∪V(χJ) � V(χI∩J) and (2) X(χI) ∪X(χJ) �

X(χI∩J).

Proof

(1) Since I∩ J⊆ I, J, χI∩J ≤ χI, χJ. 'en, by 'eorem 7
(2), we have V(χI)∪V(χJ)⊆V(χI∩J). On the other
hand, let μ ∈ V(χI∩J). 'en, χI∩J ≤ μ, and it follows
that μ(x) � 1, for each x ∈ I∩ J. If χI≰μ and χJ≰μ,
then there exists x ∈ I, y ∈ J such that μ(x)≠ 1 and
μ(y)≠ 1. But, as x∧y ∈ I∩ J, then μ(x∧y) � 1. As
μ is an L-fuzzy prime ideal of A, then
1 � μ(x∧y)≤ μ(x)∨ μ(y). It follows that
μ(x)∨ μ(y) � 1. 'is implies that either μ(x) � 1 or
μ(y) � 1, which gives a contradiction with the choice
of x and y. So, χI ≤ μ or χJ ≤ μ. 'erefore, μ ∈ V(χI)

or μ ∈ V(χJ) and hence μ ∈ V(χI)∪V(χJ).
(2) Clearly, X(χI∩J)⊆X(χI)∪X(χJ). On the other

hand,

μ ∈ X χI( 􏼁∪X χJ􏼐 􏼑⇒μ ∈ X χI( 􏼁 or μ ∈ X χJ􏼐 􏼑

⇒χI≰μ, or χJ≰μ

⇒χI ∩ χJ≰μ

⇒χI∩J≰μ

⇒μ ∈ X χI∩J􏼐 􏼑.

(22)
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'erefore, X(χI)∪X(χJ)⊆X(χI∩J). □

Corollary 1. For any subsets S of an ADL A and letting
a, b ∈ A,

(1) V(χS) � ∩ V(χ a{ }): a ∈ S􏽮 􏽯

(2) V(χ a{ })⋃V(χ b{ }) � V(χ a∧ b{ })

Theorem 13. For any subsets S of an ADL A, we have the
following:

(1) (1) χS � ∪ a∈Sχ a{ }

(2) (2) 〈χS〉 � χ(S]

(3) (3) 〈χ a{ }〉 � χ(a] for every a ∈ A

(4) (4) X(χS) � X(χ(S])

(5) (5) V(χS) � V(χ(S])

Proof. Clearly χS ≤ χ(S]. Let λ be an L-fuzzy ideal of A such
that χS ≤ λ. 'en, λ(a) � 1, for all a ∈ S. Now, we shall prove
that χ(S] ≤ λ. For any t ∈ A, we have

t ∈ (S]⇒t � ∨
n

i�1
ai􏼒 􏼓∧ x,

for somex ∈ A and a1, a2, . . . , an ∈ S and χS(t) � 1.

(23)

Now,

λ(t) � λ ∨
n

i�1
ai􏼒 􏼓∧x􏼒 􏼓

� λ ∨
n

i�1
ai ∧x( 􏼁􏼒 􏼓

� ∧
n

i�1
λ ai ∧x( 􏼁

≥ ∧
n

i�1
λ ai( 􏼁∨ λ(x)( 􏼁, (by . . .)

� λ a1( 􏼁∨ λ(x)( 􏼁∧ λ a2( 􏼁∨ λ(x)( 􏼁∧ · · · ∧ λ an( 􏼁∨ λ(x)( 􏼁

� (1∨ λ(x))∧ (1∨ λ(x))∧ · · · ∧ (1∨ λ(x))

� 1∧ 1∧ · · · ∧ 1 � 1.

(24)

'erefore, λ(t)≥ 1 and hence λ(t) � 1. 'erefore,
χ(S] ≤ λ. 'is shows that χ(S] is the smallest L-fuzzy ideal of A

containing χS. 'us, 〈χS〉 � χ(S]. □

Theorem 14. If λi􏼈 􏼉i∈Δ is a family of L-fuzzy subsets of A,
then

V ∪
i∈Δ

λi􏼒 􏼓 � ∩
i∈Δ

V λi( 􏼁. (25)

Proof

μ ∈ V ∪
i∈Δ

λi􏼒 􏼓⟺ ∪
i∈Δ

λi ≤ μ,

⟺ λi ≤ μ, for each i ∈ Δ

⟺ μ ∈ V λi( 􏼁, for each i ∈ Δ

⟺ μ ∈ ∩
i∈Δ

V λi( 􏼁.

(26)

'is shows that V(∪ i∈Δλi) � ∩ i∈ΔV(λi). □

Theorem 15. Let τ � X(Θ): Θ is an L − fuzzy subset of A􏼈 􏼉.
(en the pair (X, τ) is a topological space.

Proof. Consider L-fuzzy subsets of A defined by σ(x) � 0
and Θ(x) � 1, for all x ∈ A. 'en, V(σ) �

λ ∈ X: σ ≤ λ{ } � X. 'erefore, X(σ) � X − V(σ) � ∅. Also,
V(Θ) � λ ∈ X: Θ≤ λ{ } � ∅. 'erefore, X(Θ) � X − V

(Θ) � X. Let μ and ] be L-fuzzy subsets of A. 'en,
V(μ)∪V(]) � V(〈μ〉)∪V(〈]〉) � V(〈μ〉∧ 〈μ〉). Now,

X(μ)∩X(]) � (X − V(μ))∩ (X − V(]))

� X − (V(μ)∪V(]))

� X − (V(〈μ〉)∪V(〈]〉))

� X − (V(〈μ〉∧ 〈]〉))

� X(〈μ〉 ∧ 〈]〉) ∈ τ.

(27)

Also, let λi: i ∈ I􏼈 􏼉 be nonempty collection of L-fuzzy
ideals ofA.'en, we haveV(⋃ λi: i ∈ I􏼈 􏼉) � ∩V( λi: i ∈ I􏼈 􏼉)

(by the above theorem). Now,

∪
i∈I

X λi( 􏼁 � ∪
i∈I

X − V λi( 􏼁( 􏼁 � X − ∩
i∈I

V λi( 􏼁

� X − V ∪
i∈I

λi􏼒 􏼓 � X ∪
i∈I

λi􏼒 􏼓.
(28)

'erefore, (X, τ) is a topological space. □

Definition 14. 'e topological space (X, τ), as in 'eorem
15, is called L-fuzzy prime spectrum of an ADL A and is
denoted by FLspec(A) or X.

In the following section, we introduce base of FLspec(A).

Definition 15. Let A � (A, ∧ , ∨ , 0) be a nontrivial ADL and
let X be the set of all L-fuzzy prime ideals of A. For any
a ∈ A, we define X(a) � X(χ a{ }). 'at is,

X(a) � λ ∈ X: χ a{ }≰λ􏽮 􏽯, (29)

and hence

V(a) � λ ∈ X: χ a{ } ≤ λ􏽮 􏽯. (30)

Theorem 16. Let X be the set of L-fuzzy prime ideals of an
ADL A. (en the following hold for any a and b ∈ A:
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(1) X(a)⊆X(b)⟺ (a]⊆ (b]⟺ b∧ a � a

(2) X(a) � X(b)⟺ a ∼ b⟺ (a] � (b]

(3) X(a) � ∅⟺ a � 0
(4) X(a) � X⟺ a is maximal element in A

(5) X(a)∩X(b) � X(a∧ b) � X(b∧ a)

(6) X(a)∪X(b) � X(a∨ b) � X(b∨ a)

Proof

X(a) � ∅⇒X − X(a) � X

⇒χ(a] ≤ λ, for every λ ∈ X

⇒1≤ λ(a)

⇒λ(a) � 1

⇒a ∈ λ1, for every λ ∈ X.

(31)

Let P be a prime ideal of A. 'en, χP is an L-fuzzy prime
ideal of A. Put μ � χP. 'en, μ1 � P. 'erefore, a ∈ P, for
every prime ideal P of A. Hence, a ∈ ⋃P � 0{ }. 'erefore,
a � 0. Conversely, if a � 0, then there is no ideal not con-
taining 0. It follows that there is L-fuzzy prime ideal λ not
containing χ(0] and hence X(χ(0]) � ∅. 'erefore,
X(0) � ∅.

(4) Suppose that a is maximal in A. 'en, χ(a] � χA.
'en, no proper L-fuzzy ideal contains χA and hence
X(χ(a]) � X(χA) � X. Conversely,

X(a) � X⇒χ(a]≰λ, for every λ ∈ X

⇒1≰λ(a)

⇒a ∉ λ1.

(32)

Let P be a prime ideal of A. 'en, χP is an L-fuzzy prime
ideal of A and let λ � χP. 'en λ1 � P and hence
a ∉ ⋃ P: P is a prime ideal of A􏼈 􏼉. 'erefore, a is maximal.

(5)

λ ∈ X(a)∩X(b)⟺ χ(a]≰λ, and χ(b]≰λ

⟺ 1≰λ(a), and 1≰λ(b)

⟺ a, b ∉ λ1

⟺ a∧ b ∉ λ1, since λ1 is prime ideal of A( 􏼁

⟺ 1≰λ(a∧ b)

⟺ χ(a∧ b]≰λ

⟺ λ ∈ X(a∧ b).

(33)

'us, X(a)∩X(b) � X(a∧ b) � X(b∧ a) (since
a∧ b ∼ b∧ a).

(6)

λ ∈ X(a)∪X(b)⟺ χ(a]≰λ, or χ(b]≰λ,

⟺ 1≰λ(a), or 1≰λ(b)

⟺ a ∉ λ1, or b ∉ λ1
⟺ a∨ b ∉ λ1
⟺ χ(a∨ b]≰λ

⟺ λ ∈ X(a∨ b).

(34)

'us, X(a)∪X(b) � X(a∨ b) � X(b∨ a) (since
a∨ b ∼ b∨ a). □

Theorem 17. For any subset S of an ADL A and
X � FLspec(A), we have the following:

(1) (1) X(χS) � ⋃ X(a): a ∈ S{ }

(2) (2) V(χS) � ∩ V(a): a ∈ S{ }

Proof

(1) λ ∈ X(χS).'en, λ ∈ X and χ(S]≰λ and, hence, 1≰λ(t),
for some t ∈ (S]. Since t ∈ (S], t � (∨ n

i�1)∧
x, for somex ∈ A and a1, a2, . . . , an ∈ S. Let
a � ∨ n

i�1ai. 'en, a ∈ (S]. Now, we shall prove that
χ(a]≰λ. Clearly, t ∈ (a] and hence χ(a](t) � 1≰λ(t).
'erefore, χ(a]≰λ and hence λ ∈ X(a). On the other
hand, let λ ∈ X such that χ(a]≰λ, for some a ∈ S. 'en,
1≰λ(t) for some t ∈ (a]. 'is implies that χ(S]≰λ and
hence λ ∈ X(χS). 'us, X(χS) � ∪ a∈SX(a).

(2)

V χS( 􏼁 � X − X χS( 􏼁

� X − ⋃ X(a): a ∈ S{ }, (since by (1))

� ∩ X − X(a): a ∈ S{ }

� ∩ V(a): a ∈ S{ }.

(35)

□

Theorem 18. X(a): a ∈ S{ } is a base for a topology on X.

Proof. By 'eorem 16 (4), X(m) � X, for any maximal
element m of A. 'erefore, X � ⋃ X(a): a ∈ A{ }. Let
a, b ∈ A. 'en, for any λ ∈ X, we have

λ ∈ X(a)∩X(b)⟺ χ(a]≰λ, and χ(b]≰λ,

⟺ 1≰λ(a), and 1≰λ(b)

⟺ a, b ∉ λ1
⟺ a∧ b ∉ λ1, since λ1 is prime ideal of A( 􏼁

⟺ 1≰λ(a∧ b)

⟺ χ(a∧ b]≰λ

⟺ λ ∈ X(a∧ b).

(36)

'us, X(a)∩X(b) � X(a∧ b) � X(b∧ a) (since
a∧ b ∼ b∧ a). 'erefore, X(a): a ∈ A{ } form a base for a
topology on X. □
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Theorem 19. Let A be an ADL and X � FLspec(A). (en,
any closed subset of X is of the form h(χI) for some ideal I of A

and any open subset of X is of the form X(χI) for some ideal I

of A.

Proof. For each a ∈ A, X(a) is open in X and X(χI) �

λ ∈ X: χI≰λ􏼈 􏼉 � ∪ a∈IX(a) and hence X(χI) is open in X.
Since h(χI) � X − X(χI), it follows that h(χI) is closed in X.
On the other hand, let Y be a closed subset of X. 'en, X − Y

is open in X and hence X − Y � ∪ a∈SX(a) for some subset S

of A, since X(a): a ∈ A{ } is a base for a topology on X. If
I � (S], the ideal generated by S in A, then
χS ≤ λ⟺ χI ≤ λ for every λ ∈ X. Now, we shall prove that
X − Y � X(χI). Let λ ∈ X. 'en,

χI≰λ⇒χS≰λ

⇒1≰λ(a), for some a ∈ A

⇒χ a{ }≰λ

⇒λ ∈ X χ a{ }􏼐 􏼑 � X(a).

(37)

On the other hand,

λ ∈ X − Y⇒λ ∈ X(a), for some a ∈ S,

⇒χ a{ }≰λ,

⇒χS≰λ, since χS � ∪ a∈Sχ a{ }􏼐 􏼑

⇒χ(S]≰λ

⇒χI≰λ

⇒λ ∈ X χI( 􏼁.

(38)

'erefore, X − Y � X(χI) and hence Y � h(χI). □

Theorem 20. Let A be an ADL and X � FLspec(A). (en,
for any Y⊆X, Y is a compact open subset of X if and only if
Y � X(a) for some a ∈ A.

Proof. Suppose that Y is compact open. Since Y is open,
Y � ∪ a∈SX(a) for some S⊆A. Also, Y is compact and
X(a): a ∈ S{ } is a cover of Y. 'en, there exists

a1, a2, . . . , an ∈ S such that Y � X(a1)∪X(a2) ∪ · · · ∪X

(an) � X(a), where a � ∨ n
i�1ai.

Conversely, suppose that Y � X(a) for some a ∈ A.
'erefore, Y is open. Now, we prove that X(a) is compact.
Suppose that X(a)⊆ ∪ b∈SX(b), for some S⊆A. 'en
a ∈ (S]; otherwise, if a ∉ (S], then there exists a prime ideal
P of A such that (S]⊆P and a ∉ P. Let λ � χ_ _P{ }. 'en, λ is
an L-fuzzy prime ideal of A, since P is prime and also λ1 � P.
Since a ∉ λ1, 1≰λ(a), it follows that χ_ _(a]{ }≰λ and hence
λ ∈ X(a) but λ ∉ X(b), for every b ∈ S, which is a contra-
diction to our assumption. 'erefore, a ∈ (S] and hence
a � (∨ n

i�1bi)∧ x, for somex ∈ A and b1, b2, . . . , bn ∈ S. 'is
implies that X(a)⊆ ∪ n

i�1X(bi). 'us, X(a) is compact. □

Corollary 2. Every basic open set X(a) in FLspec(A) is
compact.

Corollary 3. Let A be an ADL.(en, FLspec(A) is compact if
and only if A has a maximal element.

Proof. LetX � FLspec(A). Suppose thatX is compact.'en,
X � X(a) for some a ∈ A (by Corollary 2) and hence a is
maximal element in A. On the other hand, if A has a
maximal element, say m, then X � X(m), which is compact
(by 2). □

Theorem 21. For any subset S ofA, S is closed in FLspec(A) if
and only if there exists T⊆A such that S � V(χT).

Proof. Suppose that S is closed in X. 'en, X − S is open in
X and

X − S � ∪ X χ t{ }􏼐 􏼑|t ∈ T􏽮 􏽯, for someT⊆A,

� ∪ X − V χ t{ }􏼐 􏼑|t ∈ T􏽮 􏽯

� X − ∩ V χ t{ }􏼐 􏼑|t ∈ T􏽮 􏽯

� X − V χT( 􏼁.

(39)

'erefore, S � V(χT), for some T⊆A. Conversely,
suppose that S � V(χT), for some subset T of A. 'en,
V(χT) � V(∪ t∈Tχ t{ } ) � ∪ t∈TV(χ t{ }) and hence V(χT) is
closed in FLspec(A), as V(χ t{ }) is closed in S. 'erefore, the
subset S of A is closed in FLspec(A). □

Theorem 22. Let P denote the set of all prime ideals of A.
(en the set D � χp: p ∈ P􏽮 􏽯 is dense in FLspec(A).

Proof. Let P be a prime ideal of A.'en χp is an L-fuzzy
prime ideal of A.'en D⊆X. Let λ ∈ X − D. Let X(χ a{ }) be a
basic open subset of X containing λ. Now,

λ ∈ X χ a{ }􏼐 􏼑⇒λ(a)≠ 1

⇒a ∉ λ1
⇒χλ1(a) � 0

⇒χλ1 ∈ X χ a{ }􏼐 􏼑.

(40)

'us, χλ1 ∈ D, since λ1 is a prime ideal of A. 'erefore,
X(χ a{ }) contains a point of D. 'us, every member of X − D

is a limit point of D. 'us, D � X. □

Theorem 23. For any subset S of X, S � V(χT), where
T � ∩ λ1: λ1 ∈ S􏼈 􏼉.

Proof. Let μ ∈ S. 'en,

χT(a) � 1⇒a ∈ T

⇒a ∈ μ1
⇒μ(a) � 1

⇒χT ≤ μ.

(41)

'erefore, μ ∈ V(χT). 'us, S⊆V(χT). But then V(χT) is
closed set containing S. Hence, S⊆V(χT). On the other
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hand, let λ ∈ V(χT). Let λ ∉ S. Let X(χ a{ }) be a basic open set
containing λ. 'en,

λ ∈ X χ a{ }􏼐 􏼑⇒λ ∉ V χ a{ }s􏼐 􏼑

⇒λ(a)≠ 1

⇒χT(a)≠ 1, since λ ∈ V χT( 􏼁( 􏼁

⇒a ∉ T � ∩ σ1: σ1 ∈ S􏼈 􏼉

⇒](a)≠ 1, for some ] ∈ S⇒χ a{ }≰]

⇒] ∉ V χ a{ }􏼐 􏼑

⇒] ∈ X χ a{ }􏼐 􏼑.

(42)

'us, ] ∈ (X(χ a{ } ∩ S)) − λ{ }. 'is shows that λ is a limit
point of S. 'us, V(χT)⊆ S. 'erefore, S � V(χT). □

Corollary 4. For any subset S ∈ X, λ􏽮 􏽯 � V(χλ1) for any
μ, ] ∈ X, μ􏼈 􏼉 � ]{ } if and only if μ1 � ]1.

First, let us recall that a topological space X is said to be
T0− space if, for any x≠y ∈ X, there exists an open set
containing x and not containing y or vice versa, that X is
called a T1− space if, for any x≠y ∈ X, there exists open sets
G and H in X such that x ∈ G − H and y ∈ H − G, and that
X is called a Hausdorff space (T2− space) if, for any
x≠y ∈ X, there exist disjoint open sets G and H in X

containing x and y, respectively.

Theorem 24. For any ADL A, FLspec(A) is a T0− space.

Proof. Let μ≠ λ ∈ FLspec(A). 'at is, μ and λ are distinct
L-fuzzy prime ideals of A. 'en, either μ≰λ or λ≰μ. Suppose
that μ≰λ. 'en, there exists χ a{ } ∈ μ such that χ a{ }≰λ. 'en
λ ∈ X(a) and μ ∉ X(a). Also, each X(a) is open set con-
taining λ but not μ. On the other hand, if λ≰μ, then there
exists an open set containing μ but not λ. 'erefore,
FLspec(A) is a T0− space. □

Theorem 25. Let A be an ADL with maximal elements. (en
the following are equivalent to each other:

(1) FLspec(A) is a T2− space (or a Hausdorff space)
(2) FLspec(A) is a T1− space
(3) Every L-fuzzy prime ideal of A is an L-fuzzy maximal

ideal of A

(4) Every L-fuzzy prime ideal of A is an L-fuzzy minimal
prime ideal of A

Proof

(1) (1)⇒(2): clear.
(2) (2)⇒(3): suppose that FLspec(A) is a T1− space and

μ is an L-fuzzy prime ideal of A. Since μ􏼈 􏼉 is closed in
FLspec(A), μ􏼈 􏼉 � μ􏼈 􏼉. By 'eorem 19, we have
μ􏼈 􏼉 � h(χμ1) � μ􏼈 􏼉, which implies that there is no

L-fuzzy prime ideal of A containing μ other than μ
itself. 'at is, μ is an L-fuzzy maximal ideal of A.

(3) (3)⇒(4): suppose that every L-fuzzy prime ideal of A

is an L-fuzzy maximal ideal of A. Suppose that μ is an
L-fuzzy prime ideal of A. Let λ be an L-fuzzy prime
ideal of A such that λ≤ μ. By assumption, λ � μ.
'erefore, μ is an L-fuzzy minimal prime ideal of A.

(4) (4)⇒(1): suppose that every L-fuzzy prime ideal of
A is an L-fuzzy minimal prime ideal of A. Let
μ≠ λ ∈ FLspec(A). 'at is, μ and λ are distinct
L-fuzzy prime ideals of A. 'en, either μ≰λ or λ≰μ.
Suppose that μ≰λ. 'en, there exists χ a{ } ∈ μ such
that χ a{ }≰λ. 'en, λ ∈ X(a) and μ ∉ X(a). Also, each
X(a) is open set containing λ but not μ. On the other
hand, if λ≰μ, then there exists an open set containing
μ but not λ. Hence, a ∈ μ1 and a ∉ λ1. By the
minimality of μ1, there exists b ∉ μ1 such that
a∧ b � 0. 'erefore, X(a)∩X(b) � X(a∧ b) � ∅.
Hence, FLspec(A) is a Hausdorff space. □

Theorem 26. Let A and B be ADLs and let p: A⟶ B be a
lattice homomorphism. Define g: FLspec(B)⟶ FLspec(A)

by g(λ) � p− 1(λ), for each λ ∈ FLspec(B). (en, (1) g is
continuous mapping. (2) If p is onto, then g is one-to-one.

Proof. Clearly g is a well-defined map.

(1) Let h(χ t{ }) be any basic closed set in FLspec(A) and
t ∈ A. 'en,

g
− 1

h χ t{ }􏼐 􏼑􏼐 􏼑 � λ ∈ FLspec(B)|g(λ) ∈ h χ t{ }􏼐 􏼑􏽮 􏽯

� λ ∈ FLspec(B)|χ t{ } ≤g(λ)􏽮 􏽯

� λ ∈ FLspec(B)|g(λ)(t) � 1􏼈 􏼉

� λ ∈ FLspec(B)|p
− 1

(λ)(t) � 1􏽮 􏽯

� λ ∈ FLspec(B)|λ(p(t)) � 1􏼈 􏼉

� λ ∈ FLspec(B)|χ p(t){ } ≤ λ􏼚 􏼛

� h χ p(t){ }􏼒 􏼓.

(43)

'erefore, inverse image under g of any basic open
set in FLspec(A) is a closed set in FLspec(B) and
hence g is continuous.

(2) Let p be onto and λ, μ ∈ FLspec(B) such that
g(λ) � g(μ). 'en, for each a ∈ A,

g(λ)(a) � g(μ)(a)

⇒p
− 1

(λ)(a) � p
− 1

(μ)(a)

⇒λ(p(a)) � μ(p(a))

⇒λ � μ.

(44)

'erefore, g is a one-to-one map. □

Theorem 27. Let p: A⟶ B be an isomorphism. (en, the
space FLspec(A) is homeomorphic with the space FLspec(B).
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Proof. Let p: A⟶ B be an isomorphism. Define the
function g: FLspec(B)⟶ FLspec(A) by g(μ) � p− 1(μ),
for each μ ∈ FLspec(B), and f: FLspec(A)⟶ FLspec(B)

by f(λ) � p(λ), for each λ ∈ FLspec(A). 'en, g and f are
well defined and inverse of each other (by 'eorems 8 and
9). 'us, by the above theorem, f and g are continuous.
'erefore, FLspec(A) and FLspec(B) are homeomorphisms
(by Definition 12). □
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