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In this work, the purpose is to discuss the homotopy analysis method (HAM) for the use of intuitionistic fuzzy differential
equations with the linear differential operator. Furthermore, a numerical example is presented to shed light on the capability of the
present method, and the numerical results illustrated by adopting the homotopy perturbation method (HPM) are compared with
the exact solution to ensure the validity of our outcomes.

1. Introduction

Intuitionistic fuzzy sets theory plays a major key role in
different domains such as industry, audiovisual systems,
robotics, the control of complex processes, the transmis-
sion of energy in a material medium in various forms, and
the evolution of certain populations and organisms. ,e
notion of intuitionistic fuzzy theory (IFT) was first men-
tioned by Atanassov [1–3] as a generalization of Zadeh’s
fuzzy sets [4]. ,e concept of the intuitionistic fuzzy metric
space was introduced by Melliani et al. [5]. ,e authors in
[6] constructed the existence and uniqueness theorem of a
solution to the nonlocal intuitionistic fuzzy differential
equation. ,e study of numerical methods for solving
intuitionistic fuzzy differential equations has been rapidly
growing in recent years. It is difficult to obtain exact so-
lutions for intuitionistic fuzzy DEs, and hence, some nu-
merical methods presented in [7–11]. In [12–14], the
authors gave a thorough and systematic introduction to the
latest research achievement on the theories of interval-
valued intuitionistic fuzzy sets and their applications to
multiattribute group decision-making (MAGDM). Also,
some arithmetic aggregation operators for the triangular
Atanassov intuitionistic fuzzy number (TAIFN) are defined

in [15]. ,e first publication on intuitionistic fuzzy partial
differential equations was [23].

In this paper, we well resolve the intuitionistic fuzzy dif-
ferential equation using an analytical method called homotopy
analysis method (HAM).,is approach was first set by Liao in
1992 [18, 19]. Numerous authors used this method to resolve
different linear and nonlinear differential equations for the
benefit of many practical use cases in scientific and engineering
problems [19–23], and the homotopy analysis method rapidly
converges in many linear and nonlinear problems. ,e prin-
cipal benefit of the homotopy analysis method (HAM) is the
applicability to give an approximate and exact solution to linear
and nonlinear problems, without the necessity of discretization
and linearization as in the numerical methods.,e structure of
this paper is organized as follows.

After discussing the motivation behind this research in
the introduction section, Section 2 is intended to give the
basic notion of intuitionistic fuzzy sets (IFS) and intui-
tionistic fuzzy numbers (IFN). Section 3 is dedicated to
present some basic notions about the homotopymethod. For
the sake of clarity, the homotopy perturbation method for
the use of resolving the intuitionistic fuzzy differential
equations with the linear differential operator is presented.
In Section 4, we give an example to illustrate the capability
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and flexibility of the proposed method, and finally, con-
clusion is given in Section 5.

2. Preliminaries

In this section, we present the necessary definitions and
notations that will be used in this work as follows.

2.1. Intuitionistic Fuzzy Sets. An intuitionistic fuzzy set
A ∈ X is given by

A � x, κA(x),ωA(x)( 􏼁|x ∈ X􏼈 􏼉, (1)

where the function κA(x),ωA(x): X⟶ [0, 1] defines, re-
spectively, the degree of membership and degree of non-
membership of the element x ∈ X to set A, which is a subset
of X, which satisfies for every x ∈ X, 0≤ κ(x) + ω(x)≤ 1.

For the sake of clarity, every fuzzy set has the form

x, κA(x), κAc (x)( 􏼁|x ∈ X􏼈 􏼉. (2)

For each intuitionistic fuzzy set A ∈ X, we will call

πA(x) � 1 − κA(x) − ωA(x). (3)

,e intuitionistic fuzzy index of x ∈ A verifies that
0≤ πA(x)≤ 1.

2.2. Intuitionistic FuzzyNumbers. An element 〈κ,ω〉 of F1 is
said to be an intuitionistic fuzzy number if it satisfies the
following conditions:

(i) 〈κ,ω〉 is normal, i.e., there exist x0, x1 ∈ R such that
κ(x0) � 1 and ω(x1) � 1

(ii) ,e membership function κ is fuzzy convex, i.e.,
κ(ηx1 + (1 − η)x2)≥min(κ(x1), κ(x2))

(iii) ,e nonmembership function ω is fuzzy concave,
i.e., ω(ηx1 + (1 − η)x2)≤max(ω(x1),ω(x2))

(iv) κ is upper semicontinuous, and ω is lower
semicontinuous

(v) Supp〈κ,ω〉 � cl x ∈ R: |ω(x)< 1{ } is bounded

So, we denote the collection of all intuitionistic fuzzy
numbers by F 1.

For α ∈ [0, 1] and 〈κ,ω〉 ∈ F1, the upper and lower
α-cuts of 〈κ,ω〉 are defined by

[〈κ,ω〉]
α

� x ∈ R: ω(x)≤ 1 − α{ },

[〈κ,ω〉]α � x ∈ R: κ(x)≥ α{ }.
(4)

Remark 1. If 〈κ,ω〉 ∈ F1, we can see [〈κ,ω〉]α as [κ]α and
[〈κ,ω〉]α as [1 − ω]α in the fuzzy case.

We define 0(1,0) ∈ F1 as

0(1,0)(t) �
(1, 0), t � 0,

(0, 1), t≠ 0.
􏼨 (5)

Let 〈κ,ω〉, 〈κ′,ω′〉 ∈ F1 and η ∈ R; we define the fol-
lowing operations by

〈κ,ω〉⊕〈κ′,ω′〉( 􏼁(z) � sup
z�x+y

min κ(x), κ′(y)( 􏼁, inf
z�x+y

max ω(x),ω′(y)( 􏼁,

η〈κ,ω〉 �
〈ηκ, ηω〉 if η≠ 0,

0(1,0) if η � 0.

⎧⎨

⎩

(6)

For 〈κ,ω〉, 〈χ,Ψ〉 ∈ F1 and η ∈ R, the addition and
scalar multiplication are defined as follows:

[〈κ,ω〉⊕〈χ,Ψ〉]
α

� [〈κ,ω〉]
α

+[〈χ,Ψ〉]
α
,

[η〈χ,Ψ〉]
α

� η[〈χ,Ψ〉]
α
,

[〈κ,ω〉⊕〈χ,Ψ〉]α � [〈κ,ω〉]α +[〈χ,Ψ〉]α,

[η〈χ,Ψ〉]α � η[〈χ,Ψ〉]α.

(7)

Definition 1. Let 〈κ,ω〉 be an element of F1 and α ∈ [0.1];
we define the following sets:

[〈κ,ω〉]
+
l (α) � inf x ∈ R|κ(x)≥ α{ },

[〈κ,ω〉]
+
r (α) � sup x ∈ R|κ(x)≥ α{ }[〈κ,ω〉]

−
l (α) � inf x ∈ R|ω(x)≤ 1 − α{ },

[〈κ,ω〉]
−
r (α) � sup x ∈ R|ω(x)≤ 1 − α{ }.

(8)

Remark 2. [〈κ,ω〉]α � [[〈κ,ω〉]+
l (α), [〈κ,ω〉]+

r (α)] and
[〈κ,ω〉]α � [[〈κ,ω〉]−

l (α), [〈κ,ω〉]−
r (α)].

Proposition 1. For all α, β ∈ [0, 1] and 〈κ,ω〉 ∈ F1,

(i) [〈κ,ω〉]α ⊂ [〈κ,ω〉]α
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(ii) [〈κ,ω〉]α and [〈κ,ω〉]α are nonempty compact
convex sets in R

(iii) If α≤ β, then [〈κ,ω〉]β ⊂ [〈κ,ω〉]α and
[〈κ,ω〉]β ⊂ [〈κ,ω〉]α

(iv) If αn↗α, then [〈κ,ω〉]α � ∩ n[〈κ,ω〉]αn
and

[〈κ,ω〉]α � ∩ n[〈κ,ω〉]αn

Let H be any set and α ∈ [0, 1]; we denote by

Hα � x ∈ R: κ(x)≥ α{ },

H
α

� x ∈ R: ω(x)≤ 1 − α{ }.
(9)

Lemma 1. Let Hα, α ∈ [0, 1]􏼈 􏼉 and Hα, α ∈ [0, 1]{ } be two
families ofR satisfying (i)–(iv) in Proposition 1; if κ and ω are
defined by

κ(x) �
0, if x ∉ H0,

sup α ∈ [0, 1]: x ∈ Hα􏼈 􏼉, if x ∈ H0,
􏼨

ω(x) �
1, if x ∉ H0,

1 − sup α ∈ [0, 1]: x ∈ H
α

􏼈 􏼉, if x ∈ H0,
􏼨

(10)

then 〈κ,ω〉 ∈ F1.

Lemma 2. A mapping d: F1 × F1⟶ R is said to be an
intuitionistic fuzzy metric on F1 if it satisfies the following
conditions:

(1) d(〈κ1,ω1〉, 〈κ2,ω2〉)≥ 0, ∀〈κ1,ω1〉, 〈κ2,ω2〉 ∈ F1

(2) d(〈κ1,ω1〉, 〈κ2,ω2〉) � 0 iff 〈κ1,ω1〉 � 〈κ2,ω2〉

(3) d(〈κ1,ω1〉, 〈κ2,ω2〉) � d(〈κ2,ω2〉, 〈κ1,ω1〉)∀
〈κ1,ω1〉, 〈κ2,ω2〉 ∈ F1

(4) d(〈κ1,ω1〉, 〈κ3,ω3〉)≤ d(〈κ1,ω1〉, 〈κ2,ω2〉) +

d(〈κ2,ω2〉, 〈κ3, ω3〉), ∀〈κ1, ω1〉, 〈κ2,ω2〉, 〈κ3,ω3〉

On the space F1, we will consider the following metric:

d∞(〈κ,ω〉, 〈χ,Ψ〉) �
1
4

sup
0<α≤1

〈κ,ω〉
+
r (α) − 〈χ,Ψ〉

+
r (α)

����
����

+
1
4

sup
0<α≤1

〈κ,ω〉
+
l (α) − 〈χ,Ψ〉

+
l (α)

����
����

+
1
4

sup
0<α≤1

〈κ,ω〉
−
r (α) − 〈χ,Ψ〉

−
r (α)

����
����

+
1
4

sup
0<α≤1

〈κ,ω〉
−
l (α) − 〈χ,Ψ〉

−
l (α)

����
����,

(11)

where ‖ · ‖ denotes the usual Euclidean norm in Rn.

Proposition 2 (see [24]). (F 1, dp) is a metric space.

Definition 2. ,e generalized Hukuhara difference of two
fuzzy numbers 〈κ,ω〉, 〈κ′,ω′〉 ∈ F1 is defined as follows:

〈κ,ω〉⊖gH〈κ′,ω′〉 � 〈Ψ, χ〉

⇔
〈κ,ω〉 �〈κ′,ω′〉 +〈Ψ, χ〉

or 〈κ′,ω′〉 � 〈κ,ω〉 +(− 1)〈Ψ, χ〉.

⎧⎨

⎩

(12)

Definition 3 (see [25]). Let F: (a, b)⟶W1 and
x0 ∈ (a, b). It is said that F is strongly generalized differ-
entiable on x0 if ∃F′

+
(x0), ∃F′

−
(x0) ∈ E1 such that

(i) For all h> 0 sufficiently small,
∃F+(x0 + h) − F+(x0), F+(x0) − F+(x0 − h), and
the limits (in metric D).

lim
h⟶0

F
+

x0 + h( 􏼁 − F
+

x0( 􏼁

h
� lim

h⟶0

F
+

x0( 􏼁 − F
+

x0 − h( 􏼁

h
� F′

+
x0( 􏼁, (13)

or (ii) For all h> 0 sufficiently small,
∃F+(x0) − F+(x0 + h), F+(x0 − h) − F+(x0), and
the limits

lim
h⟶0

F
+

x0( 􏼁 − F
+

x0 + h( 􏼁

− h
� lim

h⟶0

F
+

x0 − h( 􏼁 − F
+

x0( 􏼁

− h
� F′

+
x0( 􏼁, (14)

or (iii) For all h> 0 sufficiently small, ∃F+(x0
+h) − F+(x0), F+(x0 − h) − F+(x0), and the limits

lim
h⟶0

F
+

x0( 􏼁 − F
+

x0 − h( 􏼁

h
� lim

h⟶0

F
+

x0 − h( 􏼁 − F
+

x0( 􏼁

− h
� F′

+
x0( 􏼁. (15)
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(iv) For all h> 0 sufficiently small,
∃F+(x0) − F+(x0 + h), F+(x0) − F+(x0 − h), and
the limits

lim
h⟶0

F
+

x0( 􏼁 − F
+

x0 + h( 􏼁

− h
�

F
+

x0( 􏼁 − F
+

x0 − h( 􏼁

− h
� F′

+
x0( 􏼁.

(16)

3. Homotopy Analysis Method

In this section, we are interested to resolve the partial dif-
ferential equations with the intuitionistic fuzzy approach by

adopting the homotopy analysis method. ,erefore, we
describe the basic idea of the homotopy analysis method by
considering the following differential equation.

We consider the following differential equation:

N[ϕ(x, t)] � f(x, t), (17)

where ϕ is an unknown intuitionistic fuzzy function, N is an
intuitionistic fuzzy linear or nonlinear differential operator,
and f(x, t) is an intuitionistic fuzzy function.

Here,

ϕα,β(x, t) �〈ϕα(x, t), ϕβ(x, t)〉

�〈 ϕαl(x, t), ϕαr(x, t)􏼂 􏼃, ϕβl(x, t), ϕβr(x, t)􏽨 􏽩〉,

Nα,β(x, t) � N x, t, 〈 ϕαl(x, t, α), ϕαr(x, t, α)􏼂 􏼃, ϕβl(x, t, β), ϕβr(x, t, β)􏽨 􏽩〉􏼐 􏼑

�〈 Nαl x, t,ϕαl, ϕαr( 􏼁􏼂 􏼃, Nαr x, t,ϕαl, ϕαr( 􏼁􏼂 􏼃, Nβl x, t, ϕβl,ϕβr􏼐 􏼑􏽨 􏽩, Nβr x, t,ϕβl, ϕβr􏼐 􏼑􏽨 􏽩〉,

fα,β(x, t) �〈fα(x, t), fβ(x, t)〉

�〈 fαl(x, t), fαr(x, t)􏼂 􏼃, fβl(x, t), fβr(x, t)􏽨 􏽩〉.

(18)

Now, from (17), we get

N x, t, 〈 ϕαl(x, t, α), ϕαr(x, t, α)􏼂 􏼃, ϕβl(x, t, β), ϕβr(x, t, β)􏽨 􏽩〉􏼐 􏼑

�〈 fαl(x, t), fαr(x, t)􏼂 􏼃, fβl(x, t), fβr(x, t)􏽨 􏽩〉.
(19)

,erefore,

N x, t, ϕαl(x, t, α), ϕαr(x, t, α)􏼂 􏼃( 􏼁 � fαl(x, t), fαr(x, t)􏼂 􏼃,

N x, t, ϕβl(x, t, β), ϕβr(x, t, β)􏽨 􏽩􏼐 􏼑 � fβl(x, t), fβr(x, t)􏽨 􏽩.
(20)

In order to generalize the traditional method of
homotopy, we will treat the original differential equation for

the objective to construct a family of zero-order deformation
equations as follows:

(1 − q)Γ ϕαl(x, t, q) − uαl0(x, t)( 􏼁 � CH(x, t)qN ϕαl(x, t; q)( 􏼁, (21)

(1 − q)Γ ϕαr(x, t, q) − uαr0(x, t)( 􏼁 � CH(x, t)qN ϕαr(x, t; q)( 􏼁, (22)

(1 − q)Γ ϕβl(x, t, q) − uβl0(x, t)􏼐 􏼑 � CH(x, t)qN ϕβl(x, t; q)􏼐 􏼑, (23)

(1 − q)Γ ϕβr(x, t, q) − uβr0(x, t)􏼐 􏼑 � CH(x, t)qN ϕβr(x, t; q)􏼐 􏼑. (24)
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,e last equations are called the zero-order deformation
equations whose solutions vary continuously with respect to
the parameter q ∈ [0, 1], where q is the deformation pa-
rameter, C is the nonzero convergence control parameter, Γ
is the linear operator, H(x) is the nonzero auxiliary func-
tion, and u0(x) is the initial approximation of the desired
solution.

It is well known that if q� 0, then
Γ(ϕαβ(x, t, 0) − uαβ,0(x, t)) � 0 since Γ is linear; therefore,
ϕα,β(x, t, 0) � uαβ0(x, t); this is the initial condition of the
problem N[ϕ(x, t)] � f(x, t).

And if q� 1, then CH(x, t)N(ϕα,β(x, t, 1)) � 0 since
C≠ 0 and H(x, t)≠ 0; thus, N(ϕα,β(x, t, 1)) � 0 such that
ϕα,β(x, t, 1) is a solution of the problem
N[ϕα,β(x, t)] � fα,β(x, t).

As q increases from 0 to 1, the solution ϕα,β(x, t, q) will
vary from the initial condition uαβ,0(x, t) to the solution
uαβ(x, t).

Using Taylor’s development for ϕα,β(x, q) with respect to
q, we have

ϕα,β(x, t, q) � uα,β0(x, t) + 􏽘
∞

m�1
uα,βm(x, t)q

m
, (25)

where

uα,βm(x, t) �
1

m!

zmϕα,β

zqm
(x, t, q)|q�0, (26)

and when the linear operator, the initial approximation, the
auxiliary function, and the convergence control parameter
are well selected, therefore, (21)–(24) converge for q� 1 and

ϕα,β(x, t, q) � uα,β0(x, t) + 􏽘
∞

m�1
uα,βm(x, t). (27)

For H(x, t) � 1 and C � − 1, equations (21)–(24) turn
into

(1 − q)Γ ϕαl
(x, t, q) − u0(x)􏼐 􏼑 + qN ϕαl

(x, t, q)􏼐 􏼑 � 0,

(1 − q)Γ ϕαr
(x, t, q) − u0(x)􏼐 􏼑 + qN ϕαr

(x, t, q)􏼐 􏼑 � 0,

(1 − q)Γ ϕβl
(x, t, q) − u0(x)􏼐 􏼑 + qN ϕβl

(x, t, q)􏼐 􏼑 � 0,

(1 − q)Γ ϕβr
(x, t, q) − u0(x)􏼐 􏼑 + qN ϕβr

(x, t, q)􏼐 􏼑 � 0,

(28)

which are mainly used in the homotopy perturbation
method (HPM), proving that this method is a special case of
the homotopy analysis method (HAM).

Differentiating equations (21)–(24)m times with respect
to the integrated parameter q, then setting q� 0, and finally
dividing them by m!, we have the mth order of deformation
equations:

Γ uαlm
(x, t) − χmuαlm− 1(x, t)􏽨 􏽩 � CH(x, t)Rm u

→
αlm− 1􏼐 􏼑,

(29)

Γ uαrm(x, t) − χmuαrm− 1(x, t)􏽨 􏽩 � CH(x, t)Rm u
→

αrm− 1􏼐 􏼑,

(30)

Γ uβlm
(x, t) − χmuβlm− 1(x, t)􏽨 􏽩 � CH(x, t)Rm u

→
βlm− 1􏼐 􏼑,

(31)

Γ uβrm(x, t) − χmuβrm− 1(x, t)􏽨 􏽩 � CH(x, t)Rm u
→

βrm− 1􏼐 􏼑,

(32)

where

χm �
0, m≤ 1,

1, m> 1,

⎧⎪⎨

⎪⎩
(33)

Rm u
→

αlm− 1􏼐 􏼑 �
1

m − 1
zm− 1

zqm− 1 N ϕαl
(x, t, q)􏽨 􏽩|q�0,

Rm u
→

αrm− 1􏼐 􏼑 �
1

m − 1
zm− 1

zqm− 1 N ϕαr
(x, t, q)􏽨 􏽩|q�0,

Rm u
→

βlm− 1􏼐 􏼑 �
1

m − 1
zm− 1

zqm− 1 N ϕβl
(x, t, q)􏽨 􏽩|q�0,

Rm u
→

βrm− 1􏼐 􏼑 �
1

m − 1
zm− 1

zqm− 1 N ϕβr
(x, t, q)􏽨 􏽩|q�0.

(34)

Theorem 1. Ae series ϕα,β(x, t) � 􏽐
∞
m�0 uα,βm(x, t) converge

to uα,β(x, t) or uα,βm(x, t) which is ruled by high-order de-
formation equations (29)–(32) with definitions (33) and (34),
and it must be the exact solution of equation (17).

Proof. Liao [18]. □

4. Numerical Application

Let us consider the fuzzy intuitionistic equation of the
following form:

du

dt
−
d2u
dx

2 � ae
x
, (35)

where a � 〈(− 1, 0, 1), (− 1, 0, 2)〉, i.e.,
aα,β � 〈[α − 1, 1 − α][− β, 2β]〉 with initial conditions

uα,β(0) � 〈[1 + α, 3 − α][2 − 2β, 2 + 2β]〉,

uα,β′(0) � 〈[α, 2 − α][1 − 2β, 1 + β]〉.
(36)

,e exact solution, given by the classical solution
method, is

uαl
(x, t, α) � (2 − t)e

t
+(α − 1)te

− t
+(α − 1)􏽨 􏽩e

x
,

uαr
(x, t, α) � (2 − t)e

t
− (α − 1)te

− t
− (α − 1)􏽨 􏽩e

x
,

uβl
(x, t, α) �

1
2

(4 − β − 2t)e
t

− (β + 2βt)e
− t

− β􏼔 􏼕e
x
,

uβr
(x, t, α) �

1
2

(4 − β − 2t)e
t

+(β + 2βt)e
− t

+ 2β􏼔 􏼕e
x
.

(37)
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According to the homotopy analysis method (HPM), we
are looking for ϕ(x, t, q) that has the form

ϕα,β(x, t, q) � 􏽘
m≥ 0

uα,βm
(x, t)q

m
. (38)

,us, according to the deformation equations of order
m, (29)–(32), with

Rm− 1 u
→

αlm− 1􏼐 􏼑 � utm− 1
− uxxm− 1

− (α − 1)e
x
,

Rm− 1 u
→

αrm− 1􏼐 􏼑 � utm− 1
− uxxm− 1

+(α − 1)e
x
,

Rm u
→

βlm− 1􏼐 􏼑 � utm− 1
− uxxm− 1

+ βe
x
,

Rm u
→

βrm− 1􏼐 􏼑 � utm− 1
− uxxm− 1

− 2βe
x
,

(39)

we find that

Γ uαlm
(x, t) − χmuαlm− 1(x, t)􏽨 􏽩 � CH(x, t) utm− 1

− uxxm− 1
− (α − 1)e

x
􏽨 􏽩,

Γ uαrm(x, t) − χmuαrm− 1(x, t)􏽨 􏽩 � CH(x, t) utm− 1
− uxxm− 1

+(α − 1)e
x

􏽨 􏽩,

Γ uβlm
(x, t) − χmuβlm− 1(x, t)􏽨 􏽩 � CH(x, t) utm− 1

− uxxm− 1
+ βe

x
􏽨 􏽩,

Γ uβrm(x, t) − χmuβrm− 1(x, t)􏽨 􏽩 � CH(x, t) utm− 1
− uxxm− 1

− 2βe
x

􏽨 􏽩.

(40)

If we take C � − 1 and H(x, t) � 1, we have

uαlm
(x, t) − χmuαlm− 1(x, t) � − Γ− 1

utm− 1
− uxxm− 1

− (α − 1)e
x

􏽨 􏽩,

uαrm(x, t) − χmuαrm− 1(x, t) � − Γ− 1
utm− 1

− uxxm− 1
+(α − 1)e

x
􏽨 􏽩,

uβlm
(x, t) − χmuβlm− 1(x, t) � − Γ− 1

utm− 1
− uxxm− 1

+ βe
x

􏽨 􏽩,

uβrm(x, t) − χmuβrm− 1(x, t) � − Γ− 1
utm− 1

− uxxm− 1
− 2βe

x
􏽨 􏽩,

(41)

and we choose the operator Γ � (d/dt), then
Γ− 1(∗ ) � 􏽒 (∗ )dt, and by using the initial values, we get

(i) uαlm
(x, t).

For m� 1,

uαl1(x, t) � − Γ− 1
uαlt0

− uαlxx0
− (α − 1)e

x
􏽨 􏽩 + χ1uαl0(x, t)

� − Γ− 1
− (1 + α)e

x
− (α − 1)e

x
􏼂 􏼃

� − Γ− 1
− 2αe

x
􏼂 􏼃 � 2αte

x
.

(42)

For m� 2,

uαl2(x, t) � − Γ− 1
uαlt1

− uαlxx1
− (α − 1)e

x
􏽨 􏽩 + χ2uαl1(x, t)

� − Γ− 1 2αe
x

− 2αte
x

− αe
x

+ e
x

􏼂 􏼃 + 2αte
x

� − Γ− 1
(α + 1)e

x
− 2αte

x
􏼂 􏼃 + 2αte

x

� (α − 1)te
x

+ αt
2
e

x
.

(43)

For m� 3,

uαl3(x, t) � − Γ− 1
uαlt2

− uαlxx2
− (α − 1)e

x
􏽨 􏽩 + χ3uαl2(x, t)

� − Γ− 1
(α − 1)e

x
+ 2αte

x
− (α − 1)te

x
− αt

2
e

x
− (α − 1)e

x
􏽨 􏽩 +(α − 1)te

x
+ αt

2
e

x

� − Γ− 1
(α + 1)te

x
− αt

2
e

x
􏽨 􏽩 +(α − 1)te

x
+ αt

2
e

x

� (α − 1)te
x

+(α + 1)
t
2

2
e

x
+ α

t
3

3
e

x
.

(44)
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For m� 4,

uαl4(x, t) � − Γ− 1
uαlt3

− uαlxx3
− (α − 1)e

x
􏽨 􏽩 + χ4uαl3(x, t)

� − Γ− 1 αt
2
e

x
+(α + 1)te

x
+(α − 1)e

x
− (α − 1)te

x
− (α + 1)

t
2

2
e

x
− α

t
3

3
e

x
− (α − 1)e

x
􏼢 􏼣

+(α − 1)te
x

+(α + 1)
t
2

2
e

x
+ α

t
3

3
e

x

� − Γ− 1
− α

t
3

3
e

x
+(α − 1)

t
2

2
e

x
+ 2te

x
􏼢 􏼣 +(α − 1)te

x
+(α + 1)

t
2

2
e

x
+ α

t
3

3
e

x

� (α − 1)te
x

+(α − 1)
t
2

2!
e

x
+(α + 1)

t
3

3!
e

x
+ 2α

t
4

4!
.

(45)

After five iterations, we get

uαl0(x, t) + uαl1(x, t) + uαl2(x, t) + uαl3(x, t) + uαl4(x, t)

� (α + 1)e
x

+(5α − 3)te
x

+ 4α
t
2

2!
e

x
+(3α + 1)

t
3

3!
e

x
+ 2α

t
4

4!
.

(46)

(ii) uαrm(x, t).
For m� 1,

uαr1(x, t) � − Γ− 1
ut0

− uxx0
− (1 − α)e

x
􏽨 􏽩 + χ1uαr0(x, t)

� − Γ− 1
− (3 − α)e

x
− (1 − α)e

x
􏼂 􏼃

� − Γ− 1
− 4e

x
+ 2αe

x
􏼂 􏼃 � (4 − 2α)te

x
.

(47)

For m� 2,

uαr2(x, t) � − Γ− 1
ut1

− uxx1
− (1 − α)e

x
􏽨 􏽩 + χ2uαr1(x, t)

� − Γ− 1
(4 − 2α)e

x
− (4 − 2α)te

x
− (1 − α)e

x
􏼂 􏼃

+(4 − 2α)te
x

� − Γ− 1
(3 − α)e

x
− 2(2 − α)te

x
􏼂 􏼃 +(4 − 2α)te

x

� (1 − α)te
x

+(2 − α)t
2
e

x
.

(48)

For m� 3,

uαr3(x, t) � − Γ− 1
ut2

− uxx2
− (1 − α)e

x
􏽨 􏽩 + χ3uαr2(x, t)

� − Γ− 1
(1 − α)e

x
+ 2(2 − α)te

x
− (1 − α)te

x
− (2 − α)t

2
e

x
− (1 − α)e

x
􏽨 􏽩 +(1 − α)te

x
+(2 − α)t

2
e

x

� − Γ− 1
− (2 − α)t

2
e

x
+(3 − α)te

x
􏽨 􏽩 +(1 − α)te

x
+(2 − α)t

2
e

x

� (1 − α)te
x

+(7 − 3α)
t
2

2
e

x
+(2 − α)

t
3

3
e

x
.

(49)

For m� 4,
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uαr4(x, t) � − Γ− 1
ut3

− uxx3
− (1 − α)e

x
􏽨 􏽩 + χ4uαr3(x, t)

� − Γ− 1
(1 − α)e

x
+(7 − 3α)te

x
+(2 − α)t

2
e

x
− (1 − α)te

x
− (7 − 3α)

t
2

2
e

x
− (2 − α)

t
3

3
e

x
− (1 − α)e

x
􏼢 􏼣

+(1 − α)te
x

+(7 − 3α)
t
2

2
e

x
+(2 − α)

t
3

3
e

x

� − Γ− 1
(2 − α)

t
3

3
e

x
+(α − 3)

t
2

2
e

x
+(6 − 2α)te

x
􏼢 􏼣 +(1 − α)te

x
+(7 − 3α)

t
2

2
e

x
+(2 − α)

t
3

3
e

x

� (1 − α)te
x

+(13 − 5α)
t
2

2
e

x
+(7 − 3α)

t
3

3!
e

x
+(2 − α)

t
4

4!
e

x
.

(50)

After five iterations, we get

uαr0(x, t) + uαr1(x, t) + uαr2(x, t) + uαr3(x, t) + uαl4(x, t)

� (3 − α)e
x

+(7 − 5α)te
x

+(24 − 10α)
t
2

2
e

x
+(11 − 5α)

t
3

3!
e

x
+ 2(2 − α)

t
4

4!
e

x
.

(51)

In the same way for uβlm
(x, t) and uβrm(x, t), we find that

uβl1(x, t) � (2 − 3β)te
x
,

uβl2(x, t) � − βte
x

+(2 − 3β)
t
2

2
e

x
,

uβl3(x, t) � − βte
x

− β
t
2

2
e

x
+(2 − 3β)

t
3

3!
e

x
,

uβl4(x, t) � − βte
x

− β
t
2

2
e

x
+(4 − 5β)

t
3

3!
e

x
+(2 − 3β)

t
4

4!
e

x
,

and

uβr1(x, t) � (2 + 4β)te
x
,

uβr2(x, t) � 2βte
x

+(2 + 4β)
t
2

2
e

x
,

uβr3(x, t) � 2βte
x

+ βt
2
e

x
+(2 + 4β)

t
3

3!
e

x
,

uβr4(x, t) � 2βte
x

+ 2β
t
2

2
e

x
+ 2β

t
3

3!
e

x
− (2 + 4β)

t
4

4!
e

x
,

(52)

so after five iterations, we get

uβr1(x, t) + uβr2(x, t) + uβr3(x, t) + uβr4(x, t)

� (2 + 2β)e
x

+(2 + 10β)te
x

+(2 + 8β)
t
2

2
e

x
+(2 + 6β)

t
3

3!
e

x
− (2 + 4β)

t
4

4!
e

x
.

(53)
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To ensure the validity of the present model, we illustrate
in Figures 1 and 2 the comparison of the numerical solutions
with the exact ones for the membership and nonmember-
ship functions at t� 1 and m� 4 for α ∈ [0, 1]; we have
calculated all the data by using MATLAB.

From the figures, we can see that the results of the
homotopy perturbation method (HPM) are close to the
exact solution which confirms the validity of our method.

5. Conclusion

In this work, we have presented the procedure for simu-
lating and computing an approximate solution for intui-
tionistic fuzzy differential equations with the linear
differential operator by using the homotopy analysis
method, which can also be used to solve some linear and
nonlinear problems that cannot be solved by classical
methods. Moreover, in the homotopy analysis method, we
can choose h appropriately to ensure the convergence of the
series solution for highly nonlinear problems. ,e basic
ideas of this approach should be used to solve other
intuitionistic fuzzy problems in many practical domains
such as fluid mechanics.
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