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.is study demonstrates an incident detection algorithm that uses the meteorological and traffic parameters for improving the
poor performance of the automatic incident detection (AID) algorithms under extreme weather conditions and for efficiently
using the meteorological devices on advanced freeways. .is algorithm comprises an incident detection module that is based on
learning vector quantization (LVQ) and a meteorological influencing factor module. Field data are obtained from the Yuwu
freeway in Chongqing, China, to verify the algorithm. Further, the performance of this algorithm is evaluated using commonly
used criteria such as mean time to detection (MTTD), false alarm rate (FAR), and detection rate (DR). Initially, an experiment is
conducted for selecting the algorithm architecture that yields the optimal detection performance. Additionally, a comparative
experiment is performed using the California algorithm, exponential smoothing algorithm, standard normal deviation algorithm,
andMcMaster algorithm..e experimental results demonstrate that the algorithm proposed in this study is characterized by high
DR, low FAR, and considerable suitability for applications in AID.

1. Introduction

.e development of freeways has introduced remarkable
economic and social benefits [1]. However, the number of
freeway incidents has significantly increased with increasing
freeway traffic mileage and network building, resulting in
several traffic problems, including decreased traffic safety,
decreased transportation efficiency, increased environ-
mental pollution, and increased energy consumption.
Freeway incidents must be detected in a timely manner to
avoid serious traffic jams, secondary traffic incidents, and
traffic delays. As a consequence, a variety of AID algorithms
have been developed. Various methods have been adopted in
these AID algorithms to distinguish the traffic flow status
based on the range of variation of the traffic parameters (i.e.,
queue length, speed, and occupancy) obtained from in-
ductive loop detectors, and these methods have been ef-
fective to various degrees in real detection systems. We can
rapidly predict the occurrence of traffic parameters..e AID

algorithms are closely related to the traffic parameters, which
reflect the state of traffic.

However, the traffic parameters exhibit a drastic change
under different weather conditions [2–4]; if such changes are
neglected, the robustness would be poor, the error rates
would be high, and the detection rates would be low, which
are similar to that observed in the existing AID algorithms.
An algorithm that can consider the impact of various
weather conditions on traffic accident detection is used in
this study to solve the problem; further, we develop an al-
gorithm that considers the impact of different weather
conditions on traffic accident detection. .e proposed al-
gorithm presents a novel method for determining the factor
that reflects the relation between the occurrence of traffic
accidents and the weather. Further, the algorithm uses this
factor and various traffic parameters along with the LVQ
neural network to detect the incidents occurring in real time.
.e proposed algorithm exhibits good incident detection
performance even under poor weather conditions, thereby
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overcoming the limitation of the existing detection
algorithms.

Further, the remainder of this paper can be divided into
four sections. Section 2 is a review of previous research on
AID algorithms and presents a broad summary of the al-
gorithms design. In Section 3, the proposed algorithm is
presented by considering the meteorological influencing
factor. Further, the evaluation of the proposed algorithm
using a simulated dataset is Section 4. Subsequently, the
proposed algorithm is compared with the California algo-
rithm to future illustrate its performance. Finally, Section 5
presents an outline for this work in the future along with the
concluding remarks.

2. Literature Review

.e AID methods are mainly classified as direct detection
methods and indirect detection methods [5]. Direct detec-
tion methods mainly perform target tracking and recogni-
tion as well as traffic flow detection using video and image
processing methods. Indirect detection methods detect in-
cidents according to impact on the traffic flow. .e major
technologies of AID methods include data collection, ap-
plicable conditions of various detection algorithms, layout
and optimization setting of traffic detectors (fixed and
mobile), multi-source data fusion rules and alarm systems,
and selection of various event detection technologies. Pre-
viously, algorithms, such as pattern recognition [6] and
statistical prediction [7], were applied for performing in-
cident detection. .ese early AID algorithms were used to
build models based on the theoretical derivation, assump-
tion, and simplification of the relations among and to change
the rules of traffic flow parameters. Over the previous de-
cades, several AID algorithms with advanced techniques [8]
have been tested. .ese include fuzzy logic [9], Bayesian
approaches [10], artificial neural networks [11], partial least
squares regression [12], combinations (fusion) of algorithms
[13, 14], and support vector machine (SVM) [15].

Using various mathematical models, the research on this
topic can be classified into several categories based on the
input data, detection technique, and complexity of detection
logic. For example, advanced data collection technologies
and data fusion methods have been developed for inte-
grating the traffic data to ameliorate the detection perfor-
mance of the AID algorithms. Ricci CP [16] proposed a high-
efficiency method and system for collecting vehicle traffic
data. Faouzi et al. [17] proposed a solution to the problem of
dual-station detector adaptation. However, the majority of
the research efforts have focused on obtaining accurate data
without considering the effects of input data on this algo-
rithm. Further, the application conditions, advantages, and
disadvantages of different detection algorithms are observed
to be different as well. Meanwhile, several scholars have
invested considerable efforts for creating new models or for
improving the original models, which resulted in an increase
of the complexity of these models. .e AID algorithms have
tended to adopt multiple theories for overcoming the de-
ficiency of a single theory, and the structure of the AID
algorithms was transformed from the single-input and

single-output (SISO)module into a unified whole containing
multiple modules, each of which exhibited unique functions.
Wang et al. [18] proposed a mixed method to AID, which
combines machine learning with time-series analysis.
Pucher et al. [19] proposed multimodal monitoring for
performing incident detection based on video and audio
sensors.

In addition, the actual traffic condition on roads cannot
be completely reflected by traffic parameters [20]. Various
factors, such as the road speed limit, traffic detector location,
incident type, and environment, will influence the perfor-
mance of the AID algorithms. During the previous decades,
considerable research effort has been devoted to revealing
the influence of different weather conditions on the oc-
currence of traffic accidents. Hassan and Abdel-Aty et al.
[21] probed the relation between freeway accidents and
visibility using real-time traffic flow data and observed in-
creased rates of traffic flow data and observed increased rates
of traffic incidents to be connected with low visibility. Akin
et al. [22] studied the effects of weather on the traffic flow
characteristic of freeways and concluded that the traffic flow
parameters exhibited different characteristic under different
weather conditions. Although the aforementioned studies
have presented the impact of meteorological factors on
traffic accidents, little effort has been devoted to consider the
meteorological factor in AID algorithms. Lam et al. [23]
proposed an AID algorithm that can be applied on rainy
days and days without rain. Further, they proved that
the traffic conditions may be affected by the traffic speed-
flow-density relations under a variety of rainfall intensities as
well as the key traffic parameter. However, under this ap-
proach, only this effect of rainfall on AID algorithms is
considered further; this approach does not consider all the
meteorological factors.

Based on a review of the literature, we have observed that
[1] the analyses conducted in previous papers are relatively
simple and are performed using the described variables and
that [2] these analyses cannot yield a quantitative value to
reflect the relation between the weather and the frequency of
incident occurrence. Based on the aforementioned obser-
vations, we can conclude that a method is required for
analyzing the relation between the incident frequency and
quantitative meteorological parameters.

Because of the influences of different weather condi-
tions upon the occurrence of traffic incidents, which
usually describe the fuzzy characteristic in an inaccurate
manner, just like great or small, fuzzy logic can handle
them in an effective manner. After dealing with the re-
lation between the meteorological factors and occurrence
of traffic incidents using fuzzy logic, the subsequent task is
to combine meteorological factors with a large number of
traffic parameters for detecting incidents on freeways. .e
LVQ neural network is extensively applied as a key
technique to solve this problem in the data fusion domain,
and this method is considered to be an efficient classifi-
cation method [24, 25]..erefore, we use LVQ to combine
the traffic parameters and meteorological factors for
performing incident detection to improve the perfor-
mance of the AID algorithms.
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.e following two modules are central to the present
study: (1) the incident detection module on the basis of the
LVQ network and (2) the meteorological influential factor
module on the basis of fuzzy logic. Typical meteorological
parameters are adopted in the secondmodule to quantify the
relation between the occurrence of traffic accidents and
weather conditions as a standard value using fuzzy logic.
Rainfall and visibility are selected as the major parameters
for modeling..e incident detectionmodel employs an LVQ
neural network for detecting traffic accidents using the factor
and traffic parameters. .e output of the network is denoted
using binary values (1 denotes the occurrence of incidents,
whereas 0 denotes that no incidents have occurred).

3. Methodology

3.1. Meteorological Influencing the Factor Model Based on
FuzzyLogic. We selected the parameters that are sensitive to
traffic accidents as the model parameters from among a large
set of meteorological factors. Rainfall and visibility were
selected as the representatives of the meteorological factors
in this algorithm. Because the statuses of the meteorological
influencing factors have no definite boundaries, we intro-
duced the fuzzy theory and use fuzzy linguistics to disrupt
the variation of the parameters for reducing the impact of
border environment. .e fuzzy inference routine is a se-
quence of four components: (1) membership functions; (2)
rule base; (3) fuzzy inference procedure; and (4)
defuzzification.

3.1.1. Membership Functions. Two major meteorological
measures are used in this model, including six hours of
rainfall and hourly visibility. On the basis of the relation
between traffic accidents and meteorological parameters, a
suitable incident frequency (IF) per unit time is adopted to
describe the impact of various weather conditions on traffic
accidents, as is denoted as follows:

IF �
number of incidents in thismeasure
number of themeasure occurrences

× 100%. (1)

From Figures 1 and 2, it can be observed that the me-
teorological conditions have evidently influenced the fre-
quency of traffic accidents based on the data obtained from
the Chongqing Expressway Project. It increases with an
increase in the amount of rainfall rise, while visibility de-
teriorates per unit period. To determine the function
members, three different regions were divided, which were
characterized by the influence level for rainfall (R) and
visibility (V); rainfall was classified as large, medium, and
small, whereas visibility was classified as high, medium, and
low. Fuzzy sets were accordingly UR � UR

1 , UR
2 , UR

3􏼈 and
UV � UV

1 , UV
2 , UV

3 }􏼈 , where the universes of discourse were
denoted by uR � [0, rmax] and uV � [0, vmax] (rmax and vmax
denoted the maximum values from history)..e influence of
meteorological measures on the frequency of traffic inci-
dents was divided into three levels, including little, medium,
and great; further, Uα � Uα

1 , Uα
2 , Uα

3}􏼈 .

Based on the linear distribution of visibility and rainfall,
trapezoidal and triangular functions were selected to de-
scribe the fuzzy set. .e method used to compare the field
incident frequency with the incident frequency that is ex-
pected using the fuzzy model may make the fuzzy function
consistent in a real-world situation.

For example, the expected incident frequency under
different rainfall conditions Rfuzzy can be described as
follows:

Rfuzzy � U
J
1W

J
1 + U

J
2W

J
2 + U

J
3W

J
3, (2)

where WJ
1, WJ

2, and WJ
3 denote the average incident fre-

quency in the range UJ
1, UJ

2, and UJ
3, respectively, which

denote small, medium, and large rainfall, respectively.
We can draw different curves of Rfuzzy to adjust the

ranges of UJ
1, UJ

2, and UJ
3 through continuous testing. .e

minimal difference between both the curves is selected for
determining the range of the fuzzy set by comparing the
different Rfuzzy curves with the real incident frequency in
different ranges of rainfall according to Figure 1. According
to the optimal Rfuzzy curves, the value of WJ

1 was 0.29, that of
WJ

2 was 0.37, and that of WJ
3 was 0.46 in this study. .e

method that was used for determining the ranges of UJ
1, UJ

2,
and UJ

3 was used to determine the member function of
visibility. .e member functions of rainfall and visibility are
denoted in Figure 3.

3.1.2. Rule Base. A rule base comprising a set of rules was
used for describing the relation between the inputs (UR and
UV) and output (Uα). A rule base describing the three
conditions of Uα (little, medium, and severe) was con-
structed for future knowledge. As depicted in Figure 4, R
(incident frequency with rainfall every six hours) and V
(incident frequency with hourly visibility) are denoted by X
and Y, respectively; there are nine regions divided by X and
Y, indicating that this rule base contains nine rules. For
instance, when X is small and Y is low, the impact of the
meteorological condition is severe. Using the IF-THEN
form, the inference rules are presented in Table 1.

3.1.3. Fuzzy Inference Procedure. UR and UV denote the
membership functions of the fuzzy sets of rainfall and
visibility, respectively. According to Figure 4,X andY denote
the variables of the fuzzy sets UR and UV, respectively. First,
let the inputs be X � x andY � y. Further, n (ranging from 1
to 4) rules may be selected for a given pair of x and y.
Because the relation between UR and UV can be described as
“and” in the rule base, we used Mamdani reasoning [26] as
the inference methodology for determining each selected
rule. .e degree of membership of the chosen rule can be
constructed as follows:

μ Ai( 􏼁 � min(μ(x), μ(y)), (3)

where μ(Ai) denotes the degree of membership of rule i,
μ(x) denotes the degree of membership of UR, and μ(y)

denotes the degree of membership of UV.
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Figure 2: Plot of hourly visibility versus the incident frequency.
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Figure 1: Plot of six hours of rainfall versus the incident frequency.
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In Table 1, the output of fuzzy set Uα can be described to
possess three consequences, Z1, Z2, and Z3, which denote
little, medium, and severe, respectively. .erefore, the
number of same consequences for all selected rules for
different pairs of x and y is not observed to remain fixed. To
determine the degree of the selected rules with the same
consequence, the max reasoning method is used in this
model, which can be given as follows:

μ Zm( 􏼁 � max μ Ai( 􏼁, μ Aj􏼐 􏼑, . . . , μ Ak( 􏼁􏼐 􏼑, m ∈ [1, 2, 3],

(4)

where Zm denotes the degree of membership of the chosen
rule with the same result, μ(Ai) and μ(Aj) denote the de-
grees of the rules under a particular consequence, and m

denotes the number of possible consequences.

3.1.4. Defuzzification Procedure. In the final process of the
model, a crisp value that reveals the influence of meteoro-
logical conditions on the traffic accident is determined
through the application of the fuzzy result; this value can be
constructed as follows:

α � μ Z1( 􏼁 + μ Z2( 􏼁 + μ Z3( 􏼁, (5)

where α denotes the meteorological influencing factor. .e
meteorological influencing factor that is obtained based on
fuzzy logic is depicted in Figure 5.

3.2. LVQ Neural Network Model. LVQ, introduced by
Kohonen et al. [27], is an effective classification method. As
depicted in Figure 4, an LVQ network comprises the fol-
lowing three layers: the input layer, which contains one node
for each input feature and is fully linked with the Kohonen
layer; the output layer, which presents each class by one
node; and the Kohonen layer, which performs and learns the
classification and with the output layer partially.

.e LVQ algorithm is a combination of supervised
learning and competitive learning. Suppose each weight
vector and the input vector of the first layer to be w and x,
respectively. Further, the Euclidean distance between the
two vectors in the Kohonen layer can be calculated by the
application of the following formula:

‖D(w, x)‖ � 􏽘
N

i�1
wi − xi( 􏼁

⎧⎨

⎩

⎫⎬

⎭

(1/2)

. (6)

As far as competitive learning is concerned, weight wc

vector (where c is the index of it) which is nearest to the
input vector x will be the winning neuron.

xi − wc

����
���� � min xi − w

����
����􏽮 􏽯, (7)

During the process of supervised learning, the classes
compete with each other to find the input vector, which is
the most similar, and the one with the least Euclidean
distance will be declared as the winner. Only the winner will
adopt the reinforced negative or positive learning algorithm

Input layer Kohonen layer Output layer

Figure 4: LVQ structure.

Table 1: Rule base of the meteorological influencing factor model.

Number of rules Rules
1 IFUR isUR

1 andUV isUV
1 ,THENUα isUα

3
2 IFUR isUR

1 andUV isUV
2 ,THENUα isUα

2
3 IFUR isUR

1 andUV isUV
3 ,THENUα isUα

1
4 IFUR isUR

2 andUV isUV
1 ,THENUα isUα

3
5 IFUR isUR

2 andUV isUV
2 ,THENUα isUα

2
6 IFUR isUR

2 andUV isUV
3 ,THENUα isUα

2
7 IFUR isUR

3 andUV isUV
1 ,THENUα isUα

3
8 IFUR isUR

3 andUV isUV
2 ,THENUα isUα

3
9 IFUR isUR

3 andUV isUV
3 ,THENUα isUα

3

Advances in Fuzzy Systems 5



to modify its weight depending on the classification. .us,
the classification is considered to be accurate if the class
becomes similar to the winning input vector. .e weight will
be increased to become more approximate to the input
vector. .e basic learning process can be reflected in the
equation as follows:

wc(t + 1) � wc(t) + η(t) x(t) − wc(t)􏼂 􏼃. (8)

In the above equation, the weight vectors at time t + 1
and t are used to represent wc(t + 1) and wc(t), respectively,
while x(t) and η(t) are used to represent the input vector
and the learning rate, respectively, where 0< η(t)< 1. It is
proposed that η(t) should be considerably small at first, such
as less than 0.1; further, η(t) will continue to decrease in
accordance with the equation that is given as follows:

η(t + 1) � η(t) −
η(0) − μ

N
, (9)

where μ and N represent the specified threshold and the
number of classes, respectively.

Conversely, the differentiation of the class from the input
vector will fail, indicating that the classification is inaccurate.
.e decrease in weight will increase the difference between
the class and the input vector. .e following equation re-
flects the basic learning process:

wc(t + 1) � wc(t) − η(t) x(t) − wc(t)􏼂 􏼃. (10)

3.3. Algorithm Execution. Based on the above models, we
input traffic data, including volume, occupancy, speed
(q, occ, and v, respectively) from upstream and downstream,
and themeteorological influencing factor α calculated above,
into the LVQ neural network. As a binary value, the output
can indicate whether an incident will occur.

.e key to the determination of the traffic accident
detection performance of the proposed algorithm lies in the
number of the Kohonen layers as well as the input layers.
.ree models that have periods distinct from the preceding
period t − n to the current time t of traffic measure both
upstream and downstream as the inputs are designed to find
the appropriate number of the input layers, on the basis of

time period t, from t − 1 to t, from t − 2 to t. For the different
inputs patterns, the range of the Kohonen layer could be
calculated using the following empirical formula based on
the Kolmogorov .eorem 27.

n2 � 2n1 + 1, (11)

where n1 and n2 represent the number of the input layers and
the Kohonen layers, respectively.

.e value should be tested through trial-and-error
around n2, as in Section 4.3 as the above formula can only be
used to recommend a probable optimal number of the
Kohonen layers.

4. Algorithm Performance

4.1. Field Data. Recently, the Chongqing Expressway has
developed a series of projects based on the Internet of things
technologies to improve transportation efficiency and to
enhance traffic safety. In this background, a 2.2 km long
stretch of the double lane Yuwu freeway in Chongqing,
China, which is a main project that begins from K973 + 300
and ends at K975 + 500, was selected. To obtain the traffic
measures, the meteorological conditions are monitored, and
the related data are obtained in real time; further, two
microwave detectors are set up downstream or upstream,
and the meteorological instruments should be installed
along the road.

.is study adopts three datasets as follows: (1) the
traffic measures collected in various weather conditions,
beginning from February in 2014 and ends at the end of
September in the same year using the microwave detectors
installed both upstream and downstream; (2) incident
data (from February 2014 to September 2014) obtained
from the Chongqing Expressway; (3) real-time data ob-
tained from the meteorological instrument closest to the
test road. Because it did not snow in Chongqing, the
snowfall and hail conditions are out of the scope of this
study. Visibility and rainfall were considered to be the
most important methods for the related data used in the
proposed algorithm.

A total of 828 groups of data, including traffic measures,
meteorological data, and incident state, were used in this
study, and these data were obtained under different types of
weather conditions, including sunshine, heavy fog, and
rainstorm. .e traffic parameters include volume, occu-
pancy, and speed of interval t to t − 2. In this study, the
detection period t was 5min. .e meteorological data were
accumulated at 30-minute intervals. Of the 828 groups, 138
contained incidents, whereas the other 690 groups were
incident-free. .e total data were divided into two parts as
testing and training sets, as presented in Table 2.

4.2. Estimate Measures. Typically, the performance of the
AID model should be evaluated on the basis of MTTD, FAR,
and DR, and these indices have been demonstrated to be
excellent for this purpose and have been used in several
studies [28, 29]; DR, FAR, andMTTD are defined as follows:
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Figure 5: .e value range of the meteorological influencing factor.

6 Advances in Fuzzy Systems



DR �
number of detected incident cases

total number of incident cases in data set
× 100%,

FAR �
number of false detected incident cases

total number of input instances
× 100%,

MTTD �
1
n

􏽘

n

i�1
tdetecte d − ton−set( 􏼁 × 100%,

(12)

where n, tdetected, and ton−set represent the number of incident
cases detected successfully, the time interval at which an
alarm is initiated, and the time interval in which a traffic
accident occurs, respectively.

.e effectiveness of an algorithm can be measured using
both DR and FAR, and the efficiency of the algorithm can be
obtained using MTTD. An ideal detection algorithm should
feature short MTTD; the FAR should be low, whereas the
DR should be high. Regardless, there exists a trade-off re-
lation amongDR, FAR, andMTTD. A persistence test can be
performed to verify whether an algorithm satisfies the test
expectations.

4.3. Test Result. An experiment was conducted to determine
the LVQ network architecture having the optimal detection
performance to test the performance of the traffic accident
detection algorithm. .ree LVQ models with traffic mea-
sures having time-series of different lengths and with the
factor calculated in this study as the inputs are used in this
experiment. Both the upstream traffic methods and the
downstream methods of the input cover periods from t − 2
to t, from t − 1 to t, and single t in the models. n2 is

calculated in accordance with formula (11) and a series of
numbers around n2 (including n2), which were n2 − 3, n2 − 1,
n2, n2 + 1, n2 + 2, and n2 + 3 in each model; this value is
verified to determine the number of Kohonen layers. .e
architectures of the three models are summarized in Table 3.

.ree criteria, including DR, FAR, and MTTD, were
considered while searching for the best architecture of the
new algorithm and Figure 6 indicates these three criteria for
various architectures. .e average of FAR and DR in the
architectures with 7 and 19 inputs in the first layer is inferior
to the architectures having 13 inputs. .erefore, the traffic
measures with the period t − 1 to t yield the optimal traffic
incident detection performance. .e MTTD changes mar-
ginally across various architectures in Figure 7. It can be
observed that the lowest FAR and the highest DR are in
accordance with the same architecture in comparison with
various coordinates, including [13 × 26 × 1]. .erefore, the
best architecture of the proposed algorithm was determined
to be [13 × 26 × 1].

4.4. Algorithm Competitiveness. .e proposed algorithm
uses the LVQ neural network as the base model by inputting

Table 2: Training and testing datasets.

Category Total number Incident number Incident-free number
Total 828 138 690
Training 480 80 400
Testing 348 58 290

Table 3: New algorithm architecture for traffic measures with different time-series.

Model Time series of traffic measures Number of input layers Number of Kohonen T layers Network architecture

1 t 7

13 7 × 13 × 1
14 7 × 14 × 1
15 7 × 15 × 1
16 7 × 16 × 1
17 7 × 17 × 1
25 13 × 25 × 1
26 13 × 26 × 1

2 t to t − 1 13

27 13 × 27 × 1
28 13 × 28 × 1
29 13 × 29 × 1
37 19 × 37 × 1
38 19 × 38 × 1

3 t to t − 2 19
39 19 × 39 × 1
40 19 × 40 × 1
41 19 × 41 × 1

Advances in Fuzzy Systems 7



both the traffic flow parameters and meteorological
parameters. To understand whether the meteorological
parameters have an impact on the prediction results, we use
the LVQ neural network but do not input meteorological
parameters. Meanwhile, the LVQ neural network model is
also found best architecture and applied to the same val-
idation database. .e detection performances of the pro-
posed algorithm and the algorithm without meteorological
parameters are compared and presented in Figure 7.

Figure 7 depicts that the proposed algorithm outper-
forms the algorithm that does not consider any meteoro-
logical parameters. It is observed that the meteorological

parameters affect the forecast results, which is evidenced by
their DR values of 90.24% and 85.53% and their FAR values
of 3.89% and 4.22%. Furthermore, the MTTD values of both
the methods are similar, and the value difference between
them is only 0.01. .e introduction of meteorological pa-
rameters does not increase the complexity of the algorithm.

Meanwhile, it is necessary to compare the existing al-
gorithm and the proposed algorithm using the same dataset.
.ese AID algorithms include the California algorithm,
exponential smoothing algorithm, standard normal devia-
tion algorithm, and McMaster algorithm. .e incident de-
tection performances of these four existing algorithms and
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Figure 6: DR, FAR, and MTTD for different architectures.

8 Advances in Fuzzy Systems



the proposed algorithm are compared and depicted in
Figure 8.

As depicted in Figure 8, the proposed algorithm out-
performs the other algorithms using the same dataset. A
reasonable set of AID algorithms is that DR is higher than
88%, whereas the FAR is lower than 1.8% [30]. When the

value of FAR is set to 1.8%, the DR of the proposed algorithm
is 78.56%, which is higher than that of the remainingmodels.
However, it is still lower than the mark with the DR value
being higher than 88%. .is may be caused by the excessive
road space that is considered during algorithm calibration
and the limitations of the LVQ neural network. However,
the proposed algorithm is still feasible for performing de-
tection under different meteorological conditions.

Considerable testing is required to calibrate the
thresholds using a given dataset to obtain the appropriate
trade-off between FAR and DR for achieving the optimal
performance from an algorithm. .e optimal test results of
the proposed algorithm and four existing algorithms are
presented in Table 4 by considering the appropriate trade-off
between FAR and DR.

5. Conclusion

In this study, an incident detection algorithm is proposed by
considering the effects of meteorological factors on a free-
way..is algorithm applies fuzzy logic to calculate the factor
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Figure 7: Incident detection performance of the proposed algorithm and the algorithm without meteorological parameters.
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Figure 8: Incident detection performances of the proposed al-
gorithm and the remaining four existing AID algorithms.

Table 4: Best performance of comparing algorithm and proposed
algorithm.

Algorithm DR (%) FAR (%) Avg MTTD
(min)

California 64.00 4.33 5.56
Exponential smoothing 70.12 4.31 5.14
Standard normal deviation 73.11 4.49 4.42
Mc master 82.44 4.20 4.48
Proposed algorithm 90.24 3.89 4.23
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reflecting the relation between the occurrence of traffic
accidents and weather conditions and uses an LVQ network
to combine the traffic parameters along with the meteoro-
logical factor to detect various incidents. .e proposed al-
gorithm addresses the problem of unstable DR, low DR, and
high FAR under harsh and changing weather conditions,
which can affect several AID algorithms. To solve this
problem, the proposed algorithm was constructed based on
the field data obtained from the Yuwu freeway in Chongqing
China.

.e first experiment denoted that the algorithm with the
[13 × 26 × 1] architecture performed better than the other
algorithms. Based on this observation, a comparison ex-
periment involving the proposed algorithm and the
remaining four existing algorithms was conducted. .e
results indicated that the proposed algorithm performed
better than all the remaining algorithms. .is indicates that
the proposed algorithm exhibits a better detection perfor-
mance than the remaining algorithms according to the
indices of the AID algorithm performance.

Although it can be concluded that the algorithm proposed
in this study can enhance the incident detection performance
on freeways, further work is required. Because of the con-
straints of the test environment that are presented in this thesis,
we have used the field data obtained only from the Yuwu
freeway to verify the proposed algorithm. More test roads and
field data should be used to verify the validity of the algorithm
that has been proposed in this research in a follow-up study.

Data Availability

.e training and testing data used to support the findings of
this study have been deposited in the Chongqing Expressway
repository. .e traffic incident data used to support the
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study are currently under embargo while the research
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