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In the present paper, using Lukaswize triple-valued logic, we introduce the notion of (a, f8)-intuitionistic fuzzy soft ideal of
BCK/BCl-algebras, where a and f3 are the membership values between an intuitionistic fuzzy soft point and intuitionistic fuzzy set.
Moreover, intuitionistic fuzzy soft ideals with thresholds are introduced, and their related properties are investigated.

1. Introduction

In the real world, there are several difficult problems that
cannot be solved by usual mathematical methods. As a
result, several theories were introduced to solve the
existing problems. One of them is the theory of fuzzy sets
proposed by Zadeh [1]. After the introduction of fuzzy sets
by Zadeh, fuzzy set theory has become an active area of
research in various fields up to now (see, for example,
[2, 3]), and many generalizations of fuzzy sets have been
defined and studied.

Atanassov defined a new generalization of the fuzzy set,
namely, intuitionistic fuzzy set [4]. Kim considered intui-
tionistic fuzziness on subalgebras and ideals in BCK-algebras
[5]. All these theories have their weaknesses as pointed out in
[6]; thus, Molodstov introduced the idea of soft sets which
have been a useful tool for dealing with uncertainties. Maji
et al. defined soft binary operations [7]. Also, Maji et al.
presented the concept of fuzzy soft set [8]. Later on, Maji
etal. introduced and studied intuitionistic fuzzy soft sets (see
[9-11]), and more specifically, Akram et al. studied intui-
tionistic fuzzy soft K-algebras (see [12]). In recent years, a
number of research papers have been devoted to the study of
soft set theory applied to different algebraic structures (see,
for example, [13-18]). Jun et al. applied soft set and fuzzy soft

set theories to BCK/BCl-algebras in [19, 20], respectively,
and Akram et al. applied the same theories on K-algebras in
[21]. Larimi and Jun introduced the concepts of
(€, evg)-intuitionistic fuzzy h-ideals of hemiring [22].
Various attributes of BCK/BCl-algebra are considered in
[23-31].

Based on fuzzy points, Jana et al. studied different types
of ideals [32, 33]. Moreover, the same authors studied
generalized intuitionistic fuzzy ideals of BCK/BCI-algebras
and Lukaswize intuitionistic fuzzy BCK/BCI-subalgebras
based on 3-valued logic (see [34, 35]).

This motivated us to study intuitionistic fuzzy soft ideals
of BCK/BCl-algebra X using cut sets and the degree of
existence of fuzzy soft point (x, a) in an intuitionistic fuzzy
soft set (R,tA) of X. Also, an («, B)-intuitionistic fuzzy soft
ideal of X is introduced by applying the Lukaswize triple-
valued logic, where o, € {€,g,€Aq, €vg}, with a# eng.
Moreover, intuitionistic fuzzy soft ideals of BCK/BCI-al-
gebras with thresholds are investigated, and related results
are obtained.

2. Preliminaries

The algebraic structures of BCK- and BCI-algebras were
introduced by K. Iseki.
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An algebra (X, *,0) of type (2,0) with 0 as the identity
element is called a BClI-algebra if for every x, y,z € X, the
following conditions are satisfied:

(K)((x#y)* (x+2))* (2% y) =0,

(Ky)(x# (x*p) %y =0,
(K3)x*x=0, (1)

(Ky)x*y =0,

yrxx=0=x=y.

The partial ordering is defined as x < ye=x * y = 0.

If BCI-algebra X satisfies 0 * x = 0 for every x € X, then
X is a BCK-algebra.

A nonempty subset I of X is called an ideal of X if it
satisfies the following:

(K, )0 el
(Ky,) forevery x,ye X, x*yel,and y e I=>x el

Unless or otherwise mentioned, X denotes a

BCK/BCI-algebra.

Definition 1 (see [12]). For an initial set X and a set of
parameters A, a pair (R, A) is said to be a soft set over X&R
which is a mapping of A into the set of all subsets of the set
X.

Definition 2 (see [14]). Let E be a collection of parameters,
and let R(X) denote the collection of all fuzzy sets in X.
Then, (R,tA) is called a fuzzy soft set over X, where A is a
subset of E and R is a mapping given by R: A — R(X).
It is easy to see that every classical soft set may be
considered as a fuzzy soft set. In general, for every § € A,
R[6] is a fuzzy subset of X, and it is called a fuzzy value set. If
for every 6 € A, R[8] is a crisp subset of X, then (R, tA) is
generated as a standard soft set. Let PRo) (x) denote the

degree of existence function; then, R[] can be written as a
fuzzy set such that R[S] = {(x, PRl (x))|x € Xand d € A}.

Definition 3 (see [15]). Let E be a collection of parameters,
and let [R (X) denote the set of all intuitionistic fuzzy sets in
X. Then, (R,tA) is called an intuitionistic fuzzy soft set
(IFSS) over X, where A is a subset of E and R is a mapping
given by R A — IR(X).

In general, for every § € A, R[6] is an intuitionistic fuzzy
subset of X, and it is called an intuitionistic fuzzy value set.
Clearly, R[8] can be written as an intuitionistic fuzzy set

(IFS) such that R[d] = {(x, P D Vg (DI x e X
and § € A}, where PRl (x) and Yol (x) represent the de-

gree of existence and nonexistence functions, respectively. If
for every x € X, PRio) (x)=1- Vs (x), then R[d] will be
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generated as a standard fuzzy set, and then (R,tA) will be
generated as a traditional fuzzy soft set.

3. (a, B)-Intuitionistic Fuzzy Soft Ideals of BCK/
BCI-Algebras

Definition 4. An IFSS (R,tA) in X is called an intuitionistic
fuzzy soft ideal (IFSID) of X if R[d] = {(x, P10l (x), YRl
(x))lx € Xand § € A} satisfies the following:

M) 97,5 (0) 2 95,5 (x) and yg 0 (0) <y (x),

(2) 971 (X) 2975 (xx YIVoR 0 (¥) and - yg s (x) <
1//;[6] (x * y)’“/’E[a] ),

for each x, y € X and ¢ € A.

Definition 5. Let (R,tA) be an IFSS of X and a € [0, 1].
(1) The sets

(1, if Pl (x)>a,
- 1
R[], (x) = 1 > if PR (x)<a<l- Yo (x), (2)
0, ifa>1- YR (%),
(1, if PRl (x)>a,
- 1
R[(S]g (_x) = 5) if gD’IE[B] (X) <a<l- wi[é] (x), (3)
0, ifa=1- Vs (x),

are called the a-upper cut and a-stronger upper cut
of the IFSS (R,tA), respectively.

(2) The sets

( 1, if 1//’15[5] (x)=a,

sraa,y_ ) 1.

R[8]" (x) = 1 > if YRis) (x)<a<l- PRio) (x), (4
‘ 0, ifa>1 ~ %) (x),
(1, if VR0l (x)>a,

=raary )1 .

R[(S]* (X) =9 5, if I//E[:S] (x) <a<l- SDE[@] (x), (5)

0, ifa>1- PRio) (%),

are called the a-lower cut and a-stronger lower cut of
the IFSS (R,tA), respectively.
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(3) The sets
(1, if(pfﬁ[a] (x)+a=1,
- 1
R[8] 4 (x) = > if Yol (x)<a<l- PRio) (x),
A 0, ifac< Vi) (%),
(6)
1, ifq’fi[(s] (xX)+a>1,
- 1
R[6] [a] (x) = > if wﬁ[&] (x)<a<l- 9"E[5} (x),
0, ifaSWE[a] (x),

(7)

are called the a-upper Q-cut and a-stronger upper
Q-cut of the IFSS (R,tA), respectively.

(4) The sets

(1, iflpiw] (x)+a=1,

RO (x) =1 o, ifgr, (W<a<l-yz (), (8

| 0, ifa< q’i[é] (%),

1, ifwi[(ﬂ (x)+a>1,

RO (0 =1 5, ifgr, (D<asiyg (0, )
0, ifa<eg (x),

are called the a-lower Q-cut and a-stronger lower Q-cut of
the IFSS (R,tA), respectively.

Definition 6

(1) The degree of existence of (x,a)€ R[] is
[(x,a) € R[8]], and the degree of existence of
(x, a)qﬁ[&] is [(x,a)qﬁ[é]] if it satisfies the fol-
lowing relations: [(x,a) € R[8]] = R[S]a(x) and
[(x,a)qR[8]] = R[8] (x)

(2) The degree of existence of (x,a)e€ R[8] and
(x, a)qR[&] is [(x,a) E/\qﬁ[&]], and the degree of
existence of (x,a) € R[6] or (x, a)qﬁ[(?] is
[(x,a) EVql~2[6]] if it satisfies the following relations:
[(x,a) engR[8]] = [(x,a) € R[8]] A [(x,a)qR[8]] =
R[6], (x)AR[8] [y (x) and [(x,a) evgR[8]] = [(x,
a) € R[8]IV[(x,a)qR[8]] = R[8], (x)VR[8]  (x)

(3) The degree of nonexistence of (x,a) € R[8] is
[(x,a)eR[8]], and the degree of nonexistence of

(x, a)qﬁ[&] is [(x,a)qﬁ[(?]] if it satisfies the fol-
lowing relations: [(x,a)€ R[8]] = R[8]*(x) and
[(x,a)gR[8]] = R[8]" (x)

(4) The degree of nonexistence of (x,a) € R[§] and
(x,a)qR[8] is [(x,a)eAqR[8]], and the degree of
nonexistence of (x,a) € R[8] or (x,a)qR[J] is
[(x, a)%ﬁ[(?]] if it satisfies the following relations:
[(x,a)engR[8]] = [(x,a)€VGR[d]] = [(x,a)€R[d]]V
[(x,a)gR[8]] = R[6]* (x)VR[8] (x) and [(x,a)
€VqR[8]] = [(x,a)€R[SIA(x,a)gR[8]] =  [(x,a)€R
[S11A[(x,@)qRI6]] = R[8]° (x)AR[8]' (x)

Let — denote the implication of Lukaswize triple-
valued logic. Lukaswize truth table is presented in Table 1.

Let a,f € {€,q,€ng, €vg}. Then, for a € [0,1],x € X,
(x,a) is a fuzzy soft point, and [(x,a)aR[8]],
[(x,a)BR[8]] € {0,1/2,1}.

Definition 7. Let (R,tA) be an IFSS in X. If for every
o, B e{e g eng evg} and st e (0,1] such that (R,tA)
satisfies for every x, y € X and § € A,

(1) [(x,s)aR[8]] — [(0,5)BR[S]] = 1,

(2) [(x* y,)aR[SAL(y,)aR[8]] — [(x,51t)

BR[8]] =1,

then (R, tA) is called an (a, )-intuitionistic fuzzy soft ideal
of X.

Let X be a set. Then, define a triple-valued fuzzy set
mapping R[J]: X — {0,1/2,1}.

Definition 8. Let (R,tA) be an IFSS in X. If for every
a, B € {€,q,€Aq, €vq} and s,t € (0,1], the IFS R[§] satisfies
for every x, y € X,

(1) [(0,9)BR[8]] = [(x, s)aR[3]],

(2) [(x, sA)BRIST] = [(x * y,5)aR[S]IA[(y, aR [8]],

then (R,tA) is an (a, B)-intuitionistic fuzzy soft ideal of X.

Example 1. Consider a BCK/BClI-algebra X = {0, 1,2, 3,4}
with Table 2.
Let us consider the following IFS of X:

0.5, ifx=0,
P01 (x)=4 0.3, ifx=13,
1 0.2, ifx =24,
(10)
(0.3, ifx=0,
Vi) (x)=1 0.5, ifx=1,3,
L 0.6, ifx=2,4
Then, it can be easily shown that R[8] = (x, PRio)

(%), Vi ] (x))is an (€, €vq)-IFID of X. Hence, (R,tA) is an
(e, qu[)—IFSID of X.
Also, if we consider the IFS of X,
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TaBLE 1: Lukaswize truth table.
— 0 1/2 1
0 1 1 1
1/2 1/2 1 1
0 1/2 1
TaBLE 2: : Cayley table of the binary operation *.
* 0 1 2 3 4
0 0 0 0 0 0
1 1 0 1 0 1
2 2 2 0 2 0
3 3 1 3 0 3
4 4 4 2 4 0
(0.6 ifx=0,
PRo] (x)=402 ifx=1,3
[ 0.1 ifx=2,4,
. (11)
(0.1 ifx=0,
Yo (x)=102 ifx=13,
L 0.5 ifx=2,4,
then it can be easily proved that R[8] = (x, PRio)

(x), v ](x)) is an (eAg, €)-IFID of X. Hence, (R, tA) is an
(e, 6/\q) IFSID of X.

Theorem 1. Let (R,tA) be an (a, B)-intuitionistic fuzzy soft
ideal of X. If a ¢ Nq, then (R,tA), is a fuzzy soft ideal of X.

Proof. We shall prove that

(1) R(3], (0)> R[8], (x)
2) R[(F]g (x)zf{[(s]g (x % y)/\ﬁ[é]g (y) forevery x,y e X

(1) We have to show TQ[S]O (x) = 1:>§[6]0 0)=1.1f

R[(S]g (x) =1, then PR (x)>0. Let (Pi[a;(x) >tand
t>0 for all x € P and for all ¢ € (0,1]. Then, there
exists s € (0,1] such that 0<s—-1<t= PRo) (x).
Thus, [(x,t) € R[8]] = R[é‘]t(x) =1 and [(x,s)
qR[8]] = R[8] g (x) = L.
Ifa= € or a= €vg, then [(x,t)aR[8]] =1, and
Be{e.q.AqVvql. Now, from Definition 8,
1> [(0,£)BR[8]] = [(x,t)aR[8]] = Therefore,
[(0,1)BR[8]] =1

= either TQ[&] (0) =1 or R[4] [t 0)=1
:eltherq) (0)=t>0 or ¢ [3](0)>1 >0
= sy (0) 5 0= R[8], (0) = 1"

If a = g, then [(x,5)aR[8]] =1, and B € {€,9,Aq,V
q}. Now, from Definition 8, 1= [(0, s)ﬁﬁ[é]] >
[(x, s)aR[8]] = 1. Therefore, [(0, s)/31~2[6]] =1

= either R[8],(0) =1 or R[§ g (0) =1
= elther PRs ](0)>s>0 or 95 (0)>1-52>0
(O) >0=R[d], (0) =1
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Next, we have to show that R[(S]O (x)=1/2=>
[8][0](0)>1/2 Suppose R[S] (x) = 1/2. Then,
Vi ](x) < 1. Then, there exist s,f € (0,1] such that
(x)<1 t<s<1. Then, 0<t<1- (x)
anl' so. RO, (x)2 1/2. Thus, [(x.6) € RIS
and R[] 5 () 2 12=[(x, s)qR[(S]] >1/2.
Ifa= €ora= evg, then [(x,t)aR([8]] =1/2, and
Beleq Ag, Vq} Now, from Definition 8,
1> (0, t)ﬁR[S [(x,)aR[8]] = 1/2. Therefore,
[(0,1)BR[8]] > 1/2

= either R[8],(0)>1/2 or R[8],(0) 21/2

=>e1ther1//[](0)<1 t<loryg (0)<t<1

= Vi) (0)< 1=>R[8] (0)>1/2
If a=gq, then [(x s)aR[8]]>1/2, and so,
B € {e,q,Aq,vq}. Now, from Definition 8, [(0,s)
BR[8]] = [(x,t)aR[8]] = 1/2. Therefore, [(0, s)BR [8]]
>1/2

= either R[4],(0)>1/2 or R[8];(0)>1/2

= either Vi (0)<l-s<lor 1//}5[5](0)<s<1

=Yz (0)< I:R[r?]g(o) >1/2

ﬁ[&]o (0) 2§[8]0 (x) for allx € Xand § € A.

(2) First, we show that [8]0 (x = y)/\R[(S]0
(y) = 1=>1~Q[6]Q(x) =1 If R[(S]O (x * y)AR[S lo
() = 1, then R[8], (x*y) =1 and R[8], (y) =1,
and so, PRio) (x *_y) >0 and PRl (y)_> 0. Let

R[4]

Hence,

PRo) (x * y)/\q)-}i[s] (y) =t>0. Then, there exists
s€(0,1) such that 0<1l-s<t= (pim(x*y)/\
Py () Thus, [(x# y,1) € R[8] = RIO, (x  y) =
L [(5,0) € R (011 = RI8L, () = 1, [(x * ,5)qR (3]
=ROg(x*y) =1, and [(y,s)qR[]] = R[8](y(»)
=1.

If a= € or a= €vg, then [(x*y,t)aR[d]] =1,
[(y,t)aR[8]] = 1, and Be {E q-7\q,Vq}. Now, from Defi-
nition 8, 1> [(x, t)ﬁR[6 [(x =y, t)(xﬁ[é‘]]/\[(y, f)aR
[6]] = 1. Therefore, [(x, t)ﬁR[S] =1

= either R[S]t(x) =1 or R[d] [t (x)=1
= either P01 (x)=t>0 or PR o) (x)>1-¢t=0
= PRis) (x)> 0=>1~2[6]g(x) =1

If « = g, then [(x * y, s)aR[d]] = [(y, s)aR[8]] = 1, and
Befleq NG vg}. Now,  from Definition 8,
1> [(x, 5)BR[S]] = [(x * y,$)aR[S]IA[(y, s)aR [6]] =
Therefore, [(x,s)BR[J]] =1

= either R[§],(x) = 1 or R[J] (%) =1
= either PRio) (x)=s>0or P01 (x)>1-5>0
= PRis) (x)> 0=>1~2[6]g(x) =1

Next, we show that R[(S]g(x >1<y)/\1~2[5]g (») =12=
R[] 0] (x)=1/2. Suppose ﬁ[S]g(x * y)/\ﬁ[(?]g(y) =1/2.
Then, E[S]g(x *y)>1/2 and 1~2[5]9(y) >12= Yol
(x*y)<1land Yol (y) < 1:>1//—§[5] (x = y)VV’Ii[a] (y) <1.Let
s,t € (0,1] such that Yl (x = y)vw§[5] (»<l-t<s<l.
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Then, 0<t<1- Vo) (x*y)vwim (y) = u“”ﬁ[&]
(e DA (1= iy (=1 =y (e y) >t and 1 -y,
(y)>t. Thus, [(x= y,t) € R[8]] = R[d],(x* y)>1/2 and
[(y,t) € RI[8]] =R[8],(y)=1/2. Again, Yol (x*y)
V61 (y) <s<1 such that Vi) (x* y)<sand Vi) (y)<s.
Thus, [(x=* y,s) gqR[J]] = R[4] [s] (x*y)=1/2 and [(y,s)
qR[8]] = R[4] o (¥)=1/2. B
If a= € or a= evg, then [(x=*y,t)aR[6]]=
1/2, [(y,t)aR[8]] = 1/2, and B € {€,q,Aq,Vq}. Now, from
Definition 8, [(x,t)BR[S]] = [(x * y,t)aR[S]IA[(y, t)aR
[0]]1= 1/2. Therefore, [(x,t)BR[5]]=>1/2
=[(x,t) € R[8]] = R[8],(x)=1/2 or
R[8]y(x)=21/2
:>1//§[_5] (x)<1-t<1lor YZis) (x)<t<1
=Y (x) < 1=>R[8]g (x)=1/2
If « = g, then [(x * y, s)ocﬁ[(?]]/\[(y, s)aR[8]]>1/2, and
B € {€,9,Aq,Vq}. Now, from Definition 8, [(x,s)BR[8]] >
1/2=[(x,s) € R[8]] = R[d],(x)=1/2 or [(x,s)qR[8]] =
R[6] g (x)=1/2
=Y (x)<1-s<lor YRis) (x)<s<1
=Y (x) <1=R[d], (x) = 1/2
Hence, R[(S]0 (x) 2 R[8], (x * »)AR[8], (y) for every
x,y € X and & € A. Therefore, R[é‘]0 is a fuzzy ideal of X.
Thus, (R, tA)g is a fuzzy soft ideal of X. O

[(x,1)gR[8]] =

4. Intuitionistic Fuzzy Soft Ideals of
BCK/BCI-Algebras with Thresholds

Definition 9. Let (R,tA) be an IFSS of X. Then, (R, tA) is an
intuitionistic fuzzy soft ideal (IFSID) of X with thresholds
(s,t)oR[6] = (x, P10l (%), Y0l (x)) is an intuitionistic fuzzy
ideals (IFIDs) of X which satisfies the following for every
x,y€Xand § € A:

@) ¢ ) (0)Vs><pR[5 (x)At and Yol (0OA(1 —5)< Y3
XV (1-1)

(2) PRl (x)Vs>q>R ] (x = y)/\(pR (y)At and wa ()N
(9 < yg % yvig, BV - 1)

Example 2. Let us consider a BCl-algebra X = {0, 1,2, 3}
with the Cayley table given in Table 3.
Let us suppose Pzrs (0) =g~ (1) =m, ¢~ . (2) = ¢=
] 3 R[S R[a]
(3)="s, and yg (0) - V’E[&]IEU =1Ly (- RI0)

(3) = w, where 0<s<t<1, me (0,s], and w e [0,1 —¢].
Henceforth, R[8] is an IFID of X with thresholds (s,¢).
Consequently, (R, tA) is an IFSID of X with thresholds (s, t).

Theor~em 2. An IFSS (R,tA) of X is an (€, evq)-IFSID of
X& (R, tA) is an IFSID of X with thresholds (0,1/2).
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TaBLE 3: Cayley table of the binary operation *.
% 0 1 2 3
0 0 1 2 3
1 1 0 3 2
2 2 3 0 1
3 3 2 1 0

Proof. (=) Suppose~(l~2, tA) is an (€, €vq)-IFSID of X. We
have to show that (R,tA) is an IFSID of X with thresholds
(0,1/2). It is enough to show that

1) P10l 0) = P01 (x)A1/2 and P10 0) < PRs) (x)v1/2
(2) P10 (%)= P10 (x * y)/\(pR ](y)/\1/2 and
Yz (0 < I//R[(S] (x*y)vl//R g (VIV172 for every
x,yeXand de A
(1) Let x,yeX, and let t= P31s (x)A1/2. Then,
Pl (x)=t, and so, [(x,t) € R[é]]] = 1. Therefore,
from Definition 8,
1> [(0,t) evgR[8]] =
=[(0,t) evgR[8]] = 1
=[(0,t) € R[8]] =1 or [(0,¢) € gR[8]] = 1
=¢ (0)>t0r(p (0)+t>1=>(pR[6] (0)=t or
~ %)>1—t>1/ >t

PRis)
Thus, ¢ PRo 0)>t = 0] (x)A1/2 for all x € X. Now,
let Yo (x)Vl/2 =1-s=(1- Yol (X)A1/2 = s
then, [(x,s) € R[8]] =1/2. Therefore, from Defini-
tion 8, [(0, s) EVqR[S]] > [(x,s) € R[8]]=1/2
=[(0,s) eVgﬁ[:?]] >1/2 B
=1(0,s) € R[6]]=1/2 or [(0,s)gR[6]] =1/2
=s<1 - Y10 (x) or Vo) (0)<1-s<s
Since 1-s>1/2, s<1/2. Thus,
Yl (x)Vv1/2.

(2) Let x,y € X, and let t = (x * y)/\(pR 5 (yIN1/2.
Then, PRio) (o * y)>t anléi PRl (y)>t and so,
[(x * y,t) € R[8]] = and  [(y,1) € R[8]] = 1.
Therefore, from Deﬁnition 8,

1> [(x,t) evgR[8]] = [(x * y,t) € R[8]IA[(yst) e R
[6]1 =1
=[(x,t) evgR[8]] = 1
=[(x,1) € R[8]IV[(x,1)qR[8]] = 1
=[(x,t) € R[8]] =1 or [(x,t)gR[J]] = 1

(x)=t or PRo ](x)+t>l=>(p o] (x)=t or
goR[s]%sx >1-t>1/2>t

Thus, 9= (x) > = PR (x * y)Np= ( (»NA1/2 for all

x,ye€X, and' let w 6] x*y)vam (y vl /2 =1-s; then,
Ut (»<1-s=s<1- Vs
(x*y) and s<1- Yol (y)=[(x* y,s) € R[8]] =1/2 and
[(y,s) € R[8]] = 1/2. Therefore, from Definition 8,

[(x,) € R[3]] =

1//’15[6] 0)<1- s=

Vs (x*y)<l-s and



[(x,s)EVqTQ[(?]]Z [(x*y,s)ETZ[(S]]V[(y,s)ER [611=1/2
=[(x,s) EVqﬁ[S]] >1/2
=[(x,s) € R[8]] =1/2 or [(x,s)qR[8]] >1/2
=s<1 - YR (x) or YR (x)<s<l-s
Since 1-s>1/2, s<1/2. Hence,
V’E[a] (x * y)VI//E[(S] (y)Vl/Z.
(&) Let (R,tA) be an IFSID of X with thresholds

(0,1/2). Let s, t E~(0, 1], and for x€X and § € A, we have to
prove [(0,s) evgR[6]] = [(x,s) € R[6]].

(1) Let a = [(x,s) € R[8]].

wﬁ[&](x)gl -s=

Case 1: when a=1, [(x,s) € R[d]] = 1= Pl
(x)=s. If [(0,s) evgR[8]] < 1/2, then Pl (0)<s
and P10l (0)<1-s. Thus, 1/2>(p 6] (0)> Pl
(x)A1/2; so, P10 (0)> PRio) (x)=s. This is ~a
contradiction to PRio) (x) <s. Hence, [(0,s) €vgR
[6]] = 1.

Case 2: for a = 1/2, we have s<1 - ](x) If
[(0,s) GVqR[ 11 =0, then [(0,s) € R[6]] =0 and
[(0,5)gR[8]] = 0=>s>1 - VR0 (0) and S<Vz
(O)ZWE[M (0)>1-s and SSI//E[(S] (0). Thus, 1/2<
1//'15[5] (0) < WE[(S] (x); so, WE[&] 0)< WE[&] (x)=1-
YRl 0)=1- (x) > s, which is a contradiction

to s>1-

V1ol
Yo (0). Therefore, [(0,s) evgR[d]]>
1/2 = [(x) S) € ﬁ[an [(0,5) quﬁ[é]] >
[(x,s) € R[8]].

(2) Let x,y € X, and let b=[(xx*y,s)e€
[(y,t) € R[3]].
Case 1: at =1=[(x* y,s) € R[8]]=1 and
[(y,t) € R[S ]]—1=>go ](x*y) and
(pR ] (») =t, if [(x s/\t) EVqR[6]] <1/2, then

] (x) <snt and 3 (x) <1-

Tﬁus 1/2> PRis) (x) 2 97001 (x = y)/\q)R (y)/\1/2
and so, PRo) E 2 9700 Ex * Y /\q)R %Sy)>s/\t. This
is a contradlctlon to ¢z ] ([x) Thus,
[(x, sAt) EVqR[S]] =1.
Case 2: when b =1/2, [(x* y,s) € R[8]]>1/2 and
[(y,t)e1~2[6]]21/2:>1—1//§[6](x*y)25 and
1- wﬁ[é] (y)=t.Now, 1 - WE[S] (2 * y)Vl[/’R~ [0l (y) =
(1- YRl (x = y)IN(Q - YRl () = snt.

If [(x,sAt) evgR[8]] = 0, then (1 — vz 5]( x)) < sAt and
Y00 (x)=>sAt. Now, 1/2< Yo (x) < Vo) (x = y)Vt//R
[6] (y)v1/2:>1pi[8] (%)< WE[&] (x = y)Vl//R 1 (»=1- WR[B]
()21 = (vg e yIVUg 5 () = (1= yg 5 (xx y)A
(1- Vs (»)) = sAt which is a contradiction to (1 -

Hence,

R[81IA

< SAL.

3 YRl
(x)) <sAt. Thus, [(x,sAt) eVgR[S]]= 1/2= [(x*y, s) €
R[8]IA[(y,t) € R[8]]. Hence, [(x,sAt) evgR [8]]= [(x = y,
s) € R[8]]IA[(y,t) € R[8]]. Therefore, R[8] is an (e, €vq)
~IFID of X. Hence, (R,tA) is an (€Ag, €)-IFSID of X. [
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Theorem 3. An IFSS (R,tA) is an (€nq,€)-IFSID of
Xo (R, tA) is an IFSID of X with thresholds (1/2,t1).

Proof. (=) Suppose (R,tA) of X is an (€Ag, €)-TFSID of X.
We prove that (R,tA) is an IFSID of X with thresholds
(1/2,t1). It is enough to show that

1) Pl (0)V1/2>(P~[5 (x) and YR (0)/\1/2<1//~ R0l (x)

() o3 o] (x)v1/2> 2% (x y)/\(p (y) and Yo (N
1/ <1//~[§] (x*y Vl/jR[&] (y) or all X,y € 5( and
d¢

(1) Let x e X and t = PR (x). If PR (0)v1/2 <t, then

PRl (x) =t>1/2, which indicates that
[(x,t) eAgR[8]] = 1. Now, [(0,£) € R[8]]= [(x,1)
engR[8]] = 1=[(0,1) € R[S]] = 1=¢5 (0) 2.
This is a contradiction to PRio) (0) <t. Hence,
PRl oyvi1/2= PRio) (x). Let t=1-s= Yo (%);
then, [(x,s) € R[8]]=>1/2. If Yl (0)A1/2 >t and
t<1/2<s, then Yzl (x) =1-s=t<s. This indi-
cates [(x,s) € gR[6]] =1/2. Thus, [(x,s) € R[d]] >
1/2 and [(x,s)qR[J]]1=1/2=[(x,s) engR[6]] =1/2.

Now, [(0,s) € R[8]]= [(x, s) E/\qﬁ[&]] >1/2=s =
L=y (0). Therefore, Yol (0)<1-s=t. This

contradicts the assumption YR (0)>t. Hence,
Wi[é] (o)n1/2<t = wﬁ[é] (x).
(2) Let x,ye Xandt=¢

& (x y)/\(ka (y) Now, if
PRl (x)v1/2<t = P10l

X % y)/\(pRm ), we have,
Pl (x*xy)=t>1/2 and P10l (y)=zt>12=
[(x * y,t) € R[8]] = 1, [(x * y,t)gR[8]] = 1 and
(1) € R[Sl =1 1[(y,)qRIS]] = 1= [(x * y,1)
engR  [8]]=1 and  [(y,t) eAqR[8]] = 1=
[(x* y,t) € /\qﬁ[é‘]]/\[(y, t) EAqR[S]] = 1. There-
fore, [(x,t) € R[8]]=[(x * y,t) engR [S]IA[(p,1)
engR[8]]=[(x, t) € R[8]] = 1=97 (x)>t. This
PRio) (x)v1/2<t =
P10 (x = y)A(PE[él (»). Hence, PRio) (x)vV1/2>t =
Pris) X VN5 ()

contradicts the assumption

Let y~ (x* y)Vy= _ (y) =t =1—s; then, 1 —s>y~
(x * y) ﬁr‘fd I oszyp () but i g (On 122
t=1- (x y)vq/ (y) 5<1—1//~[ (x * y),

s<1- me (y) and Y3 (‘}) >t, and then s> 1/2>t Thus,
(x*y)<t<s A y)<t<s:[(x*y,s)eR
[(ﬁ >1/2 and [(x * y,s)qR fgﬂ >1/2, [(y,s) € R[8]]=1/2
and  [(,5)qR[8]]=>1/2.  Therefore, [(x,s) € R[8]] >
[(x * y,5) eAqR[S]]  Al(y,9) e/\qﬁ[&]] >1/2=[(x,s) € R
[6]11 = 1/2, which indicate that s<1 — (x). This con-
tradicts the assumptlon fx‘% >t Hence,
Vi (ON2SE = Yz (e y)Vy S]M
(&) Suppose (R,tA) is an IFSID of X with thresholds
(1/2,¢1). Let x, ¥y € X,s,t € (0,1] and a = PR (x).
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fase 1: let (11/—21 l;ihen vz H(x)osq) (x)+s>
= x) > us, x)>s=
0.9 [e]I(Q[ZS]] .y Pria 0> P )
Case 2: let a=1/2. Then, s<1-
wﬁ[&] (x)<s=>1- (x)>s> 1// (x) Thus,

Vi (D <12 Eetore, (0)/\1/2<WR 5 ()
=>1//R[5] (0) <Yz ()21 vz (6‘3 ~ YR () =s.
Thus, [(0,s) € R[8]]>1/2. [(0,5) € R[8]] =
[(x,s) E/\qﬁ[(?]].

YRl (x) and

Hence,

Next, we prove that [(x, sAt) € R[8]] =
[(x % y,5) eNgRISIIN[(y,t) engR[6]]. Let b= PRio)
(X * PN 9z (0)-

Case 1: let b = 1. Then, ¢ o (x * y)>s, ¢~ ](x*y)+
s>1 and<p (y) L 9% ([y)+t>1:>go~ i8] (x*xy)=
12 and o (212 Thus, g (OvI2z
PRs) (x y)/\q’ii[&] (D) =N\ e get [(x,sAt) €R
[6]] = 1.

Case 2: let b=1/2. Then, s<1- (x* y),

YR (x*y)<sandt<1-— VR0 (»), Vs (J%<t:> 1-
Vo) (x *y)>s>1//R ] (x*y) and 1- Yl (y=t>
YR (»)= YZis) (x % y)<1/2 and YR (y) <1/2. Thus,
YR (x)N1/2< YRl (x*y) Vo) (y):n/wa (x)<
Yol (x = y)VI//R[E (). Therefore, 1- Vs (x)=(Q
Yo (x = y)IA(1 - Y00 () = snt. Thus, [(x,sAt) €
R[d]] = 1/2. Hen~ce, [(x,sAt) € R[4]] 2~[(x * ¥, EAGR
[S1IA[(y,t) enqR[6]].  Therefore, R[S] is an
(eng, €)-TFID of X. Hence, (R,tA) 1is an
(eng, €)-IFSID of X. O

Theorem 4. An IFSS (R, tA) of X is an (€,€)-IFSID of
X & (R,tA), is a FSID of X for any p € [0,1].

Proof. (=) Suppose (R,tA) is an (e, €)-IFSID of X. Let
x,yeX,6e€A, and for pe[0,1], [(0,p) € R[8]] =
[(x,p) € 1~2[8]]~ and~ [(x,p)~€ R[8]]=[(x*y,p) €R
[B1IAL(y, p) € RISI=R[3],(0)> R[8], () and
R[4],(x)=R[8], (x * y)AR[8],(y). Therefore, R[8], is a
FID of X. Hence, (R,tA), is a FSID of X.

(<) Assume for any p € [0,1], (R,£A), is a FSID of
X.Letx,y e X,0 € A and for s,t € (0, 1], we have to show
that

(1) [(0,5) € R[81] 2 [(x,5) € R[4]]

(2) [(x,snt) € R[81] = [(x * y,5) € R[S]IA[(p, 1)
€ R[4]]

(1) Let ¢ = [(x,s) € R[d]].

Case 1: for c=1, R[8] (x)=1 and R[5] 0)=
[8] (x) =1; we get R[8] (0) = 1:q)~ (0)=s.

Thus, [(0,s) € R[8]] = 1.

Case 2: for c¢=1/2, RI[d],(x)=1/2. So,

§[8]$(0)2§[8]$(x) =1/2, and we get §[8]S(0) =

12=s<1 - yz o (0). Thus, [(0,5) € R[8]]=1/2.

Therefore, [(0, sg € R[8]] = [(x,s) € R[8]].

Next, to prove
(2) Let ¢ = [(x * y,5) € R[8]IAL(y,t) € R[8]].

Case l:at c = 1, [(x * y,5) € R[8]] = R[&],(x* y) = 1
and [(y,1) € R[d]] =~R[5]t(y) = 1; then, [(x,sAt) €
R[8]] = R[8], (x)=R [6]5p¢ (xx = YIAR[S] s (¥) 2
R[8], (x * )AR[8], () = [(x * y,5) € R [8]IA[(p,1) €
R[8]] = 1=R [8], (x) = 1=9p 5 (xxy) 2snt=[(x,
sAt) € R[8]] = 1.

Case 2:atc = 1/ 2, [(x * y,s) € R[8]] = R[6], (x * y) =
1/2 and [(y,t) € R[8]] = R[8], (y) = 1/2. Therefore,
[(x,sAt) € R[8]] = R[é‘]w (x)>R [0]gpe (5 % YIN
RISl (1)=R [6],(x* IARIS], (3) = [(x% ,9) €
R[STIN[(y,t) € R[6]] = 1/2, and we get R[],
(x)=212=sAt<1 - YR (x). Thus, [(x,sAt) €
R[8]] = 1/2. Hence, [(x,sAt) € R[8]]> [(x* y,s) €
1~2[6]]/\[(y, t) € R[8]]. Therefore, R[6] is an (€, €)-IFID
of X. Hence, (R,tA) is an (€, €)-IFSID of X. O

Theorem 5. An IFSS (R, té) of X is an (e, evq)-IFSID of
X for any p € (0,1/2], (R,tA),, is a FSID of X.

Proof. (=) Suppose (R,tA) is an (€, €vg)-IFSID of X.
Then, for every x, y € X, 8 € A and for p € (0, 1/2], we have
to show that

(1) [0, p) evqR[3]] = [(x, p) € R[8]]= R[8], (0)v
R[S][p] (0)>R[8]p(x)
(2) [(x, p) evaR[ON]> [(x x y,p) € RIBIA  [(7.p)

R[8]]=R_ B B

(0], (X)VR[8] ) (x) = R[8], (x * y)AR[S], (¥)
_As 0<p<1/2,p<1/2<1-p. Then, ~[(S][p](o)f
R[], , (0)<R[0],(0)<R[d],(0) and R[d]y,(x) =R
[8],_, (x)<R[8],(x)<R[0],(x). Therefore, R[0],(x)<
R[6], (O)VR[8] () (0) <R[8], (0)VR[8], (0) = R[6],(0) and
R[0], (x * »)AR[O], () <R (8], (x)VR[O] ) (x) <R[8],
(x)VR[8],, (x) = R[8], (x). Thus, R[5],(0)=R[4],(x) and
ﬁ[ﬁ]P(x)zﬁ[(?]P(x*y)/\R[(S]P(y). Therefore, for any
p € (0,1/2],R[8],, is a FID of X. Hence, (R,tA) is a FSID of
X.

(<) Let (R, tA), beaFSID of X, for any p € [0, 1/2]. Let
x,y€X,0 € Aands,te (0,1].

(1) If s<1/2, then let a = q’ﬁ[&] (x).

Case 1: for a=1, R[&],(x)=1R[5],(0)>R
(8], (x) = 1=R[5],(0) = 1=¢7 [6](0) > s=
[(0,s) € R[8]] = 1. Hence, [(0, s) GVqR[&]] =[(0,s)
€ R[8]]Vv [(0,5)qR[8]] = 1.

Case 2: let a=1/2. 'Then, R R[d],(x) =
1/2,R[8],(0)=R  [8],(x) =1/2=>s<1 - (0).
Thus,  [(0,s) € R[8]]>1/2,  from PRy

[(0,5) evgR[8]] = [(0,5) € R[8]]V [(0,5) gR[8]] =

1/2. Hence, [(0,s) evgR[6]] = [(x,s) € R[8]]. If
s>1/2, then let pe[0,1] be such that
1-s<p<l/2<s. Then, 1~2[8][s] (0) = R[],



(0)=R[6],(0) and R[S Iis
3[6] (0). Therefore, [(0,s) quR[é‘]] = [(0, s) €
R[S]]V [(0, 5)gR[8]] = R[8], (0)VR[8]4(0) = R[]
151 (0)=R[8],(0)=R[4],(x) =R (0], (x) = [(x,
s) € R[d]]. Hence [(O s) GVqR[é]] > [(x,s) €
R[4]].
(2) [(x,sAt) evgR[8]] = [(x * y,s) € R[S]IA[(p, 1) € R
[61]. If SAE<1/2, then let a = [(x* y,s) € R[§]]
Al(y,t) € R[S]].

Case l:fora =1, [(x * y,s) € R[8]] = R[é‘]s(x *y) =1
and [(y,t) € R[8]] = ﬁ[&]t(y) =1, and we have
RI8]ne () 2 R8s, (x % ) AR[8],y () = RIS, (x * )
AR[S], (y)=RI[0],y, (x) = 1= [(x, sAt) € R[S]] =

Thus, [(x, sAt) GVqﬁ[(S]] = [(x, sAt) € R[S]IV [(x, sAt)
qR[8]] = 1.

Case 2: at a=1/2, ﬁ[@]s(x *y)>1/2 and
R[d], () =1/2; s0, R[8],,; (x) = R[], (x * y)/\1~2 (0] nr
() 2R [0, (x* ARS), ()2 12R[8], (x)2
1/2=[(x,sA t) € R[8]]=1/2. Therefore, [(x,sAt) €
VqR[8]] = [(x,sAt) € R[S]IV  [(x,sAt)qR[8]] = 1/2.
Hence, [(x, sAt) EVqﬁ[(?]] > [(x*y,s) € R[(S]]/\[(y, t)
€ R[8]]. If sAt>1/2, then let p € [0,1] be such that
1-sAt<p<1/2<snt. Now, R[8],, (x)=R[8], o
(x) >R[], (x) and R[] e (X) = R[8],_ (x)=R
[8] (x). Thus, [(x,sAt) EVqR[S]] = [(x, sAt)eR
[5]] [(x, sAt)qR[8]] = R[8] g (x)VR[] () (x) =R
[8] (gne) (%) 2 RI8], (%) 2 R[], (x* y)AR[S], (»)=R
(6], (x * Y)AR[8], (y) = [(x = ,9) € R[8IIALy, 1)
€ R[8]]. 'Thus, [(x,sAt) eVqR[8]] = [(x * y,s) €
R[(S]]/\[(y, t) € R[8]]. Therefore, R[d] is an (e,evg)
-IFID of X. Hence, (R,tA) is an (€, €vq)-IFSID of
X. O

1(0) = R[8],_ (0) >

Theorem 6. An IFSS (R,tA) of X is an (€Ag, €)-IFSID of
X for any p € (1/2,1], (R,tA),, is a FSID of X.

Proof. (=) Suppose (R,tA) is an (eng, €)-IFSID of X. For

every x,y € X,0 € A and for pe (1/2,1], R[S][P] (x) >
R[8],(x). Then, R[8],(0) = [(0,p) € R[8]] > [(x, p) €
/\qu[é]] = R[(S]p(x)/\ﬁ[(;] [p) (x) = R[é]p(x) and R[(S]p

(x) = L(x, p) € ﬁ[(?]]} [(x =y, p) G/\q1~2[~6]]/\[(y, p)~€/\qf2
[6]] = R[8], (x * WAR(S],  (x * y)ARIS], (ARSI,
(y) = R[(S]p (2 = y)/\f{[S]p(y). Therefore, R[(S]p(O) >R
[0],(x) and ﬁ[é] (x) >§[8] (x = y)/\ﬁ[(S] (). 'Thus,
R[8] is a FID of X. Hence, (R tA)P is a FSID of X.

(<=) We claim that, for any p € (1/2,1], (R, tA), is a

FSID of X. Let x,y € X,6 € A and for s,t € (0,1]. Let
c=[(x,s) e/\qR[(S]].

Case 1: let c=1. Then, R[d],(x)>s and
¢ o (x)>1—s. Let p=¢~ (x) For @3, (%) >1/2,
w}é[‘“ have p>1/2 ﬁ[ R[f Then,
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R[81,(0)2 R3], (x) = 1=¢ [61(0) = 1=¢5,,
(O)>p P01 (x) =s. Hence [(0,s) € R[8]] = 1.

Case 2: let ¢ = 1/2. Then, 1 — (x)>sands>q/[]
(). Thus L=y (0)> 112 and (x)<1/2. Tet

p= [ (x). Then, p> 1/2“s Therefore,
R[a (o>>§ [6],(0> 1251 - y= [6](0)> p= 1-
(x) Hence, [(0,s) € R[8]] =

il [(x, s) enqR[8]].
_ Next, we prove [(x,sAf) € R[8]] = [(x = ¥, 8) €A
qR[(S]]/\[(yit) engRI[8]]. Let ¢ = [(x=*y,s) engRIS]INA
[(y,t) engR[4]].

Case 1: let c=1.

Then, (x*y)>s PR 6]
(x*y)>1-s and

PRio) (y) 35 PR P> 1=
Po) (x*y)>1/2, > PRl (»)>1/2. Let
P =95 (x* YN P10l (); then, p>~1/2, and we get
PRi0) (x*y)=p and PRi0] (»)2 p=R[0],(xxy) =1
and R[8]p(y) =1. Thus, R[S]P(x)zR[(S]p(x*y)
/\1~2[8]P(y) = 1:>1~2[6]p (x) = 1, and so, PRis) (x)=p=
R0 (x = y)/\(pi[s] (y) = snt. [(x,snt) €
R[4]] = 1.

Case 2: let ¢ =1/2. Then, l_sz (x*y)> s,5>
Vs (x*y) and 1- Vo) (y)=t, t>1//R 5 (y):t//Rm

Therefore,

Hence,

(x = y) <1/2 and Vs (y) <1/2.

1 Vi (x*y)>1/2 and 1- (y)>1/2. Let
= A%y o DAL -y (y)B Then, p>1/2.

Therefore R[%] (x)=R[b (x * y)/\R[(?] (y) =1/2as

[ (x*y)>p and 1- (y)>p Thus,
](x)>p (1- 2o x*y%/\ (1- YR

(y)) >s/\t Hence, [(x, SAt) € R[8]]=21/2 = [(x* y,
s) E/\qR [61IA[(y, 1) E/\qR[S]] Thus, R[] is an
(eng,€)-IFID of X. Hence, (R tA) is an
(eng, €)-IFSID of X. O

Theorem 7. An IFSS (R,tA) of X is an (€Aq, €vVq)-IFSID of
X& for any x,y € X and § € A:

(1) PR (0) >¢R[6] (x)AL/2 or PRio) (O)V1/2><p R0l (x)

2) PRio) (%)= PRio) (x =+ y)/\(pR 5 (»INL/2 or PRl (x)Vv
1/ 2 PR o1 (x * y)/\(pR[a] (yﬂ

(3) Yz (0)<1//R[5] (x)v1/2 or YR (0)/\1/2<1// R0l (x)

4) vy 6] (x) < Vsl (x * y)Vt// (4] (»IV1/2 or YR (N

Proof. (=) We prove only (2) and (4), and (1) and (3) can be
similarly proved.

2) If PR (x)V1/2<t = (2 = y)/\(p ]( y), then
PRio) (zx*y)>t>1/2 ¢R[6] gy)>t>l/2 Then,
[(x* y, 1/2) engR[8]] =1 and [(y,1/2) engR[S]]
=1. Thus, [(x,1/2A1/2) eVgR[8]] > [(x * y,1/2)
engR (811N [(1,1/2) engR[8]] = 1= [(x, 1/2) e
qﬁ[@]] =1= PR (x)=1/2 or PRio) (x)+1/2>1.
Hence, ¢7 (x)=1/22 PRio) (x * )’)/\fl’};[s] (yIN1/2.
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(4) If YR (x)/\1/2 >t=1-
thens<1-— w(x*y) s<1
as  [(x=y,1/2) e/\qR[8]] >1/2 and [(y,1/2) €
AqR[8]]=1/2.  'Thus, [(x,1/2A1/2) evgR[d]] >
[(x*y,1/2) €/\q1~2[8]]/\[(y, 1/2) E/\q1~2[5]] >1/2=
[(x,1/2) evgR[8]] 2 1/2=>1/2<1 - Vs (x) or

(x) < 1/2. Hence, Vs (x)<1/2< Yzl (x* y)V

l//‘ﬁw] (y)Vl/Z.

(&) For every x,y ¢ X,0¢€ A and s,f€(0,1], let
¢ = [(x* y,5) engR[S]IA[(y,t) engR[S]].

WM (x * yIVyz 5 (V)
YR (»),an 5>1/2

VR0

Case 1: let c=1. Then,
PRl (x*y)=s, PRl (x*y)>1-s and PRio) (») =
b 9% (»>1- t=0% (x = YA PRl (y)>1/2. Sup-
pose [(x, sAt) eVgR[8]] < 1/2; then, PRio) (x) < sAt and
Pl (x) <1 - sAt. Then, Pl (x)<1/2< PRio) (x*y)
ot (»), PRl (x)< PRl (x * y)/\(p;m (»)A1/2 and
PRio) (x)V1/2<¢§[5] (x = YA PRio) (»). This is a con-
tradiction to (2). Hence, [(x,sAt) evgR[d]] = 1.

Case 2: let ¢ =1/2. Then, 1 -y (x*y)>s>1//R[8]
(x*y),1- Yo (») = t>1//R ] (»). Thus, Yl
(x % y)Vv Vo) () < 1/2.1f [(x, sAt) €vgR[8]] = 0, then
YRis) (x)=snt>1 - YR (x). Thus, Vs (x)>1/2, and
Vs (x)N1/2 =1/2> YR (x * y)V‘VE[a] (y) and
Vi) (x)> YR (x * y)VWE[a] (»)V1/2 which is a con-
tradiction to (4). Hence, [(x,sAt) evgR[d]]=1/2.
Therefore, [(x,sAt) eVgR[S]] = [(x = y,s) AR
[01IA[(y,t) engR[S]]. This shows that R[J] is an
(eng,evq)-IFID of X. Hence, (R,tA) is an
(eng, evq)-IFSID of X. O

So,

Theorem 8. An IFSS (R,tA) of X is an IFSID of X with
thresholds (s,t)& forevery p € (s,t], (R, tA)p isa FSID of X.

Proof. (=) Suppose (R,tA) is an IFSID w1th thresholds
(s,t) of X. Let x,y € X and p € (s,t]. Let c=R R[S ] (x).

Case 1: let c¢=1. Then, PRs (x)=p>s=
P10 (0)vs > PRio) (x)At = pAt = p. Thus, P10 0) =
p= R[0],(0) = 1.
Case 2: let ¢=1/2. Then, 1- (x) p. Thus,
YZis) (x)<1-p<l-s Ast=p, now Vs (0N (1 -
s) < YR (vl -t)<(1-pA1-t)=1-p.
Therefore, 1-— Vs (0) Zp:>1~2[5]}, 0)=1/2 = Tz[a]P
(x). Hence, R[S]p(O) 2R[8]p(x).

Next, we have to  prove [8] (x)=R[6 ]P

(x % Y)AR[S], (). Let ¢ = [5] (x * y)AR[S 1, (y)

Case 1: let c=1. Then, [5]p(x *y)=1 and
1~2[8] () = 1:><pR6(x*y)>p>s and
PRio) (y) >p>s. oW, P (KIVsZ g o (x* y)

Nz 5 (PNt = (pVPINE = Thus,
R[ p(x)=1.

Case 2: let ¢=1/2. Then, R[§ ] (x*y)= 1/2 and
R[(S] (y) =112=1- (x*y)>p or ~ YR
(y)>p Thus, wR55x*y)AwR[5](y)<l p<1—s,
from which we ~ get Yo (XN (1 -9)< (1// R10]

(x % YAz IV -1 AZPV(I—1) = 1~ p.

p=>¢§[8] (x) > P

Smce t=p and 1-s> 1 -p therefore,
(x) p, and  so, (x)=21/2 = y~

> =" R[0]

(x . yﬁ (). Thus~, R[@]P(x)zR[’é[]P

(x*y)/\R 6] Fy) Therefore, R[S]p is a FID of X.

Hence, (R, tA)p is a FSID of X.

(&) We assume for everyp € (s,t], (R, tA)P is a FSID of
X. We show 9z (O)Vs (x)/\t

If PRal (0)Vs<p g0~[ ](x)/\t then pe (s,t] and
(x)>p Thus, R[d] (0)>R[8]p(x) =1, and we have

1, and so, PRl (0) > p. This is a contradiction to

PRI8)
P70 (O =
PR (0) < p. Hence, PR o) (O)Vszgog 0] (x)At.

We have to show y~ (6 (0OA(1 - s) < w
YR (0)A(1—s)>p VRis) (x)vV(1-1),
(0)vs<c=1-p=(1-

(x)v(l t). If
tﬁen me

(x))At, and so, c € (s t] and
1- Vo) (x)=c. Thus, Tl[c?]p (0) 2R[6]p (x)>1/2=
R[&]p(o) >1/2 and 1- Vs (0)>=c=1-p. Therefore,
Vs (0) < p, which is a contradiction to Yo (0) > p. Hence,
YR (0OA(1 —-9) < Yol (x)v(1 =1).

Next, we have to show ¢z ](x)Vs (x * YIA
PRio) (ynt. If PRio) (x)vs<p = PR (x * y)A(PE[a] (»)nt,
Ehen pe (i’t] P10l (x*i/)>p and <pR~[5] (»)=p. Thus,
R[4], (x) 2 R[8], (x * y)AR[S], (x) = 1=R[8], (x) = 1,

WR[S]

and so, PRo) (x) = p. This is a contradiction to Pl (x)<p.
Hence, ¢~ . (x)Vs > PR (x * y)Np= (y)/\t
b 3]
We i ]h ave 13[0 showR[ (XA (1-9)<

Vi (% VU OV =) IE g (xﬂ/\u >p=
Vs (2 = y)vy/im (»V (1 —1t), then (1 - YR (x))Vs< ¢ =
1-p=(1-yz BlG*yIAQ-yg, (I, and so
c € (s,t] andl—l//;m (x*y)>cand 1 - [8]()/)>c Thus,
R[8],(x) 2 R[8], (x * y)AR[8], (y) = 1/2=>R[8] (x)=1/2,

and so, 1- Y10 (x)=c=1-p. Therefore, Y00 (x)<p,
which is a contradiction to Vi) (x)>p. Hence,
Yol (X)A(1=-9)< YR (x * y)Vl//E[s] (»V(1—t). There-
fore, R[8] is an IFID of X with thresholds (s,t). Hence,
(R,tA) is an IFSID of X with thresholds (s, t). O

5. Conclusion

The main goal of the present paper is to introduce the
notion of (a,p)-intuitionistic fuzzy soft ideal of
BCK/BClI-algebras, where aandf are the membership
values between an intuitionistic fuzzy soft point and
intuitionistic fuzzy set. Moreover, intuitionistic fuzzy soft
ideals with thresholds are introduced, and their related
properties are investigated.
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We hope that this work will give a deep impact on the
upcoming research in this field and other soft algebraic studies
to open up new horizons of interest and innovations. In future
directions, these definitions and main results can be similarly
extended to some other algebraic systems such as subtraction
algebras, B-algebras, MV-algebras, d-algebras, and Q-algebras.
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