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In the decision-making process, it often happens that decision makers hesitate between several possible preference values, so the
multiattribute decision-making (MADM) problem of hesitant triangle fuzzy elements (HTFEs) has been widely studied. In related
research works, di�erent operators are used to fuse information, and the weighting model is used to represent the degree of
di�erence between information fusion on various indicators, but the mutual in�uence between information is often not
considered. In this sense, the purpose of this paper is to study the MADM problem of the hesitant triangular fuzzy power average
(HTFPA) operator. First, the hesitant triangular fuzzy power-weighted average operator (HTFPWA) and the hesitant triangular
fuzzy power-weighted geometric (HTFPWG) operator are given, their properties are analyzed and special cases are discussed.
�en, a MADM method based on the HTFPWA operator and the HTFPWG operator is developed, and an example of selecting
futures products is used to illustrate the results of applying the proposed method to practical problems. Finally, the e�ectiveness
and feasibility of the HTFPA operator are veri�ed by comparative analysis with existing methods.

1. Introduction

At the age of Internet, the decision-making information not
only presents the huge amount of data but also presents
complex relationship. Recent years, the development of
intuitionistic fuzzy theory has solved the fuzziness and
uncertainty between attributions in the MADM problem.
Since the proposition of Atanassov-de�ned intuitionistic
fuzzy set (IFS) theory [1, 2], many scholars have studied it in
a deep going way. Torra et al. [3, 4] described the mem-
bership degree of IFS with a set of precise numbers that can
represent the hesitation degree of decision makers, and then
extended IFS to hesitant fuzzy set (HFS), and studied the
relationship between HFS and IFS. Akram et al. [5] designed
hesitant polar fuzzy sets, which is a hybrid model composed
of HFSs and m polar fuzzy sets. Chen et al. [6] combined
HFS with interval value and put forward a MADM method
of interval hesitant fuzzy preference relationship. Chen et al.
[7] did research for the formula of the correlation coe�cient
between HFSs, and applied the formula into cluster analysis.

Tong and Yu [8] put forward algorithm and information
aggregation operators relevant to HFS. Akram et al. [9, 10]
constructed a hesitant fuzzy N-soft ELECTRE II method and
an Elimination and Choice Translating REality-II technique
to deal with the di�erent opinions of decision makers on
MADM problems in hesitant fuzzy environments.

�e research on HFS information aggregation operator
is an important part of the HFS theory. Xu and Xia [11]
studied a series of HFS information aggregation operators
and the relationship between them under hesitant fuzzy
environment. Xia et al. [12] combined HFS and IFS to study
the quasi hesitant fuzzy weighted aggregation operator, the
hesitant fuzzy modular weighted averaging operator, etc.
Wei et al. [13] combined HFS with interval values to study
the information aggregation operators related to hesitation
intervals, such as hesitant interval-valued fuzzy weighted
averaging operator and hesitant interval-valued fuzzy or-
dered weighted averaging operator, and proved their
idempotence, monotonicity, boundedness, and invariance.
Akram et al. [14, 15] pointed out that the application of HFS
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and related aggregation operators in MADM can be better
described by maximum deviation method and extended
TOPSIS method. Zhao et al. [16] studied HFS and triangular
fuzzy number together, proposed hesitate triangular fuzzy
sets (HTFS), and then combined HTFS with Einstein in-
formation aggregation operator to study hesitant triangular
fuzzy Einstein weighted averaging (HTFEWA) operator,
hesitant triangular fuzzy Einstein weighted geometric
(HTFEWG) operator, and related properties.

At present, there are many research works on the ap-
plication of PA operators in hesitant fuzzy environments
and MADM problems. Wei et al. [17] extended the PA
aggregation operator to the Pythagorean fuzzy environment
and proposed the Pythagorean fuzzy PA aggregation op-
erator. Zhang [18] defined three types of hesitant fuzzy PA
aggregators and studied the relationship between them. Lin
et al. [19] studied the hesitant fuzzy language PA aggregator
and applied it to MADM problems. -e PA operator pro-
posed by Yager [20] allowed attributes to support and
strengthen each other in the form of weight vectors during
fusion, thereby eliminating the influence of subjective
weights on the fusion results. Liang et al. [21] studied several
uncertain information fusion operators based on interval
fuzzy preference information and the PA operator. Xu [22]
extended the PA operator to the intuitionistic fuzzy envi-
ronment, combined with IFS to study the intuitionistic fuzzy
power average operator, the intuitionistic fuzzy power-
weighted average operator, and the intuitionistic fuzzy
power geometric operator, etc. Zhou et al. [23] further
extended the PA operator and studied the generalized power
ordered weighted average operator, the uncertain general-
ized power average operator, the uncertain generalized
power ordered weighted average operator and their prop-
erties, so that the theoretical range of the PA operator was
extended, and the effect was well applied in the MADM.

-e information fusion operators in the above research
work mainly consider the situation that the attributes are
independent of each other. In MADM problems, decision
makers often have subjective preferences, and attribute
values have a certain degree of correlation (preference,
complementarity, redundancy, etc.) [24, 25]. For example,
the quality and price of alternative projects are included in
the investment evaluation, generally the project with better
quality tends to have higher price. -erefore, the infor-
mation fusion operator considering the correlation between
attributes is obviously more able to meet the needs of
practical decision-making. At present, the HFS theory is
widely used in MADM problems because of its ability to
formally express uncertain data [26], and decision-making
information is given by HTFS more often for better de-
scribing the hesitation degree of decision makers. However,
the HTFS fusion operator whose attributes mutually support
has rarely been studied, and few studies have paid attention
to the MADM situation where the decision information is
HTFS.

Considering that the PA operator can reflect the rela-
tionship between attributes, this paper introduces the PA
operator into the hesitant triangle fuzzy environment to
make MADM. Firstly, according to the hesitant fuzzy

environment, the HTFPA operator, the HTFPWA operator,
and the HTFPWG are proposed, and the related properties
of these operators are discussed. -en, the specific steps of
applying the HTFPWA operator and the HTFPWG to the
MADM problem are explained. Finally, the effectiveness of
the proposed operators is proved by numerical example and
methods comparison. -is paper’s method can be applied to
real-life MADM situations such as risk investment decision-
making, risk management, and financial risk decision-
making.

2. Basic Theory

2.1. PA Operator

Definition 1. Let the real number set be a1, a2, . . . , an􏼈 􏼉, then
the operator is defined as

PA a1, a2, . . . , an( 􏼁 �
􏽐

n
i�1 1 + T ai( 􏼁ai( 􏼁􏼂 􏼃

􏽐
n
i�1 1 + T ai( 􏼁( 􏼁

, (1)

where T(ai) � 􏽐
n
j�1,j≠ i Sup(ai, aj) and Sup(ai, aj) is support

of aj for ai satisfying the following condition:

(1) Sup(ai, aj) ∈ [0, 1]

(2) Sup(ai, aj) � Sup(aj, ai)

(3) If |ai, aj|< |as, at|, then Sup(ai, aj)> Sup(as, at).
Based on the PA operator and the geometric mean
operator, Xu and Yager [27] defined the power
geometric (PG) operator.

PG a1, a2, . . . , an( 􏼁 � 􏽙
n

i�1
a

1+T ai( )/􏽐
n

i�1 1+T ai( )( 􏼁
1 . (2)

2.2. Hesitant Triangular Fuzzy Sets

Definition 2. Let X be a given set, call
A � 〈x, fA(x)〉|x ∈ X􏼈 􏼉 the HFS on X, where fA(x) is the
set of distinct exact numbers on interval [0, 1], and fA(x) is
the hesitant fuzzy element.

Chen et al. [6] combined HFS to propose interval-valued
hesitant fuzzy set (IVHFS).

Definition 3. Let X be a given set, call
D � 〈x, gD(x)〉|x ∈ X􏼈 􏼉 the IVHFS on X, where gD(x) �

(cL, cU) (0≤ cL ≤ cU ≤ 1) represents a set of several possible
membership degrees of element x belonging to D.

In reference [16], HFS and triangular fuzzy numbers
were studied together, the HTFS definition was given. -e
HTFEWA operator, HTFEWG operator and related prop-
erties were given.

Definition 4. Let X be a given set, call
A � 〈x, hA(x)〉|x ∈ X􏼈 􏼉 the HTFS on X. Among them,
hA(x) � (cL, cM, cR) is a set of mutually different triangular
fuzzy numbers, which means that the element x belongs to a
set of several possible membership degrees of A, and hA(x)

is the HTFE.
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2.3. HTFS Algorithm Definition 5. Let h1(x) � (cL
1 , cM

1 , cR
1 ) and

h2(x) � (cL
2 , cM

2 , cR
2 ) be any two HTFEs, λ> 0, then their

calculation methods are defined as follows:

h
λ
1 � ∪ c1∈h1 c

L
1􏼐 􏼑

λ
, c

M
1􏼐 􏼑

λ
, c

R
1􏼐 􏼑

λ
􏼒 􏼓􏼚 􏼛,

h1 ⊗ h2 � ∪ c1∈h1 ,c2∈h2
c

L
1c

L
2 , c

M
1 c

M
2 , c

R
1 c

R
2􏼐 􏼑􏽮 􏽯,

λh1 � ∪ c1∈h1 1 − 1 − c
L
1􏼐 􏼑

λ
, 1 − 1 − c

M
1􏼐 􏼑

λ
, 1 − 1 − c

R
1􏼐 􏼑

λ
􏼒 􏼓􏼚 􏼛,

h1⊕h2 � ∪ c1∈h1
c2∈h2

c
L
1 + c

L
2 − c

L
1c

L
2 , c

M
1 + c

M
2 − c

M
1 c

M
2 , c

R
1 + c

R
2 − c

R
1 c

R
2􏼐 􏼑􏽮 􏽯.

(3)

2.4. HTFS Score Function

Definition 6. Let any HTFE be h, then the score function of h

is

S(h) �
1
#h

􏽘
c∈h

c, (4)

where #h is the number of elements in the HTFE h, and for
any two HTFE h1 and h2, if S(h1)≥ S(h2), then h1 ≥ h2.

Definition 7 (see [23]): Let h1 � (cL
1 , cM

1 , cR
1 ) and

h2 � (cL
2 , cM

2 , cR
2 ) be any two HTFEs, then call Equation (4)

the Hamming distance between h1, h2.

d h1, h2( 􏼁 �
1
n

􏽘

n

i�1
h

n(i)
1 − h

n(i)
2

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, (5)

where h
n(i)
1 , h

n(i)
2 represent the largest elements of HTFE

h1, h2, respectively.

-e PA operator is often used in an environment where
the attributes have mutual support. For the MADM problem
given by the attribute value in HTFE, based on the HTFE
algorithm and Equation (1), Equation (6) is the definition of
the HTFPWA operator.

HTFPWA h1, h2, . . . , hn( 􏼁 �
⊕ni�1 wi 1 + T hi( 􏼁( 􏼁hi( 􏼁

􏽐
n
i�1 wi 1 + T hi( 􏼁( 􏼁( 􏼁

, (6)

whereT(hi) � 􏽐
n
j�1,j≠ i wiSup(hi, hj) � 􏽐

n
j�1,j≠ i wi(1 −

d(hi, hj)), Sup(hi, hj) is the support of hj for hi, satisfying
the following condition.

(1) Sup(hi, hj) ∈ [0, 1]

(2) Sup(hi, hj) � Sup(hj, hi)

(3) If d(hi, hj)<d(hs, ht), then Sup(hi, hj)> Sup(hs, ht),
where d is the distance defined in Equation (5).

Theorem 1. Let hi(i � 1, 2, . . . , n) be a set of HTFEs, then the
result of integration by Equation (6) is still HTFE, and

HTFPWA h1, h2, . . . , hn( 􏼁 �
⊕ni�1 wi 1 + T hi( 􏼁( 􏼁hi( 􏼁

􏽐
n
i�1 wi 1 + T hi( 􏼁( 􏼁( 􏼁

� ∪ c1∈h1 ,c2∈h2 ,...,cn∈hn
1 − 􏽙

n

i�1
1 − c

L
i􏼐 􏼑

wi 1+T hi( )( )/ 􏽘

n

i�1
wi 1 + T hi( 􏼁( 􏼁

, 1 − 􏽙
n

i�1
1 − c

M
i􏼐 􏼑

wi 1+T hi( )( )/ 􏽘

n

i�1
wi 1 + T hi( 􏼁( 􏼁

,
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

1 − 􏽙
n

i�1
1 − c

R
i􏼐 􏼑

wi 1+T hi( )( )/ 􏽘

n

i�1
wi 1 + T hi( 􏼁( 􏼁⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

.

(7)

-e proof process is shown in Appendix A.
Obviously, when w � (1/n, 1/n, 1/n, · · · , 1/n), (6) is de-

graded to the HTFPA operator:
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HTFPA h1( , h2, · · · , hn􏼁 �
⊕ni�1 (1 + T hi( 􏼁􏼁hi( 􏼁

􏽐
n
i�1 (1) + T hi( 􏼁􏼁( 􏼁

� ∪ c1∈h1 ,c2∈h2 ,...,cn∈hn
1 − 􏽙

n

i�1
1 − c

L
i􏼐 􏼑

1+T hi( )( )/􏽐
n

i�1 1+T hi( )( )( 􏼁
,⎛⎝

⎧⎨

⎩

1 − 􏽙
n

i�1
1 − c

M
i􏼐 􏼑

1+T hi( )( )/􏽐
n

i�1 1+T hi( )( )( 􏼁
, 1 − 􏽙

n

i�1
1 − c

R
i􏼐 􏼑

1+T hi( )( )/􏽐
n

i�1 1+T hi( )( )( 􏼁⎞⎠
⎫⎬

⎭,

(8)

where T(hi) � (1/n) 􏽐
n
j�1,j≠ i Sup(hi, hj).

It can be easily proved that HTFPWA has the following
properties.

2.5. HTFPWA Properties

Theorem 2. Idempotency
Let HTFE hi(x) � h � (cL, cM, cR) for every

i � 1, 2, . . . , n has (9).

HTFPWA h1, h2, . . . , hn( 􏼁 � HTFPWA(h, h, . . . , h) � h.

(9)

Theorem 3. Replacement invariance
Let (h1, h2, . . . , hn) be a set of HTFE and (h1, h2, · · · , hn)

be any replacement of (h1, h2, . . . , hn), then

HTFPWA h1, h2, . . . , hn( 􏼁 � HTFPWA h1, h2, . . . , hn􏼐 􏼑.

(10)

Theorem 4. Monotonicity
Let hi � (cL

i , cM
i , cR

i ) and
􏽥hi � (􏽥cL

i , 􏽥cM
i , 􏽥cR

i )(i � 1, 2, . . . , n) be a set of two HTFEs, if
cL

i ≥ 􏽥cL
i , cM

i ≥ 􏽥cM
i , cR

i ≥ 􏽥cR
i , for any i gives

HTFPWA h1, h2, · · · , hn( 􏼁≥HTFPWA 􏽥h1,
􏽥h2, · · · , 􏽥hn􏼐 􏼑.

(11)

Theorem 5. Boundedness
Let h− ≤HTFPWA(h1, h2, . . . , hn)≤ h+ be a set of

HTFEs, then
h

− ≤HTFPWA h1, h2, . . . , hn( 􏼁≤ h
+
, (12)

where h− � ∪ ci∈hi
min ci􏼈 􏼉 and h+ � ∪ ci∈hi

max ci􏼈 􏼉.

Inspired by reference [20], the HTFPWG operator is
given based on the HTFE and the geometric mean operator.

Definition 8. Let hi(i � 1, 2, · · · , n) be a set of HTFEs, then
the HTFPWG operator is

HTFPWG h1, h2, . . . , hn( 􏼁 �
⊗ n

1�1 wi 1 + T hi( 􏼁( 􏼁hi( 􏼁

􏽐
n
i�1 wi 1 + T hi( 􏼁( 􏼁( 􏼁

, (13)

whereT(hi) � 􏽐
n
j�1,j≠ i wi Sup(hi, hj) � 􏽐

n
j�1,j≠ i wi(1 −

d(hi, hj)), Sup(hi, hj) are the support of hj to hi, satisfying
the following conditions.

(1) Sup(hi, hj) ∈ [0, 1]

(2) Sup(hi, hj) � Sup(hj, hi)

(3) If d(hi, hj)<d(hs, ht), then Sup(hi, hj)> Sup(hs, ht),
where d is the distance defined in Equation (5).

Theorem 6. Let hi(i � 1, 2, · · · , n) be a set of HTFEs, then the
result of integration by Equation (13) is still HTFE, and

HTFPWG h1, h2, . . . , hn( 􏼁 �
⊗ n

i�1 wi 1 + T hi( 􏼁( 􏼁hi( 􏼁

􏽐
n
i�1 wi 1 + T hi( 􏼁( 􏼁( 􏼁

� ∪ c1∈h1 ,c2∈h2 ,···,cn∈hn
􏽙

n

i�1
c

L
i􏼐 􏼑

wi 1+T hi( )( )/ 􏽘

n

i�1
wi 1 + T hi( 􏼁( 􏼁( 􏼁⎛⎝ ⎞⎠

, 􏽙
n

i�1
c

M
i􏼐 􏼑

wi 1+T hi( )( )/ 􏽘

n

i�1
wi 1 + T hi( 􏼁( 􏼁( 􏼁⎛⎝ ⎞⎠

,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

􏽙
n

i�1
c

R
i􏼐 􏼑

wi 1+T hi( )( )/ 􏽘

n

i�1
wi 1 + T hi( 􏼁( 􏼁( 􏼁⎛⎝ ⎞⎠⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

.

(14)

The proof process is similar to Appendix A, which is
omitted here.

When w � (1/n, 1/n, 1/n, · · · , 1/n), equation (14) de-
grades to the HTFPG operator.
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HTFPG h1, h2, . . . , hn( 􏼁 �
⊗ n

i�1 1 + T hi( 􏼁( 􏼁hi( 􏼁

􏽐
n
i�1 1 + T hi( 􏼁( 􏼁( 􏼁

� ∪ c1∈h1 ,c2∈h2 ,...,cn∈hn
􏽙

n

i�1
c

L
i􏼐 􏼑

1+T hi( )( )/􏽘
n

i�1
1+T hi( )( )􏼐 􏼑

, 􏽙
n

i�1
c

M
i􏼐 􏼑

1+T hi( )( )/􏽘
n

i�1
1+T hi( )( )􏼐 􏼑

,⎛⎝
⎧⎨

⎩

􏽙

n

i�1
c

R
i􏼐 􏼑

1+T hi( )( )/􏽘
n

i�1
1+T hi( )( )􏼐 􏼑⎞⎠

⎫⎬

⎭,

(15)

where T(hi) � 1/n 􏽐
n
j�1,j≠ i Sup(hi, hj).

Like the HTFPWA operator, the HTFPWGoperator also
has the properties of idempotency, replacement invariance,
monotonicity, and boundedness.

Lemma 1. Let xi > 0, λi > 0, i � 1, 2, . . . , n, at the same time
􏽐

n
i�1 λi � 1, then

􏽙

n

i�1
xi( 􏼁

λi ≤ 􏽘
n

i�1
λixi. (16)

If and only if x1 � x2 � · · · � xn, take the equal sign [28].

Theorem 7. Let hi(i � 1, 2, . . . , n) be a set of HTFEs, then

HTFPWG h1, h2, . . . , hn( 􏼁≤HTFPWA h1, h2, . . . , hn( 􏼁.

(17)

-e proof process is shown in Appendix B.
-eorem 7 states that the HTFE obtained by the fusion of

the HTFPWG operator is less than or equal to the HTFE
obtained by the fusion of the HTFPWA operator.

3. MADMMethod Based onHTFPWAOperator

Based on the HTFPWA operator, this paper proposes a
MADM method with an attribute value of HTFE. Suppose

there is a MADM problem, set the scheme set A�

{A1,A2,. . .,At}, attribute set C� {C1,C2,. . .,Cn}, decision set
D� {d1,d2,. . .,dm}. Also, w � [w1, w2, . . . , wn]T is the weight
vector of each attribute, wk ∈ [0, 1](k � 1, 2, . . . , m).

Specific decision steps are as follows:

Step 1: suppose that the evaluation value given by the
decision expert to the scheme Ai under the attribute Cj
is HTFE, and the decision matrix is obtained as D �

(hij)n×t.
Step 2: calculate the support Sup(hi, hj) between HTFE
attributes,

Sup hi, hj􏼐 􏼑 � 1 − d hi, hj􏼐 􏼑, (18)

where d(hi, hj) can be obtained from Equation (5), and
then by (19) obtained T(hij).

T hij􏼐 􏼑 � 􏽘
n

j�1,j≠ i

wiSup hi, hj􏼐 􏼑 � 􏽘
n

j�1,j≠ i

wi 1 − d hi, hj􏼐 􏼑􏼐 􏼑.

(19)

Step 3: the comprehensive evaluation value of the i-th
scheme under the j-th attribute is obtained by the
HTFPWA operator (Equation (7)), which is

HTFPWA h1, h2, . . . , hn( 􏼁 � ∪ c1∈h1 ,c2∈h2 ,···,cn∈hn

1 − 􏽙
n

i�1
1 − c

L
i􏼐 􏼑

wi 1+T hi( )( )/􏽘
n

i�1
wi 1+T hi( )( )􏼐 􏼑

, 1 − 􏽙
n

i�1
1 − c

M
i􏼐 􏼑

wi 1+T hi( )( )/􏽘
n

i�1
wi 1+T hi( )( )􏼐 􏼑

,⎛⎝
⎧⎨

⎩

1 − 􏽙
n

i�1
1 − c

R
i􏼐 􏼑

wi 1+T hi( )( )/􏽘
n

i�1
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Or the HTFPWG operator (14) gets the comprehensive
evaluation value of the i-th scheme under the j-th
attribute, which is

HTFPWG h1, h2, · · · , hn( 􏼁 � ∪ c1∈h1 ,c2∈h2 ,···,cn∈hn
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⎩

⎫⎬

⎭.

(21)

Step 4: use Equation (4) to calculate the score function
value, and rank the pros and cons of the schemes
according to the HTFE sorting method.
Step 5: get the best solution.

4. Application of HTFPWA Operator in
Futures Selection

An investment group intends to invest in several futures
products. Known futures market has five futures products
A1–A5, the group’s decision makers are based on futures-
related evaluation indicators for the selection of products.
Evaluation indicators are C1 (product yield), C2 (product
potential), C3 (investment risk factor), C4 (product stability
coefficient), the weight vector of the indicator is w

� [0.1,0.3,0.2,0.4]T. Decision-making experts’ satisfaction
evaluation to five future products under four evaluation
indicators is presented by HTFE, as shown in Table 1. -e
HTFPWA operator proposed in this paper is used for the
selection of candidate products.

Step 1. use Equation (5) to calculate the Hamming distance
d(hi, hj) between different attributes, and use Equation (18)
to find the mutual support between attributes, then using
Equation (19) to calculate T(hij)(i � 1, 2, 3, 4, j � 1, 2, 3, 4, 5
).

T hij􏼐 􏼑 �

2.300 1.100 2.100 2.100

2.350 1.650 2.350 2.350

2.400 1.500 2.400 2.400

1.950 1.950 0.450 1.950

1.950 2.250 2.250 1.650

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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. (22)

Step 2. the comprehensive evaluation value of the i-th
scheme under the j-th attribute is obtained from the
HTFPWA operator (Equation (7)).

HTFPWA h11, h12, h13, h14( 􏼁 � (0.4008, 0.5116, 0.6475),

HTFPWA h21, h22, h23, h24( 􏼁 � (0.4756 , 0.5957, 0.7001),

HTFPWA h31, h32, h33, h34( 􏼁 � (0.4576, 0.5581, 0.6589),

HTFPWA h41, h42, h43, h44( 􏼁 � (0.6154, 0.7212, 0.8315),

HTFPWA h51, h52, h53, h54( 􏼁 � (0.3985, 0.5019, 0.6073).

(23)

Step 3. the fractional function of HTFE S(hi)(i � 1, 2, 3, 4, 5
) is calculated from Equation (3) and HTFPWA operator.
S(h1) � 0.5200, S(h2) � 0.5905, S(h3) � 0.5582, S(h4) �

0.7227, S(h5) � 0.5026

Step 4. sort all candidate futures products Ai(i � 1, 2, 3, 4, 5)

according to the score function S(hi)(i � 1, 2, 3, 4, 5) to get
A4≻A2≻A3≻A1≻A5. -erefore, the best futures product is A4.

-e following uses the HTFPWG operator proposed in
this paper for comparative analysis.

Calculate T(hij)(i � 1, 2, 3, 4, j � 1, 2, 3, 4, 5) same as
step 1, and then the comprehensive evaluation value of the i

-th scheme under the j-th attribute is obtained from the
HTFPWAG operator (11).

HTFPWG h11, h12, h13, h14( 􏼁 � (0.3307, 0.4373, 0.5681),

HTFPWG h21, h22, h23, h24( 􏼁 � (0.4203 , 0.5688, 0.6709),

HTFPWG h31, h32, h33, h34( 􏼁 � (0.5361, 0.6385, 7403),

HTFPWG h41, h42, h43, h44( 􏼁 � (0.5282, 0.6477, 0.7573),

HTFPWG h51, h52, h53, h54( 􏼁 � (0.3500, 0.4575, 0.5621).

(24)

Use (2) and HTFPWG operator to calculate the score
function S′(hi)(i � 1, 2, 3, 4, 5) of HTFE h.

S′(h1) � 0.4454, S′(h2) � 0.5534, S′(h3) � 0.6383,

S′(h4) � 0.6444, S′(h5) � 0.4565. Sort all candidate futures
products Ai(i � 1, 2, 3, 4, 5) according to the score func-
tion S′(hi)(i � 1, 2, 3, 4, 5) to get A4≻A3≻A2≻A1≻A5.
-erefore, the best futures product is A4, but there exists
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some difference between the orders of pros and cons of A2
and A3. -e scores of the candidate futures products
obtained by the HTFPWG operator fusion from-eorem
6 are less than or equal to the score function values
obtained by the fusion of the HTFPWA operator. It can
be seen from the experiment that the difference between
the scores of the HTFPWG operator is not obvious, so
that the rank of the merits does not have high sensitivity.

As shown in Table 2, the methods proposed in this paper
are compared with other methods. According to the
HTFEWA operator and HTFEWG operator proposed by
Zhao et al. [16], the sorting results of the alternative futures
products are obtained as A3≻A4≻A1≻A2≻A5 and
A3≻A4≻A2≻A1≻A5, respectively. By comparison, it can be
seen that the results of these two methods are different from
the methods proposed in this paper. -e HTFEWA operator
and the HTFEWG operator do not fully consider the im-
portance of the relevant membership degrees when
calculating.

According to the generalized trapezoidal hesitant
fuzzy (GTHF) aggregation operator, the generalized
trapezoidal hesitant fuzzy Bonferroni arithmetic mean
(GTHFBAM) operator, and the generalized trapezoidal
hesitant fuzzy Bonferroni geometric mean (GTHFBGM)
operator proposed by Deli et al. [29, 30], the sorting
results of the alternative futures products are obtained as
A4≻A3≻A2≻A1≻A5, A3≻A4≻A2≻A1≻A5 and
A4≻A3≻A2≻A1≻A5 respectively. Among them, the order
of GTHF aggregation operator and GTHFBGM operator
is the same as that of HTFPWG operator, and the order of
other operators is different to some extent, which is not
unrelated to the consideration of membership degree by
the methods proposed in this paper.

-e HTFPWA operator and HTFPWG operator
proposed in this paper consider the correlation between
attributes and the importance of related information,
reduce the randomness of decision-making, and involve
fewer parameters, overcome the subjectivity of decision-

making, and make the results more comprehensive and
scientific.

5. Conclusions

For MADM in hesitant and fuzzy, the decision attributes
are often related to each other to a certain extent, which
leads to mutual interference of decision results, and even
the problem of discussing the weight of the same factor for
several times, thus affecting the stability of decision
making. In order to eliminate the interference of sub-
jective weights on the information fusion results and
achieve the stability of decision making, this paper studies
the HTFPA operator, the HTFPWA operator, and the
HTFPWG operator, analyzes the relevant properties of
these operators, and discusses the process of special cases.
-en, the application methods of the HTFPWA operator
and the HTFPWA operator in MADM problem are given,
and the validity and correctness of the proposed methods
are shown by the example of futures products selection.
Finally, by comparing the existing researches, the pro-
posed operators comprehensively consider the mutual
support between the decision attributes, and realize the
objective weighting operation according to the difference
between the individual and the whole information fusion,
which makes the decision analysis closer to the actual
situation and the decision results more reasonable, pro-
viding a new idea for solving MADM problems. In the
future, we plan to extend our research work to VIKOR,
QUALIFLEX, deblurring techniques, ELECTRE I method,
ELECTRE II method, ELECTRE III method, etc.

Appendix

A. The proof process of Theorem 6

Let hi(i � 1, 2, . . . , n) a set of HTFEs, to prove that

Table 1: Hesitant triangle fuzzy decision matrix.

C 1 C 2 C 3 C 4

A 1 {(0.3,0.4,0.5)} {(0.6,0.7,0.8), (0.7,0.8,0.9)} {(0.2,0.3,0.5)} {(0.2,0.3,0.4), (0.3,0.4,0.5)}
A 2 {(0.6,0.7,0.8)} {(0.2,0.4,0.5)} {(0.3,0.4,0.5), (0.6,0.7,0.8)} {(0.2,0.3,0.5), (0.4,0.5,0.6), (0.5,0.6,0.7)}
A 3 {(0.5,0.6,0.7)} {(0.7,0.8,0.9), (0.8,0.9,1.0)} {(0.2,0.3,0.4), (0.4,0.5,0.6)} {(0.5,0.6,0.7)}
A 4 {(0.7,0.8,0.9)} {(0.6,0.7,0.8), (0.7,0.8,0.9)} {(0.1,0.2,0.3)} {(0.3,0.4,0.5), (0.6,0.7,0.8)}
A 5 {(0.6,0.7,0.8)} {(0.2,0.3,0.4), (0.5,0.6,0.7)} {(0.4,0.5,0.6)} {(0.2,0.3,0.4)}

Table 2: Comparative analysis of operators.

Operator Ranking
Proposed method I HTFPWA operator A 4≻ A 2≻ A 3≻ A 1≻ A 5
Proposed method II HTFPWG operator A 4≻ A 3≻ A 2≻ A 1≻ A 5
-e method in reference [16] HTFEWA operator A 3≻ A 4≻ A 1≻ A 2≻ A 5
-e method in reference [16] HTFEWG operator A 3≻ A 4≻ A 2≻ A 1≻ A 5
-e method in reference [29] GTHF aggregation operator A 4≻ A 3≻ A 2≻ A 1≻ A 5
-e method in reference [30] GTHFBAM operator A 3≻ A 4≻ A 2≻ A 1≻ A 5
-e method in reference [30] GTHFBGM operator A 4≻ A 3≻ A 2≻ A 1≻ A 5
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is true. When n � 2, according to Definition 5,

w1 1 + T h1( 􏼁( 􏼁h1 � ∪ c1∈h1 1 − 1 − c
L
1􏼐 􏼑

w1 1+T h1( )( )
, 1 − 1 − c

M
1􏼐 􏼑

w1 1+T h1( )( )
, 1 − 1 − c

R
1􏼐 􏼑

w1 1+T h1( )( )
􏼒 􏼓􏼚 􏼛,

w2 1 + T h2( 􏼁( 􏼁h2 � ∪ c1∈h2 1 − 1 − c
L
2􏼐 􏼑

w2 1+T h2( )( )
, 1 − 1 − c

M
2􏼐 􏼑

w2 1+T h2( )( )
, 1 − 1 − c

R
2􏼐 􏼑

w2 1+T h2( )( )
􏼒 􏼓􏼚 􏼛.

(A.3)

-en, get

� ∪ c1∈h1 ,c2∈h2

1 − 1 − c
L
1􏼐 􏼑

w1 1+T h1( )( )
+ 1 − 1 − c

L
2􏼐 􏼑

w2 1+T h2( )( )
− 1 − 1 − c

L
1􏼐 􏼑

w1 1+T h1( )( )
􏼒 􏼓 1 − 1 − c

L
2􏼐 􏼑

w2 1+T h2( )( )
􏼒 􏼓,

1 − 1 − c
M
1􏼐 􏼑

w1 1+T h1( )( )
+ 1 − 1 − c

M
2􏼐 􏼑

w2 1+T h2( )( )
− 1 − 1 − c

M
1􏼐 􏼑

w1 1+T h1( )( )
􏼒 􏼓 1 − 1 − c

M
2􏼐 􏼑

w2 1+T h2( )( )
􏼒 􏼓,

1 − 1 − c
R
1􏼐 􏼑

w1 1+T h1( )( )
+ 1 − 1 − c

R
2􏼐 􏼑

w2 1+T h2( )( )
− 1 − 1 − c

R
1􏼐 􏼑

w1 1+T h1( )( )
􏼒 􏼓 1 − 1 − c

R
2􏼐 􏼑

w2 1+T h2( )( )
􏼒 􏼓,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

� ∪ c1∈h1 ,c2∈h2

1 − 1 − c
L
1􏼐 􏼑

w1 1+T h1( )( )
· 1 − c

L
2􏼐 􏼑

w2 1+T h2( )( )
􏼒 􏼓,

1 − 1 − c
M
1􏼐 􏼑

w1 1+T h1( )( )
· 1 − c

M
2􏼐 􏼑

w2 1+T h2( )( )
􏼒 􏼓,

1 − 1 − c
R
1􏼐 􏼑

w1 1+T h1( )( )
· 1 − c

R
2􏼐 􏼑

w2 1+T h2( )( )
􏼒 􏼓

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

.

(A.4)

Suppose that when n � k, there is
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1/􏽘
n

i�1
wi 1+T hi( )( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

� ∪ c1∈h1,c2∈h2,···,cn∈hn

1 − 1 − 􏽙
n

i�1
1 − c

L
i􏼐 􏼑

1+T hi( )⎛⎝ ⎞⎠

1/􏽘
n

i�1
wi 1+T hi( )( )

, 1 − 1 − 􏽙
n

i�1
1 − c

M
i􏼐 􏼑

1+T hi( )⎛⎝ ⎞⎠

1/􏽘
n

i�1
wi 1+T hi( )( )

,

1 − 1 − 􏽙
n

i�1
1 − c

R
i􏼐 􏼑

1+T hi( )⎛⎝ ⎞⎠

1/􏽘
n

i�1
wi 1+T hi( )( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

� ∪ c1∈h1,c2∈h2,...,cn∈hn
1 − 􏽙

n

i�1
1 − c

L
i􏼐 􏼑

wi 1+T hi( )( )/􏽘
n

i�1
wi 1+T hi( )( )􏼐 􏼑

, 1 − 􏽙
n

i�1
1 − c

M
i􏼐 􏼑

wi 1+T hi( )( )/􏽘
n

i�1
wi 1+T hi( )( )􏼐 􏼑

,⎛⎝
⎧⎨

⎩

1 − 􏽙
n

i�1
1 − c

R
i􏼐 􏼑

wi 1+T hi( )( )/􏽘
n

i�1
wi 1+T hi( )( )􏼐 􏼑⎞⎠

⎫⎬

⎭.

(A.7)
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So, -eorem 1 is proved.

B. The proof process of Theorem 7

Let hi(i � 1, 2, . . . , n) be a set of HTFEs, for any c1 ∈ h1,

c2 ∈ h2, · · · , cn ∈ hn, because 􏽐
n
i�1 wi(1 + T(hi))/􏽐

n
i�1 wi(1 +

T(hi)) � (􏽐
n
i�1 wi(1 + T(hi))/􏽐

n
i�1 wi(1 + T(hi))) � 1,

Lemma 1 gives

􏽙

n

i�1
ci( 􏼁

wi 1+T hi( )( )/􏽐
n

i�1 wi 1+T hi( )( ) ≤ 􏽘
n

i�1

wi 1 + T hi( 􏼁( 􏼁

􏽐
n
i�1 wi 1 + T hi( 􏼁( 􏼁

ci􏼠 􏼡≤ 1 − 􏽙
n

i�1
1 − ci( 􏼁

wi 1+T hi( )( )/􏽐
n

i�1 wi 1+T hi( )( ). (B.1)

So, -eorem 7 is proved.
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